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Abstract

We present a scalable visualization technique for auto-
matic animation of data-flow visual program execution. We
also show a framework to assist programmers' browsing
tasks by automatically producing the views of execution that
highlight significant aspects of the program.

The techniques described in this paper are based on the
visual design patterns (VDPs) proposed in our VL'97 pa-
per, which serve as a flexible and high-level structure for
reuse of visual parallel programming. This paper shows
that VDPs also serve as a basis for representing aspects of
the program, with which it is possible to provide scalable
views and intelligent assistance for browsing dynamically
created data-flow networks.

We have incorporated these ideas into the visual tracer
of the KLIEG visual parallel programming environment.

1. Introduction

In the development of parallel programs, programmers
often need to examine various aspects of program behavior.
We refer to the word `aspects' as particular behaviors of the
program (e.g., performance of the program, behaviors of
a single component, behaviors of cooperative components
communicating with each other) which can be potential tar-
gets to be monitored by the programmer. For example, de-
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veloping a parallel program usually involves a cycle of cod-
ing particular processes, correctness checking of the `unsta-
ble' processes, and performance tuning of the entire pro-
gram by searching for bottlenecks. To provide an effective
support for these tasks, a scalable and comprehensible visu-
alizer which automatically highlights these aspects will be
helpful.

In the case of visual programming languages (VPLs),
the visualization technique which is used in both Pictorial
Janus[6] and VIPR[3] is able to provide comprehensible
views. These systems depict a state of program execution as
a picture based on the shape of the program itself, and repre-
sent state transitions during execution by smooth animation
of those pictures. Furthermore, VIPR partly addresses the
scalability issue by incorporating its own single-focus fish-
eye viewing algorithm.

However, several problems still remain:

support for multiple focal points Practically, a multiple
focal point facility is desirable, since programmers
often need to simultaneously examine the behaviors
of two or more processes (e.g., the sender and re-
ceiver processes). With single focus fisheye views,
they frequently have to change focus from one pro-
cess to another.

support for multiple aspects of a program
Programmers need to monitor various aspects of a
program and each aspect requires its own view (or
its own foci in fisheye cases). A change of aspect (or
equivalently, a change of view) occurs frequently, and
usually requires tedious zoom-in/out operations.

In this paper, we present a technique that provides a scal-
able and comprehensible visualization of program execu-
tion in data-flow VPLs by exploiting multi-focus fisheye
viewing. We also show how we can support programmers'
tasks to check the aspects of a program. Our approach is
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Figure 1. A program in declarative data-flow
VPL

based on visual design patterns (VDPs)[14] and browsing
tasks are assisted as follows: (1) automatically generated
views highlighting certain aspects of the program that the
programmers need to monitor; and (2) methods are pro-
vided to change views instantly. VDPs include various in-
formation, such as the design information that the designers
of the VDPs present to the users, the creators, and the last
modification times. With this kind of information, we can
generate views of a program's execution that emphasize cer-
tain aspects of the program.

Below in Section 2 we describe the declarative data-flow
VPLs that our method targets and the execution model of
the languages. Section 3 shows the method used to animate
the execution of programs written in declarative data-flow
VPL in a comprehensive manner and to incorporate a fish-
eye viewing algorithm. Section 4 describes our approach to
assist programmers' navigation by aspects. Section 5 shows
the implemented visual tracer. After reviewing the related
works in Section 6, we summarize this paper and present
future works in Section 7.

2. Declarative Data-Flow VPLs

In declarative data-flow VPLs, a program is a collection
of declarative rules of processes. There are two types of
processes: composite processes that are visually defined in
data-flow diagrams, and primitive processes.

A composite process is declared by a set of visual
rewriting rules, each of which rewrites a process into a
data-flow network consisting of processes and data-flow
links. A guard may be attached to a rewriting rule and en-

ables/disables the rule accordingly at runtime. A primitive
process can be defined in any way (e.g., state transition dia-
grams or textual languages) and we omit further details.

Figure 1 illustrates skeletons of visual rewriting rules. In
this figure, three processes, main, M, and WS are defined� .
The main process will be reduced to a network consisting
of M and WS. The process M will be reduced to a network
consisting of G and D. Two rewriting rules are defined for
WS. The first rule will rewrite WS into a network consist-
ing of C and three Ws. The second rule will reduceWS into
a network of C and one W. Definitions of G, D, C, W, and
guards of main, M, WS are omitted from this figure.

Execution of a program written in a declarative data-
flow VPL is a sequence of parallel reductions from the root
process (a composite main process). A process terminates
when all of its subprocesses have terminated. In the above
example program, an instance of process M terminates after
both G and D have terminated.

In summary, the process network which is created at run-
time dynamically changes its topology as the execution pro-
ceeds.

3. Animating Execution States

This section illustrates the mechanism for constructing
comprehensive animations of program execution in declara-
tive data-flow VPLs (described in Section 2). An animation
can be produced by the following three steps:

1. calculate the geometries of dynamically created pro-
cesses based on the network topologies of the rewrit-
ing rules

2. apply a fisheye viewing algorithm to the configured
network to display the network within a screen and to
provide a browsing interface

3. animate each transition of the fisheyed view after ev-
ery reduction, step by step

3.1. Configuration of a Process Network

To show the network in a manner intuitively recogniz-
able for programmers, the geometries of newly created pro-
cesses are calculated from two inputs after each reduction:
the location of the reduced process and the network config-
uration of the applied rewriting rule. When a certain process
is reduced, we scale the width and the height of the applied
network diagram to just fit to the area that the reduced pro-
cess occupies.

� In this paper, we depict processes as rectangles. However, they can be
depicted as any shape (e.g., squares, circles) if they can be fitted to each
other by scaling their widths and heights.
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Figure 2. Configuration of newly created pro-
cesses

Figure 2 shows sequences of network transitions during
execution of the program in Figure 1. For example, Fig-
ure 2(b) represents the network topology after the reduction
of the main process. The locations of the newly created
subprocesses (M and WS) are calculated from the network
diagram defining the main process (Figure 1).

By laying out the network in the above manner, we can
see each snapshot of execution states, which always reflect
the topologies of the network diagrams defining the visual
programs.

3.2. Applying Fisheye Viewing

The programmer can easily recognize a snapshot of the
runtime network configured as described in the previous
section. However, the technique as described is not scal-
able. Even in a small network such as Figure 2(c), we can-
not see the detailed behavior of processes (e.g., a C and
three W processes in Figure 2(c)). A pan+zoom interface
might be a partial solution for the problem. However, pro-
grammers may lose track of the currently zoomed location
when they are zooming on a portion of the runtime network,
particularly when many subnetworks are instantiated from
one network diagram during execution.

Focus+context approaches (e.g. [5][7][8][10]) are suit-
able for navigating such networks, and many variants have
been developed. However, all of the focus+context views

are not sufficient for displaying runtime process networks
and providing navigation interfaces, because several issues
described below should be considered in a visualization of
program execution. Firstly, any distortion imposed by the
algorithms should be minimized, since we want the execu-
tion view to be as similar as possible to the shape of the
visual program; we want the view to be easily recognized
by the programmer. Secondly, we also want to preserve the
nested structure of the network and to provide a navigation
interface based on that structure, since the nests represent
caller-callee relationships between processes, and can be
considered a suitable abstraction for navigation. It is also
desirable to guarantee the presence of paths to every pro-
cess, to enable the programmer to examine every live pro-
cess.

3.3. Smooth Transitions by Animation

Abrupt transitions of view tend to confuse users.
This problem can be addressed by animating transitions
smoothly. The transition of the topology of the runtime net-
work caused by a reduction can be animated by two steps:
computing the geometry of each process before and after
the reduction, and linearly interpolating the two geometries
in several steps and redrawing the network at each step.

4. Navigation Support by Aspects

As mentioned in Section 1, programmers need to mon-
itor various aspects of program execution. Although they
could obtain a layout suitable for each purpose using multi-
focus fisheye viewing, their browsing tasks can be reduced
if we can:

1. prepare both the view for correctness checking of un-
stable processes and the view for performance check-
ing, and

2. provide a way to switch views instantly.

In this section we first review the concept of VDPs with
an example. Next, we illustrate how aspects of the program
can be extracted from VDPs. We will describe how these
aspects support their navigation tasks later in Section 5.

4.1. Visual Design Patterns

A VDP is a user-definable data-flow network diagram
that has holes as parameters and that maintains design in-
formation such as described later in Section 4.2. A hole
can be instantiated with concrete processes by the user of
the VDP. The user can use the network diagram in a rewrit-
ing rule (described in Section 2) after instantiating all of the
holes.
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As an example of VDPs, we show a rough sketch of the
master worker VDP in Figure 3, which implements a sim-
ple load balancing scheme that involves a generator process
and a collection of worker processes. The master worker
VDP has some holes (represented as ovals), which are in-
stantiated with concrete processes depending on the prob-
lem to be solved.

The network is composed of the generator hole and
the combiner process (represented as a rectangle), the dis-
patcher process, and several worker holes. The Genera-
tor simply generates a stream of sub-problems. The dis-
patcher receives sub-problems from the generator and
sends the sub-problems to idle workers. It also receives
answers from the workers and forwards the answers to the
combiner. Each worker process receives sub-problems,
solves them, and returns the answers to the dispatcher. The
Combiner receives the answers from the dispatcher and
computes the final answer.

By providing appropriate generator and worker pro-
cesses, we can use this VDP to solve various parallel pro-
gramming problems, such as ray-tracing and search prob-
lems. In this respect, VDPs are appropriate units of reuse.

4.2. Support by Aspects in VDPs

To assist programmers' navigation tasks, we construct
process network views, each of which highlights a certain
aspect of the program. This is achieved by automatically
extracting two types of information: the layout information
involved in the VDPs used in the program, and the quality
of components.

Support by Layout Information

The original motivation of VDPs was to visually repre-
sent design information, for instance, “which processes (or
holes) should be modified to change a particular behavior?”
For this purpose, the designer of a VDP can save fisheye-
viewed layouts of the VDP with appropriate names. The

user can easily discover processes that should be modified
by selecting the layout with the name of the behavior.

In each of Figure 4(a) and (b), one layout is depicted
of the master worker VDP. Figure 4(a) is `The problem
to solve' layout. This layout emphasizes the processes that
should be modified to change the problem to solve, where
the generator and the left most worker are magnified and
the others are shrunken. Figure 4(b) is another layout `The
treatment of answers', where the dispatcher and the com-
biner are magnified.

According to our experience in using VDPs, a layout of
VDPs often corresponds to aspects that the user wants to
examine during execution. Since programming with well-
designed VDPs only requires instantiating their holes with
appropriate processes, the magnified portions represent the
processes just instantiated, and they are usually unstable.
Therefore, by referencing the layout information, a visual-
izer can highlight certain parts (in the runtime network) that
are relevant to the code that the programmer wants to exam-
ine.

In the case of using the master worker VDP, program-
mers often have to examine a generator and a worker
process simultaneously, after they have finished the cod-
ing of the actual generator and worker, in order to check
whether each sub-problem is produced and solved correctly.
`The problem to solve' layout directly answers this require-
ment. In turn, they may want to monitor the scheduling
of worker processes to discover bottlenecks, for perfor-
mance tuning. Since the scheduling is controlled by the dis-
patcher, `The treatment of answers' is useful where both
the dispatcher and the combiner are magnified. Therefore,
another zooming-in to the dispatcher would be sufficient.

Note that this mechanism may be used in another way.
The designer/user of VDPs can also define layouts that are
expected to be used mainly in checking the behavior of the
VDPs. For example, Figure 4(c) shows a layout that sets
a visualizer to display all of the worker processes without
abbreviation. Thus, the VDP's layout information can serve
as a medium that is used by the user to inform the visualizer
of the aspects that he/she wants to monitor during program
execution.

Support by Quality of Components

Browsing assistance only by layout information does not
sufficiently support programmers in all phases of program-
ming using VDPs.

Programming using VDPs usually starts with an under-
standing of the behavior of a VDP by instantiating the holes
with sample processes provided as a system library. At this
stage, programmers often want to monitor the overall be-
havior of the VDP, rather than the details of the sample
processes, in order to recognize the behavior of the VDP.
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Figure 4. Master worker pattern in three layouts

Next, they instantiate the holes with the processes that they
develop. At this stage, they usually need to examine the de-
tailed behaviors of the processes that instantiate the holes,
since these processes (which are under development) are
unstable and are the main targets to be monitored and de-
bugged.

The quality of components (processes in the data-flow
VPLs) serves as a good guide for a visualizer to enhance
the network view, by automatically emphasizing several
components with low quality, thus reducing programmers'
navigation tasks in correctness checking. This is because,
in programming with reusable components, a program is
mostly composed of reused components, that are considered
stable. Consequently, programmers usually have to check
only those few components that they have developed.

The quality of a process can be calculated and reflected
to the network view by using the heuristics below:

� Codes being currently developed are considered un-
stable and the main targets to be monitored and de-
bugged. Therefore, the visualizer shrinks the sub-
networks created from stable (well-debugged or old)
processes to magnify the subnetworks relevant to un-
stable processes as much as possible.

� The subnetworks created from the processes which
instantiate the holes within `VDPs from the system
library' will be monitored by the programmer, since
the VDPs are the system libraries and can be consid-
ered stable, like the C standard libraries.

For this calculation, the VDPs and processes hold the
creator and the last modification time.

5. Implementation in KLIEG VPL

We have implemented the supporting mechanism pre-
sented in Section 4 into a visual tracer of the KLIEG VPL
[14, 12]. Figure 5 shows a snapshot of the execution of an

            

Figure 5. A Snapshop of Visualization on the
KLIEG tracer

N-Queens program. The program is derived by instantiating
the generator and the worker holes of the master worker
KLIEG-VDP (Figure 6(a)) with an nqueens gen that gen-
erates sub-problems of N-queens and nqueens workers
that solve the problems, respectively.

In the following, we first describe the VDP implemented
in KLIEG VPL, and next show the zooming facilities that
we utilize. Finally, we describe the browsing assistance im-
plemented in the KLIEG visual tracer.

5.1. VDPs in KLIEG VPL

Here, we briefly describe the master worker VDP in
KLIEG VPL. The master worker KLIEG-VDP (shown in
Figure 6(a) and (b)� ) is a network constructed from two
networks, master and workers.

� Both Figure 6(a) and (b) are fisheye-viewed layouts defined in the
master worker KLIEG-VDP, and the internal structure of the workers
network hidden in Figure 6(b).



(a)

(b)
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These networks have ports (represented by white rect-
angles) to communicate with each other. An arrow linking
two ports represents a stream that is a continuous data-flow
between the ports. For example, master has two ports Wks
and Ans to communicate with workers.

The master network is composed of the generator hole
and the combiner process, and the dispatcher process as
shown in Figure 6(a).

Note that workers is defined using a replication network
that replicates processes dynamically, and connects those
processes. The replicated processes in workers are repre-
sented by three holes (recessed rectangles labeled worker),
and an ellipsis, which abbreviates a set of processes. Each
worker hole has an input port (the recessed rectangle la-
beled Probs) and an output port (the raised rectangle la-
beled Ans). Each replicated worker process receives sub-
problems from the Probs port, solves them, and returns the
answers to the master via the Ans port.

A replication network has some special ports that deter-
mine the number of replicated processes and the topology
of the network. For example, the Wks port in workers is a
map port that determines the number of processes to gener-
ate by the number of received elements from the port, and
maps each element to each process. Master (at the bot-
tom of Figure 6(a)) is a merge port that merges the output
streams of all the processes.

5.2. Visualization on the KLIEG Tracer

Using the Continuous Zoom Algorithm

As shown in Figure 5, the network view, which is distorted
by a fisheye viewing algorithm, preserves the topology of
the network diagrams depicted in Figure 6(a). Under the
observation described in Section 3.2, we have selected the
Continuous Zoom[2] as a fisheye zooming algorithm. The
continuous zoom is a variant of Furnas's fisheye method[5]
and manages 2D hierarchically nested networks consisting
of rectangular-shaped nodes and links connecting nodes as
shown in Figure 2. The algorithm also has many features:
multi-focal points are supported, relative locations of nodes
are well preserved, and the presence of a path to every node
is guaranteed.

Note that the continuous zoom uses the same operation
to animate the transitions caused by users' zoom-in/out op-
erations as the animation described in Section 3.3. There-
fore, we can integrate the two animations together. This
integration greatly simplifies the implementation.

Semantic Zooming Approach

To avoid drawing unnecessary details of the network and
to enhance both readability and drawing performance, we



have adopted the semantic zooming approach[4] to display
the runtime process network.

The KLIEG tracer shows processes in three manners:
rectangles with ports and process names, rectangles with
process names, and a mere square. Representation of each
process is selected according to the screen space that is as-
signed to each process/subnetwork by the fisheye viewing
algorithm. Actually, processes shown on the tracer repre-
sent some portions of the network hierarchy. For example,
each nqueens worker in Figure 5 clusters its subprocesses
and represents them as an icon of nqueens worker. The
user can observe the internal networks by zooming-in.

Moreover, we color each process of the network in order
to help programmers discover bottlenecks within the net-
work as a whole. Processes are colored to reflect the current
state of each process. Runnable, I/O-blocked and dead pro-
cesses are colored gray, green and black, respectively� . In
Figure 5, three nqueens workers are shown on the tracer.
The left one is currently running, and is colored light gray.
On the other hand, the other two are waiting for another
sub-problem, and are colored green. Using this colored net-
work view, programmers can easily monitor the scheduling
status of the program.

5.3. Browsing Assistance on the Tracer

Browsing Assistance in the KLIEG Tracer

Figure 7 depicts the browsing assistance facility imple-
mented in the KLIEG tracer. As shown in the center of this
figure, we can change the tracer's view by selecting a layout
name from the menu.

In this figure, the N-queens program, which is monitored
on the tracer, contains the nqueens gen process that the
programmer has modified recently. Thus, the tracer reflects
the low quality of the process on the default view of the
tracer (shown in the center of this figure) by magnifying
an instance of the nqueens gen process, so the internal
subnetwork of the process is shown.

We can adjust the network view easily by menu oper-
ations. The center of Figure 7 shows the situation when
the user is selecting `The problem to solve' from the menu.
The menu operation causes the tracer to change the view as
shown at the left part of the figure, by referencing the layout
saved by the designer of the master worker VDP. We can
now get the runtime network view in which both the gen-
erator and the workers are magnified, and we are ready to
check the behavior of the two kinds of processes. If perfor-
mance checking should be done, we select `The treatment
of answers' from the menu. This magnifies both the dis-
patcher and the combiner, so another single zooming-in

� In black and white, these colors correspond to light gray, dark gray
and almost black, respectively.

workers

Figure 8. a sequential network created from a
replication network

to the dispatcher is enough to obtain the layout shown at
the right part of Figure 7.

Support by Semantic Browsing

An ellipsis, which is shown at the bottom half of Figure 5,
abbreviates a sequence of worker processes (such as the se-
quence shown in Figure 8) created from the replication net-
work mechanism in KLIEG-VDPs.

Users can change the abbreviated part within the se-
quence by mouse dragging, and can easily browse all of
the abbreviated processes, one by one. Browsing such a se-
quence of nodes (as depicted in Figure 8) with fisheye view-
ing usually requires many zoom-in/out operations and tends
to be a tedious task. This shows that the idiom of the under-
lying VPL (the replication network mechanism in KLIEG
VPL) can serve as a template to provide hybrid browsing
interfaces along with a fisheye view and can successfully
achieve more scalability in browsing. Such hybrid inter-
faces are called semantic browsing interfaces.

6. Related Work

PP[13] is another programming environment that di-
rectly displays the execution of a visual program as with
both Pictorial Janus[6] and VIPR[3]. Our visualization of
program execution is basically the same as those systems,
in the sense that an animation of program execution is rep-
resented based on the shape of the program. However, we
provide high level browsing assistance to support program-
mers' navigation tasks based on programs' aspects.

The visualization technique described in Section 3 can
be applied to visualize other data-flow VPLs that resemble
that mentioned in Section 2. Examples of such VPLs in-
clude CODE[9], Meander[15], VISTA[11], and V[1].

There have been many efforts to automatically visualize
the creation of objects and the messages passed between ob-
jects in parallel object-oriented systems. Many studies have
also been made for monitoring the performance of the sys-
tem automatically, without code-instrumentation or anno-
tations. Our visualization technique can be integrated into
these visualization systems to provide another comprehen-
sive view of the execution for visual data-flow VPLs.
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7. Summary and Future Work

This paper presents a visualization technique to auto-
matically animate the execution of the declarative data-flow
VPLs. We also show the framework to provide intelligent
assistance for browsing the display of execution states based
on the aspects. This framework, with a multi-focus fisheye
viewing interface, successfully enhances scalability in the
visualization of program execution and provides simple but
intelligent assistance for the user's navigation tasks.

Although the process network view shown in this paper
can easily be extended to incorporate a data browsing fa-
cility (for example, zoom-in operation on a stream port ex-
pands the port and the received data stream is then shown
within the expanded port), we have to explicitly specify
a stream link in order to display the data communicated
via the stream link in the current implementation. It is,
therefore, necessary to develop assistance for data brows-
ing based on the aspects of the program.
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