
Static Visualization of Dynamic Data Flow Visual Program Execution

Buntarou Shizuki
Institute of Information

Sciences and Electronics
University of Tsukuba

shizuki@is.tsukuba.ac.jp

Etsuya Shibayama
Graduate School of Science

and Engineering
Tokyo Institute of Technology

etsuya@is.titech.ac.jp

Masashi Toyoda
Institute of Industrial Science

University of Tokyo
mtoyoda@acm.org

Abstract

We propose ‘Trace View’, a static visualization method
for monitoring and debugging the dynamic behavior of pro-
grams written in data flow visual programming languages.
Trace View presents a hierarchical structure of the data flow
between nodes that is created over the execution time of
the program. The view also serves as an interface that al-
lows the programmer to select a data stream link when data
must be examined during debugging. Moreover, since vi-
sualization grows in size according to the life time of the
program, we have developed techniques to scale the view
using a multi-focus focus+context view.

1. Introduction

Various animations that visualize program execution,
such as algorithm animation (e.g., [12], [2], and [13]) and
visualization of visual program execution (e.g., [8, 7] and
[3]), have been proposed. The animations are generated by
(1) defining mapping rules that map each state of a program
into a key frame during its execution and by (2) interpolat-
ing the key frames. The result is an animation that repre-
sents the transition of states in the program as the execution
proceeds.

Alghought such animation successfully provides a com-
prehensive overview of the execution and transition of the
states of the target program, it can only present a trigger or
its result of behavior of a component of the program since
a frame of the animation is merely a snapshot of states of
the program. Therefore, it is not sufficient as a debugging
tool, since examination of causality between a trigger (in-
put) and its result (output) is fundamental to validating the
component.

Therefore, a visualization system must enable the pro-
grammer to examine both input to and output from a com-
ponent simultaneously. Moreover, it is also required to pro-
vide functionality that enables the localization of possible

(a) (b)

Figure 1. Sample data flow diagrams of
declarative data flow VPLs

bugs from global (abstract) to local (concrete).
In this paper, we proposes ‘Trace View’, a static visu-

alization that fulfills the above requirements for monitoring
and debugging dynamic behaviors of a program in data flow
visual programming languages (VPLs). We also present a
debugging methodology that uses the visualization.

2. Background

This section outlines the declarative data flow VPLs,
their behavior, and bugs in these languages, as background
to the discussion that follows.

2.1. Program

A program in a declarative data flow VPL is a collection
of declarative rules that define processes. There are two
types of processes: composite processes, which are visually
defined in data flow diagrams, and primitive processes. A
composite process is declared by a set of visual composite
rules, each of which spawns child processes and forms a
data flow network of processes with data flow links among



the processes. A guard may be attached to a composite rule
to enable/disable the rule conditionally at runtime. A prim-
itive process is defined in a certain way (e.g., as state tran-
sition diagrams or in textual languages).

Figure 1 shows examples of visual composite rules. Fig-
ure 1(a) is the rule of main, which is the data flow dia-
gram consisting of three processes: stdin, bar, and stdout.
Figure 1(b) shows the rule that defines bar, which consists
of index, genbar, and onebyone. stdin and stdout are
pre-defined processes that read and write the data stream
at runtime, respectively; index reads data and outputs the
corresponding indices for each input datum; genbar reads
integers and generates strings, each of which consists of “x”
characters whose length is the integer; and onebyone reads
data from its two input ports (In1 and In2) one by one and
concatenates both pieces of data as strings. (The definitions
of these three processes are omitted in this paper.) As a
result, if the standard input of the program is:

10 2 7 5

then, the program will produce the following text to its stan-
dard output:

1 xxxxxxxxxx
2 xx
3 xxxxxxx
4 xxxxx

2.2. Behavior

Execution of a program in a declarative data flow VPL
consists of a sequence of parallel applications of compos-
ite rules from the root process (a composite main process),
and execution of primitive processes. The application of a
composite rule creates a runtime data flow network, which
consists of runtime processes and runtime stream links be-
tween them as defined by the rule. A runtime process ter-
minates when all of its immediate subprocesses have ter-
minated. As a result of the dynamic creation and termi-
nation of processes during execution, the process network
dynamically changes its topology at runtime as the execu-
tion proceeds. Since a runtime process (both composite and
primitive) does not share any variables and memories with
other processes, only the input determines the behavior of a
runtime process (either composite or primitive).

The sample program in Figure 1 produces the process
tree illustrated in Figure 2.2 at runtime.

2.3. Bugs

In this language, the programmer may observe the fol-
lowing four categories of abnormal execution due to bugs
in the program: incorrect success, abnormal termination,

Figure 2. Process tree for the same program

Figure 3. A snapshot of Trace View

perpetual suspension, and infinite execution. Incorrect suc-
cess occurs when the execution succeeds, while the program
produces output that the programmer considers incorrect.
Abnormal termination occurs when faults (e.g., division by
zero) occur in one or more runtime processes, thereby ter-
minating the execution of the program. Perpetual suspen-
sion is the same as deadlock. Infinite execution occurs when
one or more processes continue execution infinitely, proba-
bly due to an infinite loop or infinite mutual recursion.

2.4. Requirements for debugging

To detect and localize bugs, the following information
must be provided.

Input and output of processes are vital to localization of
bug(s). Since the bahavior of a runtime process is affected
only by its input, the behavior can be validated by compar-
ing its input and output.

Dependencies between processes are also crucial for lo-
calization. Data dependencies (i.e., runtime data stream
links) lead the programmer near to location(s) of bug(s),
when she/he finds improper data in them. The parent-
child dependencies between processes are also fundamen-



(a)

(b)

Figure 4. Browsing data for runtime processes

tal for narrowing down the possible location(s) of bug(s)
from global (root) to local processes. If a process behaves
wrong while all of its children behaves properly, bug(s) will
be in the implementation of the parent process. Moreover,
the dependencies are also important for distinguishingmany
instances of the same process that may run at the same time
during execution, since the program in the target VPL is
concurrent.

The topology of a runtime data flow network is useful.
Since the application of a composite rule results in an incre-
mental expansion of the hierarchical runtime data flow net-
work, the topology is a result of the execution. Therefore, it
provides rich information for detecting bugs. For example,
if the topology contains problems such as the ones below,
there are one or more bugs in the program:

� There are unexpected processes in the hierarchy.

� There is an unexpected number of instances of a cer-
tain process.

� The number of nests in the network is unexpected.

3. Trace View

This section proposes techniques to present the required
information described in the previous section in a visual
manner, with an interface that provides functions to modify
the visual presentation to satisfy the programmer’s require-
ments. Henceforth, we call the visual presentation with an
interface as Trace View.

Figure 3 is a snapshot of Trace View, which shows the
runtime network generated by the sample program in Fig-
ure 1.

3.1. Accessing process input and output

Trace View shows the runtime processes created during
program execution as rectangles. It also shows each run-
time process’s input and output ports on the corresponding
rectangle.

In Figure 3, Trace View shows that three runtime pro-
cesses (blue rectangles) were spawned during execution:
stdin, bar, and stdout. When the programmer moves the
pointer on stdout and bar in Figure 3, the balloons shown
in Figure 4(a) and Figure 4(b) appear, respectively, like a
balloon tip. The balloons show the beginnings of the traces
of the data, input to and output from the process, together
with port names. This enables the programmer to easily
browse through them by moving the pointer to a desired
process.

3.2. Showing dependencies

Trace View represents data dependencies between pro-
cesses as links, and parent-child relationships as nested rect-
angles. The view can be adjusted to show interesting parts
of the hierarchy in detail or to hide unnecessary parts of the
hierarchy.

In Figure 3, stdin, bar, and stdout are the children of
main and form a runtime data flow network at execution.
The view can be adjusted on a process basis. In the above
example, when bar in Figure 3 is manipulated to show it in
detail, the view changes into Figure 5. As a result, the view
shows the detailed internal network of bar, which consists
of index, genbar, and onebyone. This mechanism allows
the programmer to examine a hierarchy from the top level
to lower levels.

To allow close examination of the data transmitted
through a port, a monitor is provided. Figure 6 is a mon-
itor showing the content transmitted through the Outs port
of onebyone. The programmer can examine its entire con-
tents by using the scroll bar. A button label as “check” is
provided to check which process this port belongs to. When
this button is pressed, the corresponding port starts to blink.

3.3. Showing topology

To provide the programmer with rich information about
topology of the runtime data flow network, Trace View has



Figure 5. Showing deeper networks in the hi-
erarchy

Figure 6. Examining data

a mode in which the view tries to show the topology as in
detail as screen space permits. For example, the view tries
to show the internal network of bar like Figure 5 whenever
it is possible in the mode.

4. Localization methodology

The methodology for localization of bug(s) using Trace
View is similar to the algorithmic debugging proposed by
Shapiro [10]. Namely, the methodology mainly consists of
the following three procedures.

� Validating a process (gray rectangle � in Figure 7(a))
by monitoring the history of its input (�� �� � � ��������)
and output (��	�� 
 � ��������).

� Localizing a bug by following data links back to a pro-
cess outputting improper data, based on data depen-
dency. For example, if we find that ��� of � in Fig-
ure 7(a) contains erroneous data, we can examine ��
(shown in Figure 7(b)) next.

� Localizing a bug by validating the children of a pro-
cess if the process proves buggy. For example, if we
find that all the data in ��� are correct for all �, but
� produced erroneous data via ��	� for a given �

in Figure 7(a), we can check the children (��� � �

�������������������� in Figure 7(c). Note that this check
should begin by examining the children producing er-
roneous data directly, to enable us to approach the lo-
cation of bugs quickly, without checking all the chil-
dren. For example, ��� should be checked first when
��	� contains erroneous data, as shown in Figure 7(c).
If all the children behave correctly, we can conclude
that the implementation of the parent process contains
bugs.

For each type of bug, debugging starts with the following
processes: the processes that directly produced the incorrect
result leading to incorrect success, processes that caused an
abnormal termination, the suspended processes in perpet-
ual suspension, and the processes that continue execution
infinitely.

5. Implementation

We have implemented Trace View as the visual debugger
in our visual programming environment KLIEG[16].

5.1. Constructing a static view

Since examining data transmitted through runtime data
stream links is vital to the method, it is important that the
programmer is able to quickly display and examine data.

To this end, we first store all the data transmitted through
all the data stream links at runtime. Next, we construct a
static view that shows entire hierarchies, which contain all
the runtime processes and runtime stream links.

Note that the word “static” means that the view presents
processes that have already terminated computation and all
the data they transmitted in one view. This allows exami-
nation all the processes and data that were created from the
beginning of execution, without re-execution. It is possible
to show the same quantity of information using animation;
however, in order to validate processes by comparing the
input/output, this often requires information to be remem-
bered, since each frame of the animation replaces previous
frames and the information shown by the previous frames
disappears from the screen. This leads to re-execution.

5.2. Applying a focus+context viewing algorithm

Since screen space is limited and the hierarchy of a
runtime network becomes broad and deep as the execu-
tion proceeds, we must select processes to be displayed.
A pan+zoom interface is a partial solution to this prob-
lem. This scales the original network linearly and provides
scrollbars that allow the programmer to move to part of the
scaled view. However, the programmer may lose track of
the current location when zooming in on a portion of the



(a) (b) (c)

P1
P

Out1

Outh

In1

Ink
P

Out1

Outh

In1

Ink

Out1

Outh

In1

Ink Psk

Figure 7. Localization method

runtime network, particularly when many subnetworks are
instantiated from one rule and are consequently similar.

In contrast, the focus+context approaches that Furnas[6]
pioneered are powerful for navigating such networks, and
many variants have been developed. In particular, the Con-
tinuous Zoom[1] has the following properties, making it a
suitable algorithm. First, the algorithm supports a multi-
ple focal point facility. Second, it guarantees the presence
of paths to every network node (i.e., process), even to hid-
den nodes. This allows the programmer to examine every
node. Finally, the algorithm preserves the nested structure
of the network and provides a navigation interface based on
that structure. Consequently, the algorithm reveals caller-
callee relationships between processes in the process net-
work hierarchy, such as depicted in Figure 5. The Continu-
ous Zoom algorithm can be applied simply by treating each
process (i.e., the rectangles depicted in Figure 5) as a node
of the algorithm.

5.3. Smooth transition of the view

So that the programmer is not confused by abrupt transi-
tions of view, we animate the transitions smoothly.

6. Related work

One of the most popular data flow VPL system is Pro-
graph [4]. In Prograph, the programmer can display the
runtime data flow networks of a program graphically using
multiple windows. In a window, a selected part of the net-
works can be shown. However, the entire structure of run-
time data flow networks cannot be grasped directly; since
only a limited part of the network is displayed in a window,
the information displayed in separate windows must be inte-
grated mentally. There are also visual debuggers that show
runtime data flow networks as a user interface to examine
the execution of non-visual programming languages, such
as HyperDEBU [14].

Visualizing traces of program execution has been re-
searched and some systems have been created[9][5][15].
However, these systems do not provide tools that localize
bugs directly from the visualized traces.

7. Discussion and future works

By updating the view each time a composite rule is ap-
plied, it is easy to extend Trace View to show the control
flow of the execution. This shows changes in the topology
of the runtime data flow network. Moreover, in order to
help the programmer discover bottlenecks within the net-
work, coloring each runtime process according to show the
scheduling status is a possible extension. We have already
incorporated these extensions into our visual debugger[11]
and find them quite useful for monitoring the behavior of
programs, especially those in an early stage of development,
since this allows the programmer to start debugging the in-
stant that suspicious behavior is observed in the view.

In algorithmic debugging, the order of the number of
questions that a programmer has to answer to localize a
bug is �����, where � is the number of goals. In the VPL
described in Section 2, the situation is similar, that is, the
number of goals in algorithmic debugging corresponds to
the number processes that are created during execution.

In contrast to the traditional approach of algorithmic de-
bugging, in which the programmer must answer “Divide
and Query” questions that the system imposes, our pro-
posed method (described in Section 4) leaves all of the ques-
tioning to the programmer. That is, a programmer must
consider questions such as “what should I check next to lo-
calize a bug?” and “Does this process behave properly?”
This puts the programmer at risk of asking increasing num-
bers of questions if the programmer adopts the wrong strate-
gies while examining the program. However, our debugging
methodology in combination with our visualization which
gives an overview of the execution has the potential to im-
prove the order, because the rich information provided by
visualization helps programmers find the approximate loca-
tion of bug(s) and also helps them make a decision about
the direction to make to localize the bug(s). Therefore, inte-
grating an interface appropriate for conducting algorithmic
debugging with our proposed Trace View interface retains
the advantages of both method, and is a future avenue of
this research.

Although we believe that the interface gives us great
scalability in debugging, the current implementation stores



all the data transmitted through runtime data stream links.
This limits the debugger’s scalability. However, it is not
necessary to preserve all the data. Preserving sufficient data
to re-construct by a replay is a possible choice. To imple-
ment this, when a window is open to show details of the
internal data flow network, the system re-executes with the
input and reproduces all the data in the internal data flows.
As a result, the programmer can examine the details of the
internal data flow as though all the data were preserved by
the system.

However, if re-execution requires substantial computa-
tions, the programmer must wait until it terminates. This
interferes with the programmer’s debugging tasks. A chal-
lenging research topic is to develop algorithms that store
sufficient information at runtime to enable the system to re-
cover data flows in a limited time, thereby not frustrating the
programmer, while simultaneously minimizing the storage
requirements.

8. Conclusion

This paper presents Trace View, a visualization tech-
nique that helps programmers to monitor and debug pro-
grams in declarative data flow VPLs. Trace View visual-
izes the history of the input/output of every process, includ-
ing terminated processes, the hierarchical structure of pro-
cesses, and data flow between processes in one view. The
visualization also encourages programmers to detect buggy
behavior in the execution. We have implemented Trace
View as the debugger in our visual programming environ-
ment KLIEG.

References

[1] L. Bartram, A. Ho, J. Dill, and F. Henigman. The Contin-
uous Zoom: A Constrained Fisheye Technique for Viewing
and Navigating Large Information Space. In Proceedings of
the ACM Symposium on User Interface Software and Tech-
nology, pages 207–215. ACM Press, Nov. 1995.

[2] M. H. Brown. Zeus: A System for Algorithm Animation and
Multi-View Editing. In Proceedingsof 1991 IEEE Workshop
on Visual Languages, pages 4–9. IEEE Computer Society
Press, Oct. 1991.

[3] W. Citrin, M. Doherty, and B. Zorn. The Design of a Com-
pletely Visual OOP Language. In A. G. Margaret Bur-
nett and T. Lewis, editors, Visual Object-Oriented Program-
ming: Concepts and Environments, chapter 4, pages 67–93.
Manning Publications Co., 1995.

[4] P. T. Cox and T. J. Smedley. A Visual Language for the
Design of Structured Graphical Objects. In Proceedings of
1996 IEEE Symposium on Visual Languages, pages 296–
303. IEEE Computer Society Press, Sept. 1996.

[5] D. Fahrenholtz and V. Haarslev. Visualization of STRAND
Processes. In Proceedings of 1995 IEEE Symposium on Vi-

sual Languages, pages 114–115. IEEE Computer Society
Press, Sept. 1995.

[6] G. W. Furnas. GeneralizedFisheye Views. In Proceedingsof
ACM CHI’86 Conference on Human Factors in Computing
Systems, pages 16–23. ACM Press, Apr. 1986.

[7] K. M. Kahn. Concurrent Constraint Programs to Parse and
Animate Pictures of Concurrent Constraint Programs. In
Proceedings of the International Conference on Fifth Gener-
ation Computer Systems, pages 943–950. ICOT, June 1992.

[8] K. M. Kahn and V. A. Saraswat. Complete Visualizations of
Concurrent Programs and their Executions. In Proceedings
of 1990 IEEE Workshop on Visual Languages, pages 7–15.
IEEE Computer Society Press, Oct. 1990.

[9] H. Koike and M. Aida. A Bottom-Up Approach for Visual-
izing Program Behavior. In Proceedings of 1995 IEEE Sym-
posium on Visual Languages, pages 91–98. IEEE Computer
Society Press, Sept. 1995.

[10] E. Shapiro. Algorithmic Program Debugging. MIT Press,
1983.

[11] B. Shizuki, M. Toyoda, E. Shibayama, and S. Takahashi.
Visual Patterns + Multi-Focus Fisheye View: An Automatic
Scalable Visualization Technique of Data-Flow Visual Pro-
gram Execution. In Proceedings of 1998 IEEE Symposium
on Visual Languages, pages 270–277, Sept. 1998.

[12] J. T. Stasko. Tango: A Framework and System for Algo-
rithm Animation. IEEE Computer, 23(9):27–39, Sept. 1990.

[13] S. Takahashi, K. Miyashita, S. Matsuoka, and A. Yonezawa.
A framework for constructing animations via declarative
mapping rules. In Proceedings of 1994 IEEE Symposium on
Visual Languages, pages 314–322. IEEE Computer Society
Press, Oct. 1994.

[14] J. Tatemura, H. Koike, and H. Tanaka. A performance de-
bugger for parallel logic programming language fleng. In
Theory and Practice of Parallel Programming: Proceedings
of the International WorkshopTPPP’94, volume 709 of Lec-
ture Notes in Computer Science, pages 284–299. Springer-
Verlag, Nov. 1995.

[15] E. Tick. Visualizing parallel logic programs with VISTA. In
Proceedings of the International Conference on Fifth Gen-
eration Computer Systems, pages 934–942, June 1992.

[16] M. Toyoda, B. Shizuki, S. Takahashi, S. Matsuoka, and
E. Shibayama. Supporting Design Patterns in a Visual Paral-
lel Data-flow Programming Environment. In Proceedings of
1997 IEEE Symposium on Visual Languages, pages 76–83,
Sept. 1997.


