
A Browsing Interface for Exploring Constraints in Visualization Rules

Shin Takahashi (shin@is.titech.ac.jp)
Department of Mathematical & Computing Sciences, Tokyo Institute of Technology

2-12-1 Oookayama, Meguro, Tokyo, JAPAN 152-8552

Abstract
We built a prototype tool for browsing constraint systems

for the layout of graphical objects. It has two views: In
one view, the tool visualizes a constraint system as a three-
dimensional graph structure, which shows the overall struc-
ture of the constraint system. The viewer can change the
layout to focus on the part of constraints. The other view
shows the target diagram. It also animates the diagram to
show degrees of freedom in the constraints for the diagram.
The cartoon technique of deforming graphical objects is uti-
lized to depict whether a graphical object has a degree of
freedom or not.

1 Introduction
The motivation of this paper is to help the programmer to

debug a set of visual mapping rules of TRIP systems[4, 5].
TRIP systems are visualization tools for relational struc-
tures such as trees and graphs, and these rules specify how
source data should be visualized into a diagram. The pro-
grammer represents a diagram as graphical objects such as
boxes and spheres and graphical relations such as horizon-
tal and vertical. The TRIP systems solve graphical relations,
arrange graphical objects according to the result, and show
them to the user. The visual mapping rules are difficult to
debug because of the constraints used for the layout of the
graphical objects.

This paper describes two approaches to visualize the
constraints used in the visual mapping rules. Their purpose
is to help the programmer to grasp the overall structure of
constraints in rules. The first approach is to visualize con-
straints as an undirected three-dimensional graph structure.
Constraints and constrained objects are the nodes. Edges
connect constraints and constrained objects. The program-
mer can explore the structure of the graph by changing their
layout in several ways so that the structure of the focused
sub-graph becomes apparent.

The second approach is to represent constraint systems
using animation. By using animation, the system can show
the dynamic aspects of constraint systems. In particular,
the system shows degrees of freedom of objects with an
animation. When an attribute of a graphical object is not
constrained by any constraint, it has a degree of freedom,
that is, the system cannot determine its value. In that case,

the graphical object is animated so that various valid val-
ues of the attribute are shown to the user. Other graphical
objects are animated together satisfying the constraints. On
the other hand, An attribute that has no degrees of freedom,
i.e., an attribute that has a determined value, is animated
(jerked or twitched) as if it is trying to change its value but
cannot. Cartoon animation techniques are used to represent
this situation.

We have implemented a browsing tool that can visu-
alize graphical objects and constraints in these two ways.
This tool has two windows. One window displays a result-
ing picture, and the other shows the corresponding three-
dimensional constraint graph. The user browses and com-
pares the target picture and the constraint graph with the
viewer. The user can freely rotate and zoom in/out of the
visualized picture and the 3D graph with a mouse.

2 Browsing Constraint Graphs in 3D
Basic Representation There are two types of nodes in con-
straint graphs. One type consists of geometric primitive
objects, such as boxes, spheres, and lines. These are rep-
resented as sphere nodes in the visualized constraint graph.
The color of a node shows the type of geometric object. The
other type of nodes consists of geometric constraints (graph-
ical relations) such as the constraint that graphical objects
should be arranged horizontal and the constraint that the in-
terval between graphical objects should be a certain value.
Geometric constraints are represented as box nodes in the
constraint graph. As with geometric objects, the colors of
these nodes represent the types of constraints. Figure 11

shows a constraint graph for the layout of the tree in Fig-
ure 2 — also shown at the lower right corner in Figure 1,
which contains the following constraints2:
x-parallel(V) : 1 2 3 4 8 9
x-average(Y) : 0 1 2 3 4 8 9
x-parallel(V) : 5 6 7
x-average(Y) : 4 5 6 7
z-relative(R) 0 : 0 1
y-relative(R) -30 : 4 5

1This screen snapshot of the system is modified by emphasizing edges
so that it can be seen well in black and white. The label on each box is
added as a substitution for the color.

2Constraints for line connections are necessary for the layout, but they
are omitted.



x-relative(R) 15 : 1 2 3 5 6 7 8 9
place (B) 100 100 100 : 0

Here, the number from 0 to 9 is an ID of each graphical
object represented as a sphere. In the figure, a box node is
connected to spheres, i.e., a constraint node is connected to
object nodes that are constrained by the constraint node.

1

0

5

7

6

4

8

9

2

3

1 02

3
4

5

6

7

8

9

1 2 3 4

5 6 7

8 9

0

Figure 1: Normal and modified layout of a constraint graph.

Focusing on Constraints We provide two ways to sim-
plify constraint graphs. One way is to lengthen the edges
of the selected constraints, which makes them unfocused
and simplifies the layout of the constraint graph. Stretch-
ing the edges of a constraint makes the layout of the graph
as if it is removed from the graph, but the connections still
remain as pale translucent lines. The graph at the bottom
in Figure 1 shows a simplified constraint graph unfocusing
a relative (the R box) and two average constraints
(the Y boxes). We can see that the layout of this graph
is governed by relative (R) and parallel (V) con-
straints. One parallel (V) constraint constrains three
sphere object (blue sphere nodes), and another parallel
(V) constraint constrains six sphere objects. Such structure
is shown also in the graph at the top of Figure 1 (repre-
sented as thick black lines), but it is clearly shown in the
graph at the bottom. By selecting other constraints to be un-
focused, we can get different layout that focus on a different
structure. The user can click these constraint nodes to high-
light the constrained graphical objects in the diagram, which
will help the users to find the correspondence between the
diagram and the constraint graph. Another method of ex-

ploring 3D constraint graphs is to bind up the constraint
nodes that constrain the same set of graphical objects. Such
a set of constraints can be thought of as a compound con-
straint. Our tool provides a command to change the lay-
out of the graph so that the grouped constraints are posi-
tioned at almost same place. They are shown to the user
as if it is one constraint. This is a way of abstracting con-
straint graphs. We are planning to provide more ways to
abstract the graphs, such as to classify and color the groups
of constraints, or to abstract the hierarchical structures of
constraint graphs.
Implementation issues The graph layout module of our
system uses the three-dimensional version of Kamada’s
graph-drawing algorithm[2], which tries to make the geo-
metric distance between each pair of vertices in the graph
close to the logical graph-theoretic distance between them.
By utilizing the features of this algorithm, the change of
layout described in this section can be easily achieved. That
is, by setting the default length of all edges from a node
very long causes the difference of graph-theoretic distance
unimportant, which makes the effect of the node to the lay-
out very little. Binding up groups of constraints can be
achieved by setting very short edges among a group of con-
straint nodes.

3 Animating DOF in Constraint Systems
Visualization of constraint graphs shows their structure

directly. However, it is still difficult to understand the role
of each constraint in the whole graph, because constraints
and objects are represented abstractly. For example, a lack
of constraints may be evident in the visualized constraint
graph, but how it affects the result is difficult to guess. To
represent the behavior of constraints more directly, we pro-
pose another method of visualizing constraint systems. This
method animates the target picture itself, and shows degrees
of freedom in a constraint system.

For example, if the x and y positions of a sphere are de-
termined but the z position is not constrained, the sphere can
move along the z-axis while satisfying all constraints. In
this case, the system shows an animation that moves along
the z-axis and comes back to the original position. The user
knows immediately from the animation that the z position
of the object is not constrained. Figure 2 shows screen-
shots of the animation when the system pulls a node. In
Figure 2(b), a node is pulled downward. The node stretches
and moves downward, which means that the node has a de-
gree of freedom in this direction. The other nodes except
the root node also move in the same direction, which means
that there are constraints that keep their relative positions.
The lines that connect them and their parent are also ani-
mated, because there are “connect” constraints that connect
these nodes. On the other hand, in Figure 2(a), the system
tries to move a node in another direction, but the node is
only stretched and does not move. This indicates that the



node is constrained and does not have freedom to move in
that direction.

Figure 2: Pulling a node in a tree.

As shown in these figures, even when the object does not
move, the object is stretched in the direction in which it is
pulled. This shows effectively that the system is trying to
pull the object, but that the object cannot move in this di-
rection. If the system showed only the animation of objects
that have a degree of freedom, the user might think that all
objects have a degree of freedom to move.

3.1 Implementation of Freedom Animation
Visualizing degrees of freedom (DOF) is achieved in two

steps: (1) detecting DOF in a constraint system; and (2)
showing the detected DOF.
Detecting DOF in a Constraint System Detecting DOF
in a constraint system means searching for the less con-
strained variables in a constraint system. Our system uti-
lizes the constraint hierarchy mechanism of the HiRise con-
straint solver[1] to search for such variables. The system
randomly or successively selects a variable (attribute) of a
graphical object in a picture, and checks whether it has DOF
or not. Currently, the system selects only the variables that
represent the x-, y-, and z- coordinates of objects.
Showing DOF as an Animation According to the checked
DOF of each variable, the system shows an animation to in-
dicate the DOF of each variable. How an object is moved
differs according to whether the variable has a DOF or not.
When a variable has a DOF, the system generates an anima-
tion by gradually changing the value of the target variable
to a slightly changed value, and then gradually changing it
back to the former value. For example, Figure 2 shows a
screenshot of an animation that shows pull-and-release of a
node in a tree. During this animation, the system is solv-
ing the entire constraint system repeatedly. This is done by
adding an edit constraint[1] that is stronger than the other
constraints. Using an edit constraint, HiRise can efficiently
solve the constraints repeatedly with the value of the target
variable changing gradually.

Even if a variable does not have a degree of freedom,
the system shows an animation indicating this. In Figure 2,
the object is stretched in the direction of the pull, but the
position of the object does not change. This animation im-
plies that the system tries to pull the object, but the object

does not move because it is constrained. This is a kind
of cartoon technique used to distort characters in cartoon
animations[3].

Besides animating DOF in a constraint system, the sys-
tem allows the user to drag graphical objects directly with
a mouse. The dragging of a graphical object is executed
with satisfying constraints on it. The well-constrained ob-
jects cannot be dragged. The system repeatedly solves the
constraint system during the user’s dragging.

4 Related Work
In Thomas’s work [6], the distortion effect is used when

dragging objects in drawing editors, which makes users feel
as if they are dragging “soft” objects. For example, if the
vertex of an object is pinned at a point, the user cannot drag
it freely but can pull the object to stretch or squash it. After
releasing the mouse button, the object returns to its normal
shape. Without such an effect, users cannot easily deter-
mine whether an object is constrained and therefore unable
to move, or the system is not responding to the user’s opera-
tion. Our system uses similar techniques, but is extended to
handle constraint systems. In addition, our system animates
a constraint system without user operations.

5 Concluding Remarks
We have described two approaches to visualize con-

straint systems in the visualization rules of TRIP systems.
One is to draw a three-dimensional graph structure of the
constraint system in the rules, and the other is to animate
the target picture to show the degrees of freedom of graph-
ical objects. We have prototyped these two approaches and
applied them to the tree example. Although we have not
yet evaluated these approaches, they both help to clarify the
structure and behavior of constraint systems.

References
[1] Hiroshi Hosobe. A scalable linear constraint solver for user

interface construction. Proc. 6th Int’l Conf. on Principles and
Practice of Constraint Programming (CP2000), Sep. 2000.
Lecture Notes in Computer Science.

[2] T. Kamada and S. Kawai. An algorithm for drawing general
undirected graphs. Information Processing Letters, 31(1):7–
15, April 1989.

[3] John Lasseter. Principles of traditional animation applied to
3D computer animation. ACM Computer Graphics, 21(4):35–
44, July 1987.

[4] Shin Takahashi et al. A constraint-based approach for visual-
ization and animation. Constraints: An International Journal,
3(1):61–86, 1998.

[5] Shin Takahashi et al. A framework for constructing ani-
mations via declarative mapping rules. In Proceedings of
the 1994 IEEE Symposium on Visual Languages, volume 10,
pages 314–322, 1994.

[6] Bruce H. Thomas and Paul Calder. Animating direct manipu-
lation interfaces. In UIST’95, pages 3–12, 1995.


