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Figure 1: GazeScope is a method that uses a magnifier for selecting small targets in VR environments. The process consists of
the following steps: (a) The user gazes at an area 25° away from their head direction. (b) When the user gazes at this area for a
certain duration, the magnifier fixed to the user’s head activates. (c) The user searches for the target and captures it within the
magnifier. (d) The user then selects the target by gazing at it through the magnifier for a certain duration.

Abstract

We present a method for selecting small targets, called GazeScope,
which displays a magnifier using gaze and head input. GazeScope
allows the user to activate the magnifier by gazing at a point 25°
away from the direction of their head. This approach effectively
mitigates the Midas touch problem while enabling quick and in-
tentional magnifier activation. The magnifier is fixed to the user’s
head, allowing the user to direct it toward a target by rotating their
head. In this research, we evaluated the improvement in small ob-
ject selection performance achieved using our method. The results
indicate that GazeScope, which displays a fisheye magnifier po-
sitioned in front of the user’s head, enables accurate selection of
small objects that are difficult to select using gaze input alone.
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1 Introduction

With the increasing integration of eye trackers into commercial
head-mounted displays (HMDs), significant attention has been di-
rected toward gaze interfaces for augmented reality (AR) and virtual
reality (VR). By utilizing gaze interfaces, users can interact with dis-
tant virtual or real-world objects without using their hands [12, 70].
While gaze modality is superior to other modalities in AR/VR envi-
ronments in terms of selection speed [46], it still presents several
challenges.

A major challenge for gaze interfaces is the selection of small
objects. This difficulty arises from gaze estimation errors in eye
trackers and involuntary eye movements. The most common ap-
proach to addressing this issue is increasing the target size, such as
by using magnifiers. In PC environments, many gaze input methods
utilizing magnifiers have been proposed, making it easier to select
small objects [3, 39, 66-68]. The magnifier serves as a metaphor
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that allows users to magnify objects intuitively. Additionally, it can
magnify objects that cannot be enlarged by the system, such as
real-world objects. However, little research has been conducted
on implementing magnifiers for selecting small targets using gaze
interfaces in AR/VR environments.

One of the challenges in implementing a magnifier as a gaze in-
terface is the difficulty of designing a hands-free gesture to activate
the magnifier. In previous methods for mono-modal gaze interfaces
with magnifiers, the magnifier appears at the user’s current gaze po-
sition after dwelling in a specific area for a predetermined duration
(dwell time input) [3, 39, 40, 47]. However, using dwell time input as
the magnifier activation gesture can lead to unintended activations.
This issue, known as the Midas touch problem [30], occurs when
the system fails to distinguish between gaze fixation intended for
selection and that intended for examination, resulting in accidental
input errors. To address this problem, it is generally recommended
to use a sufficiently long dwell time, typically between 1000 ms and
2000 ms [50, 79]. While this approach reduces false activations, it
significantly increases selection time and negatively impacts usabil-
ity.

In this research, we present GazeScope, a method that allows the
user to activate a magnifier using gaze and head, while effectively
mitigating the Midas touch problem (Fig. 1). To enable quick mag-
nifier activation while minimizing the Midas touch problem, we
utilize the angular region beyond 25° from the user’s head direc-
tion. When gazing at a position more than 25° away from the head
direction, the head generally rotates along with the eyes [62], and
the eyes rarely fixate at angles greater than 25° [18, 27]. Hence,
since dwelling in this area is an intentional action, the Midas touch
problem can be alleviated by using this dwell action as an activation
gesture [11, 76]. Furthermore, previous research [11] has shown
that this gesture rarely causes the Midas touch problem, even with
very short dwell times (200 ms—400 ms). Based on this principle,
we designed the activation gesture to involve dwelling gaze within
the angular region beyond 25° from the user’s head direction for a
specified duration. When a user performs the magnifier activation
gesture (Fig. 1a), the magnifier is displayed and fixed relative to the
user’s head (Fig. 1b). The user can then capture targets in the mag-
nifier by rotating their head (Fig. 1c) and selecting the targets using
the dwell time input method (Fig. 1d). Thus, GazeScope enables the
user to activate the magnifier and select the small target hands-free
without causing the Midas touch problem.

In this research, we conducted a user study to examine the appro-
priate type, arrangement, and size of the magnifier in GazeScope
and investigated the selection performance and usability for se-
lecting small objects. The study results revealed that GazeScope,
utilizing a large fisheye lens positioned in front of the user’s head, is
the most suitable configuration. It allows for the accurate selection
of small objects with a diameter of 1°, achieving an error rate of
1.19%.

2 Related Work

2.1 Small Object Selection in 3D Environments

2.1.1 Using Hand Modality. Since hands are the most commonly
used modality in VR environments, various methods for selecting
small objects using hands have been proposed. The most common
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approach is enlarging the target size [4, 42, 53, 72, 81]. Plasson
et al. proposed RayLens, a method in which the user controls the
magnifier with one hand and selects the target with the other [53].
Additionally, methods have been proposed to extend the Bubble
Cursor [21]—an approach that implicitly expands the target size
using Voronoi tessellation [17]—to 3D environments [4, 42, 72].

When an object is occluded, its reduced visible area makes selec-
tion more difficult. As a result, even large objects can be as challeng-
ing to select as small ones. One approach to selecting an occluded
object is to remove the objects in front of the target [9, 43, 78]. In
these methods, a threshold is adjusted using a specific gesture, such
as joystick input, to delete objects that are closer to the user than the
threshold. Another approach employs the mirror metaphor to pro-
vide an alternative perspective on the target, thereby eliminating
occlusion [41, 80]. On the other hand, since selecting small occluded
objects is particularly challenging, an approach that repositions
and resizes objects has been proposed [7, 13, 22, 36, 54, 78]. This
approach first selects candidate objects and then rearranges them
into easily selectable positions, such as a grid layout [7, 13, 78] or a
circular layout [22, 54].

2.1.2  Using Gaze Modality. Most methods for selecting small ob-
jects in 3D environments combine gaze modality with other modal-
ities, and few methods rely solely on gaze [33, 52] due to the limited
input capabilities of gaze input. As one approach to selecting small
objects, methods that correct the cursor position have been pro-
posed [8, 38, 73]. Kyto et al. investigated a method for correcting the
gaze cursor position using hands or head movements [38]. Addition-
ally, methods for accurately selecting occluded objects by setting the
cursor position to the intersection of the gaze and hand rays have
also been proposed [8, 73]. As another approach, two-step selection
methods have been proposed, in which candidates are re-positioned
and re-sized to a selectable size in the first step [14, 47, 59, 64, 71].
Sidenmark et al. proposed Cone&Bubble [64], a method that roughly
selects candidates using either the gaze or head ray and then selects
a target from the candidates with the other ray.

Most of these methods utilize either the hands or the head as
the modality, with head-based methods being superior to hand-
based methods, as they are hands-free. Hands-free methods are
particularly beneficial for individuals who have difficulty using their
hands accurately and can also be useful when a user’s hands are
occupied. Additionally, the combination of gaze and head modalities
enables complex interactions that are difficult to achieve with gaze
alone [61, 63]. Overall, multimodal interfaces that combine gaze
and head modalities are considered a practical approach for 3D
environments.

2.2 Magnifiers in Gaze Interfaces

Magnifiers were initially developed for PC environments as essen-
tial assistive tools to help the user, including those with visual im-
pairments, recognize small text and icons on the screen [19, 35, 69].
Standard features in operating systems like Windows and macOS,
magnifiers dynamically enlarge specific areas of the screen based
on cursor movements, enhancing the information visibility. Over
time, magnifiers have evolved into various interface designs that
enlarge small details and facilitate the selection of small objects.
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In gaze interfaces, methods that use a magnifier to improve
visibility by enlarging the scene [1, 40, 45, 74] or selecting small
targets [3, 10, 39, 47, 66—68] have been implemented. In most re-
search involving magnifiers in gaze interfaces, the magnifier ap-
pears at the user’s current gaze position when an activation gesture
is performed. Activation gestures are generally classified into two
categories. The first category involves using modalities other than
gaze, such as keyboards [37], switches [5], touch input [51], or foot
input [34], to activate the magnifier. The second category relies
on the gaze itself as the activation gesture, with many researches
adopting a dwelling action for a specific duration as the activation
method [3, 39, 40, 47]. Lankford proposed a two-step dwell-based
selection method that activates a zoom window in the first step [39].
Similarly, Ashmore et al. introduced using a fisheye lens as a mag-
nifier [3].

Most research on implementing a magnifier in gaze interfaces
within AR/VR environments focuses on improving visibility [1,
40, 45], with little research addressing methods for selecting small
targets [47]. For instance, Mutasim et al. investigated the selection
performance of a method that displays a magnified view of targets
being gazed at, enlarged by a factor of four when a button is pressed
or the gaze is fixed for 300 ms [47]. This method can accurately
select significantly small targets with diameters of less than 1°.
Although this method does not use a magnifier but instead relies on
a magnified view of the target, they suggest that using a magnifier
can also effectively select small targets in AR/VR environments.

2.3 Adjusting Gaze and Head Direction

In multimodal object selection methods that utilize both gaze and
head input, approaches have been proposed in which the head
remains fixed in a specific direction, while the gaze moves [38, 44,
59, 61, 64, 67], and vice versa [38, 63, 64]. Eye&Head selects a target
when the direction of gaze and the head are aligned, effectively
mitigating the Midas touch problem [61]. Radi-Eye allows users
to control a slider with head movements while keeping their eyes
fixed on a menu item [63].

As approaches similar to our method, methods that fix a lens to
the head and allow users to select objects by looking through the
lens have been proposed. Head-based EyeSeeThrough is a method
for simultaneously selecting menu items and targets by aligning
the target with a cockpit menu item fixed to the user’s head and
selecting it with gaze [44]. The menu items were positioned 20°
away from the head direction, and using this method, selections
were completed faster than methods where menu items and targets
were selected separately. Stellmach et al. proposed HdLens, which
allows users to select small objects by continuously displaying a
magnifier in the direction of the head [67]. This method enables
users to easily select small objects in images projected at a distance
by utilizing both hand and gaze modalities.

HdLens is similar to our method in that it displays a magnifier
fixed to the head and allows small object selection with gaze. How-
ever, our method differs from HdLens in that it focuses on selecting
small objects in a VR environment, activates the magnifier from a
non-activated state, and enables target selection using only gaze

AHs ’25, March 16-20, 2025, Masdar City, Abu Dhabi, United Arab Emirates

without relying on hand input. Furthermore, we contribute by in-
vestigating the type, placement, and size of appropriate magnifiers
in the subsequent user study.

3 GazeScope

In this research, we present GazeScope, a method that facilitates
the selection of small targets in VR environments by displaying a
magnifier. This method enables the user to activate the magnifier by
dwelling in a specific area 25° away from the user’s head direction,
where the eyes naturally do not move [18, 27]. This approach can
mitigate the Midas touch problem [11, 76] and allows the magnifier
to be activated using head and gaze input, making it accessible to
individuals who have difficulty moving their hands freely or whose
hands are occupied with other tasks. The magnifier is fixed to the
user’s head, allowing the user to adjust its position by rotating their
head. Gaze input is not suitable for continuous adjustments, such
as positioning a magnifier, due to its lack of accuracy. To enable
precise magnifier positioning, we utilize head input, which is more
suitable for continuous control [63].
GazeScope involves two main steps:

(1) Magnifier Activation: The user dwells in a specific area 25°
away from their head direction for a certain period. After-
ward, a magnifier anchored to the user’s head is displayed.

(2) Target Selection: The user rotates their head to capture the
target into the magnifier. The target is selected by gazing at
it within the magnifier for a certain period.

3.1 Magnifier

In this research, we designed GazeScope using linear and fisheye
lenses as magnifiers.

3.1.1 Linear Lens. A linear lens magnifies objects concentrically
by a factor of n. The lens is commonly used in various studies and
applications [1, 37, 39, 40, 74]. While linear lenses provide uniformly
magnified images, they obscure part of the background [32]. Con-
sequently, when using a linear lens as a magnifier in our method,
there is a risk that the magnifier may block the target.

3.1.2  Fisheye Lens. A fisheye lens displays the entire image within
the lens by distorting the magnified area [20]. This allows the pe-
ripheral regions of the magnifier to blend with the background,
preventing the magnifier from obstructing targets in our method.
As a result, the target remains within the user’s field of view (FOV),
enabling them to capture it in the magnifier immediately. The ap-
pearance of fisheye lens images varies depending on the projec-
tion equations, which typically transform the original images into
smoothly distorted representations, such as stereographic or ortho-
graphic projections [32]. However, fisheye lenses based on these
projections generally exhibit a small area of significant magnifica-
tion, making them unsuitable for target selection [3, 23]. To address
this limitation, a hybrid lens combining linear magnification at the
lens’s center and non-linear magnification at the edges was imple-
mented [2, 56, 57]. This lens provides a large linear magnification
area by intentionally distorting the edges of the lens (Fig. 2a). In
this research, we employed the following projection equation for
the fisheye lens (Fig. 2b):
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Figure 2: GazeScope designs for fisheye lens and lens positions. (a) Image of a fisheye lens. (b) Schematic illustration of the
projection equation. (c) The lens is positioned at the location where the magnifier activation gesture is performed (25° away
from the user’s head direction). (d) The lens is positioned directly in front of the user’s head, aligned with the head direction.
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Here, r represents the lens’s radius, x denotes the distance from
the center, and n is the magnification factor. 7 is the threshold
between linear magnification and fisheye magnification. By using
7, the two functions in Equation 1 are smoothly connected at 7.
However, the area expanded by a factor of n remains smaller with
the fisheye lens compared to the linear lens.

fr<x<r

3.2 Lens Position

Magnifiers in gaze interfaces are typically positioned at the user’s
gaze point when performing activation gestures. In our method, it
is also natural for the magnifier to appear in the area where the
activation gesture is performed (Fig. 2c). However, a 25° angle from
the front of the head may impair ocular kinematics [65], potentially
making it difficult to select targets within the magnifier.

To address this issue, we adopt an approach that activates the
magnifier directly in front of the user’s head [67] (Fig. 2d). This
approach shifts the interaction space to the front of the user’s head,
enabling more comfortable gaze fixation. However, the discrep-
ancy between the gaze position after magnifier activation and the
magnifier’s display position may negatively affect target selection
performance. To examine this, we conducted a comparative study
to identify the optimal position for displaying the magnifier.

4 Study

We conducted a user study to investigate 1) whether our method
facilitates the selection of small targets in a VR environment and 2)
the appropriate design parameters for the magnifier in our method.

4.1 Apparatus and Participants

We used the HTC Vive XR Elite HMD with the HTC VIVE full-
face tracker. According to its specifications, the eye tracker has
an accuracy between 0.5° and 1.1°, a visible FOV of 110°, and the
HMD and the eye tracker’s refresh rate of 90 Hz. The application
used in the study was developed in Unity Version 2023.2.11f1.
Twenty-four participants (four females, 20 males; mean age =
22.8 years, SD = 0.9 years; ID: P1-P24) from a local university were
enrolled. All participants had normal color vision. Among them,

12 had normal vision, six wore glasses, and six wore corrective
lenses. Participants wearing glasses removed them and adjusted
the diopter dial on the HMD. Five participants had prior experience
with an eye-tracking interface. Every participant received 16 USD,
and each study took approximately 60 minutes.

4.2 Implementation

In this study, the magnifier activation gesture is defined as dwelling
in a circular area positioned at 25° eccentricity and 30° azimuth
(Fig. 3b) from the participants’ head direction for 400 ms. The radius
of the area was set to 5°. For consistency across all conditions, this
activation gesture was used throughout. Since users fixate on this
position only approximately 0.3% of the time [76], the likelihood of
accidentally performing an activation gesture while searching for a
target is low. Given that the range of eye movement is wider at the
bottom and narrower at the top [77], we selected this position for
the activation gesture, as it is close to the center of the face and less
likely to trigger the Midas touch. Since multiple candidate positions
exist, our selected position is not necessarily the optimal choice.
However, because this study focuses on selection performance using
a magnifier rather than optimizing the activation gesture position,
we adopted this location.

In the initial implementation, we did not provide feedback to
indicate the dwelling position for the activation gesture. However,
since accurately dwelling at the intended position without feedback
is challenging, we introduced a marker at that position. The marker
was a black circle with a 0.5° radius, positioned at 1.0 m from the
participant’s head. When the magnifier was activated, the marker
disappeared.

The lens’s magnification factor was set to four. Thus, in the fish-
eye lens, the area within 0.63 times the lens’s radius from the center
functioned as a linear lens with a fourfold magnification factor. The
magnifiers were displayed at 1.0 m from the participant’s head. A
target was selected by dwelling on the object within the magnifier
for 600 ms. In other words, objects outside the magnifier could not
be selected. Ideally, it would be preferable to select a target with-
out activating the magnifier and to activate it only when selecting
small objects. However, because our goal was to investigate the
selection performance of our method when using the magnifier, we
implemented the system in this way.
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4.3 Design

We used a within-participant design. There are four independent
variables (Fig. 3):

o Lens Type: Linear, Fisheye

o Lens Position: Center, Upper-Right

o Lens Width: 24°, 32°, 40°

o Target Width: 1°, 2°, 3°

Lens Type refers to the type of magnifier used (Fig. 3a). Lens
Position refers to the location where the magnifier appears (Fig. 3b).
The Center position corresponds to the front of the user’s head,
while the Upper-Right position corresponds to the location of the
dwelling position used to activate the magnifier (25° eccentricity
and 30° azimuth). Lens Width refers to the diameter of the magni-
fier (Fig. 3c). In the linear lens, a larger lens width increases the
magnification area but also enlarges the area hidden by the lens.
The larger hidden area may make it more challenging to capture
the target within the lens. Thus, we adopted this value to investi-
gate the trade-off between the magnification and the hidden area’s
size. Since the range of motion of the human eye is approximately
45°, the maximum radius of the lens from which the peripheral
area remains visible is about 20° when the lens is positioned at
the Upper-Right position. Therefore, we set the upper limit at 40°
and selected values of 24° and 32°, which are below this threshold.
Target Width refers to the diameter of the target. Orquin et al. [49]
found that, even with a high-accuracy eye tracker, a target size of 5°
or more is necessary to capture a high proportion of gaze fixations
on the target. Similarly, Feit et al. [16] reported that a target size
of 2.91° x 3.33° is sufficient for 75% of users in gaze interfaces.
Therefore, a Target Width of 1° and 2° is considered small, while
3° is classified as medium.

The order of the Lens Type X Lens Position was counterbalanced
using a Latin square. The order of Lens Width was also counterbal-
anced. Each participant experienced the tasks in the same order
of Lens Width for all Lens Type X Lens Position. Participants expe-
rienced 21 trials (3 Target Width x 7) for each Lens Type X Lens
Position X Lens Width. The order of the 21 trials was random. Fi-
nally, we collected 2 Lens Type X 2 Lens Position X 3 Lens Width X
21 trials = 252 valid object selection datasets for each participant
(6,048 datasets in total with 24 participants).

4.4 Procedure and Task

First, we greeted the participants and briefly introduced them to the
study. All participants provided written and informed consent. We
then offered detailed task instructions through graphical images.
When the participants wore an HMD, they performed a five-point
eye-tracking calibration of the software initially installed on the
HMD. Before the main sessions started, all participants engaged in
a practice session using different parameters.

The task involved selecting a target using magnifiers in a VR
environment. During the task, 100 selectable objects were displayed.
The target was a red sphere, while the other objects were white
spheres. The width of the target was set to the Target Width value,
whereas the widths of the other objects were randomly assigned
values between 1.0° and 3.0°. Each object was placed at a random
location between 2.0 m and 4.0 m from the participant, ensuring
no objects were visually overlapped. A gaze cursor, a green circle
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with a diameter of 0.2°, was displayed during the task. We applied
a saccade detection [16] with a triangular kernel filter [31] to the
gaze data.

Participants were required to select targets quickly and accu-
rately using GazeScope. When the objects in the magnifier were
gazed at, the color of the gazed object changed to blue. A selection
error was defined as a trial in which participants either selected a
non-target object or failed to select within 10 s of the trial’s initia-
tion. As feedback, a sound corresponding to a correct or incorrect
selection was played when the target was selected. The objects
were regenerated when a selection occurred or when the target
was not selected within 10s of the trial’s initiation. The objects
were regenerated at random locations 20° from the previous target
generation location and within a 30° radius centered on the frontal
direction of the torso. Each trial consisted of this task, and the same
procedure was repeated for subsequent trials.

Participants experienced three Lens Widths in succession for a
specific Lens Type X Lens Position. All trials of one combination of
Lens Type and Lens Position were completed, and they were asked
to fill out the System Usability Scale (SUS) [6] and NASA Task Load
Index (NASA-TLX) [24]. This procedure was repeated four times,
associated with the combination of Lens Type and Lens Position.
After completing all trials, participants were interviewed and asked
to indicate their Lens Type X Lens Position of preference.

4.5 Metrics

An analysis was conducted on the following metrics:

Error Rate: This denotes the failure rate of all trials, where a
trial was considered erroneous if the selection was the non-target
object or if no selection was made within 10 s of the trial’s initiation.

Target Search Time: The time elapsed from the magnifier’s
activation to the target’s first appearance within the magnifier
(Fig. 4a). If the target is already displayed in the magnifier when
activated, this value will be zero.

Target Selection Time: The time elapsed from the target’s
appearance in the magnifier to the successful selection of the target
(Fig. 4b).

Total Selection Time: The total time elapsed from the initiation
of a trial to the successful target selection (Fig. 4c).

Usability Questionnaire: This provides subjective feedback,
through SUS and NASA-TLX questionnaires, to measure usability
and workload in terms of user strain for each Lens Type X Lens
Position. Furthermore, all participants completed a questionnaire to
indicate their preferences for Lens Type X Lens Position.

5 Result

The error rate, target search time, target selection time, and total
selection time did not follow a normal distribution. A nonpara-
metric aligned rank transformation (ART) method [25, 55, 75] was
applied to these datasets, followed by a four-way repeated measures
ANOVA with Lens Type, Lens Position, Lens Width, and Target Width
as factors. For the SUS and NASA-TLX scores, we applied the ART,
as Likert scales are considered ordinal. A two-way repeated mea-
sures ANOVA was then conducted with Lens Type and Lens Position
as factors. Within-factor post-hoc analyses were conducted using
ART-C [15] with Holm correction [26]. The results of the statistic
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Figure 3: Independent variables. The red object represents the target, with a width of 1°.

J )
Magnifier Activation

Target Search

(a) Target Search Time

Dwell Time (600 ms)
(b) Target Selection Time

(c) Total Selection Time

Figure 4: The definition of (a) target search time, (b) target selection time, and (c) total selection time.

analysis are shown in Table 1. We have defined abbreviations for
each Lens Type X Lens Position condition as follows: Linear X Center
is denoted as LC, Linear X Upper-Right as LU, Fisheye X Center as
FC, and Fisheye X Upper-Right as FU.

5.1 Error Rate

The error rates of each Lens Type X Lens Position (LC, LU, FC, FU)
were 2.31%, 4.70%, 1.12%, and 5.82%, respectively (lower is better).
Among these, the timeout error rates were 1.65%, 3.31%, 0.93%,
and 5.09%, respectively. Therefore, timeout errors were the most
common cause of the errors. The number of trials resulting in
timeout errors without magnifier activation accounted for 0.15% of
the total (9 out of 6,048 trials).

For Lens Width, the lowest error rate was observed when select-
ing targets with a Target Width of 1°: for LC, when the Lens Width

was 24° (1.79%); for LU and FU, when the Lens Width was 32° (6.55%
and 10.12%, respectively); and for FC, when the Lens Width was 40°
(1.19%).

The statistical analysis results are shown in Table 1a. Significant
main effects were found for Lens Type (p < .01), Lens Position
(p < .01), Lens Width (p < .01), and Target Width (p < .01). These
results indicate that the Center condition had a significantly lower
error rate than the Upper-Right condition. Within-factor post-hoc
analyses revealed that larger Lens Width values resulted in lower
error rates for the LU, FC, and FU. However, for LC, the smallest
Lens Width condition (24°) had a significantly lower error rate. The
error rates are shown in Fig. 5.
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Table 1: The results of the ANOVA for (a) Error Rate, (b) Target Search Time, (c) Target Selection Time, (d) Total Selection Time,
(e) System Usability Scale (SUS), and (f) NASA Task Load Index (NASA-TLX). Due to space limits, Lens Type, Lens Position, Lens
Width, and Target Width are indicated as LT, LP, LW, and TW, respectively.

(a) Error Rate (b) Target Search Time

Factor F value P r]f, Factor F value P 1712,

LT Fi5989 = 1220.95 <.01 .169 LT Fi5778 =296.10 <.01 .049
LP Fi5080 = 2307.52 <.01 .278 LP Fi,5778 = 2.98 .08 .001
Lw Fy 5080 = 1129.38 <.01 .274 LwW Fy 5778 = 5.10 <.01 .002
T™W F> 5989 = 615.85 <01 .171 ™ Fy5778 = 194.68 <.01 .063
LT x LP Fi,5089 = 410.92 <.01 .064 LT x LP Fi5778 = 0.12 .73 .000
LT x LW F5 5989 = 98.48 <01 .032 LT X LW Fy 5778 = 0.87 42 .000
LP X LW F> 5989 = 663.38 <.01 .181 LP X LW F> 5778 = 5.96 <.01 .002
LT xTW F5 5989 = 251.65 <.01 .078 LT X TW F> 5778 = 1.36 .26 .000
LP xTW F5 5989 = 811.79 <.01 213 LP xTW Fy 5778 = 0.54 .58 .000
LW xTW Fy 5989 = 766.63 <.01 .339 LW X TW Fy5778 = 1.08 37 .001
LT X LP X LW F5 5989 = 50.37 <.01 .017 LT X LP X LW F 5778 = 0.88 42 .000
LTXLPxTW Fy 5080 = 729.60 <.01 .196 LTXLPxTW Fy5778 = 0.13 .88 .000
LT X LW X TW Fy 5989 = 187.47 <01 .111 LT X LW X TW Fy5778 = 0.93 45 .001
LP X LW xTW Fy4 5089 = 696.26 <.01 317 LP X LW xTW Fy5778 = 0.26 91 .000
LT X LP Xx LW X TW  Fy 5989 = 166.70 <.01 .100 LT XLP X LW xTW  Fy5778 = 1.91 A1 .001

(c) Target Selection Time (d) Total Selection Time

Factor F value P r]f, Factor F value P 1712,

LT F1,5779 = 95.00 <01 .016 LT F15778 = 36.83 <01 .006
LP F15778 = 289.82 <.01 .048 LP Fy 5778 = 82.59 <01 .014
LW F5 5778 = 36.39 <.01 .012 LW F5 5778 = 1.51 .22 .001
™ F5 5779 = 380.87 <01 .116 T™W™W Fy5778 = 467.74 <.01 .139
LT x LP Fi15779 = 74.59 <.01 .013 LT x LP Fy 5778 = 8.56 <.01 .001
LT X LW F5 5778 = 13.08 <.01 .005 LT X LW F5 5778 = 10.70 <.01 .004
LP x LW F> 5778 = 29.74 <01 .011 LP x LW Fy 5778 = 0.22 .80 .000
LT xTW F> 5778 = 15.39 <.01 .005 LT xTW F; 5778 = 4.57 <.05 .002
LPxTW F5 5778 = 45.05 <.01 .015 LPxTW Fy 5778 = 9.97 <.01 .003
LW x TW Fy5778 = 7.21 <.01 .005 LW x TW Fy5778 = 1.05 .38 .001
LT X LP x LW F> 5778 = 11.69 <.01 .004 LT X LP x LW F; 5778 = 8.85 <.01 .003
LTXLPxTW F5 5779 = 8.97 <.01 .003 LTXLPxXTW F55778 = 5.04 <.01 .002
LT X LW x TW Fy5778 = 4.58 <.01 .003 LT X LW x TW Fy5778 = 1.48 21 .001
LP X LW X TW Fy5778 = 6.18 <.01 .004 LP X LW X TW Fy 5778 = 0.62 .65 .000
LT X LP X LW X TW  Fy5778 = 3.62 <.01 .002 LT XLP X LW X TW  Fy5778 = 0.35 .84 .000

(e) System Usability Scale (SUS) (f) NASA Task Load Index (NASA-TLX)

Factor F value P '7;27 Factor F value P 17}2,

LT F169 =1.88 17 .027 LT Fi69 =1.79 .19 .025
LP F169 = 53.76 <.01 438 LP F169 = 24.81 <01 .264
LT x LP Fi,69 = 0.06 .81 .001 LT x LP Fi,69 = 2.07 .16 .029

5.2 Target Search Time

The target search time of each Lens Type X Lens Position (LC, LU, FC,
FU) was 1.52s, 1.47 s, 1.11 s, and 1.18 s, respectively (lower is better).
The statistical analysis results are shown in Table 1b. Significant
main effects were found for Lens Type (p < .01), Lens Width (p < 6.

.01), and Target Width (p < .01); however, Lens Position (p = .08)
did not show significant main effects. These results indicate that
the Fisheye condition had a significantly faster target search time
than the Linear condition. The target search time is shown in Fig.
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Figure 5: Error rate. The error bars represent the standard error. Statistically significant differences are indicated with solid

lines for p < .05.
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Figure 6: Target search time. The error bars represent the standard error. Statistically significant differences are indicated with

solid lines for p < .05.

5.3 Target Selection Time

The target selection time of each Lens Type X Lens Position (LC,
LU, FC, FU) was 1.02s, 1.29s, 1.12 s, and 1.64 s, respectively (lower

is better). The statistical analysis results are shown in Table 1c.

Significant main effects were found for Lens Type (p < .01), Lens
Position (p < .01), Lens Width (p < .01), and Target Width (p <
.01). These results indicate that the Linear condition resulted in a

significantly faster target selection time than the Fisheye condition.

Additionally, the Center condition led to a significantly faster target
selection time than the Upper-Right condition. The target selection
time is shown in Fig. 7.

5.4 Total Selection Time

The total selection time of each Lens Type X Lens Position (LC, LU,
FC, FU) was 4.03s, 4.21s, 3.73s, and 4.19s, respectively (lower

is better). The statistical analysis results are shown in Table 1d.

Significant main effects were found for Lens Type (p < .01), Lens
Position (p < .01), and Target Width (p < .01); however, Lens
Width (p = .22) did not show significant main effects. These results
indicate that the Fisheye condition resulted in a significantly faster

total selection time than that of the Linear condition. Additionally,
the Center condition led to a significantly faster total selection time
than the Upper-Right condition. The total target selection time is
shown in Fig. 8.

5.5 System Usability Scale (SUS)

The overall SUS score of each Lens Type X Lens Position (LC, LU,
FC, FU) was 73.54, 56.04, 77.50, and 57.60, respectively (higher is
better). The statistical analysis results are shown in Table le. We
observed that Lens Position (p < .01) had significant main effects;
however, Lens Type (p = .17) did not show significant main effects.
The SUS score of all Lens Type X Lens Position is shown in Fig. 9a.

5.6 NASA Task Load Index (NASA-TLX)

The overall workload score of each Lens Type X Lens Position (LC,
LU, FC, FU) was 44.44, 53.51, 38.40, and 55.03, respectively (lower
is better). The statistical analysis results are shown in Table 1f. We
observed that Lens Position had significant main effects in all NASA-
TLX items; however, Lens Type did not show significant main effects.
The workload score of all Lens Type X Lens Position is shown in Fig.
9b.
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Figure 7: Target selection time. The error bars represent the standard error. Statistically significant differences are indicated
with solid lines for p < .05.
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Figure 8: Total selection time. The error bars represent the standard error. Statistically significant differences are indicated
with solid lines for p < .05.
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Figure 9: (a) SUS and (b) NASA-TLX. The error bars represent the standard error. Statistically significant differences are indicated
with solid lines for p < .05.

5.7 Participants’ Feedback 5.7.2  Lens Type. Some participants preferred the linear lens to the
5.7.1 Participants’ Preference. The average rank of preference for fisheye lens. P7 commented, “The linear lens was preferred to the
each Lens Type X Lens Position (LC, LU, FC, FU) was 2.17, 3.33, 1.42 fisheye lens because it made target selection easier.” P11 remarked,
and 3.08, respectively (lower is better). Thus, FC, LC, FU, and LU “The LC was the easiest to get accustomed to. In contrast, the fisheye
were preferred in that order. lens was much more difficult to operate than I had anticipated.” How-

ever, some participants (P12, P18, P20, P22) criticized the linear lens
for completely hiding the target. P18 commented, “If the target is
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hidden behind the magnifier and not visible, it becomes difficult to
search the target.”

Many participants left positive comments about the fisheye lens,
with 11 participants noting that it was easy to determine the location
of the target when using the fisheye lens. P10 remarked, “The fisheye
lens had no blind spots, so it was easy to find the red target.” However,
the unique motion of targets on the fisheye lens contributed to the
difficulty in operating it. P1 remarked, ‘It is more difficult to display
the target at the center of the lens compared to the linear lens.”

5.7.3 Lens Position. Most participants left positive comments about
the Center condition. Eight participants noted that the Center condi-
tion was easier to use than the Upper-Right condition, regardless of
the Lens Type. P4 remarked, “The Center condition makes it easier to

understand the relationship between the target and the lens positions.”

On the other hand, some participants left negative comments about
the Upper-Right condition. They (P5, P8, P9, P11, P22) commented
that the Upper-Right condition imposed a high physical burden.
Additional issues mentioned included eye fatigue (P5) and difficulty
in selecting lower-positioned targets (P9, P11). These comments
suggest that participants tended to prefer the Center condition over
the Upper-Right condition due to its ease and comfort in selecting
targets.

5.7.4  Activation Gesture. Participants expressed their dissatisfac-
tion with the activation gesture. Nine participants commented that
it was burdensome to repeatedly and continuously activate the
magnifier by dwelling the gaze on the upper-right position. Addi-
tionally, some participants reported difficulty with the gesture (P14,
P22) and eye fatigue (P6, P17, P20, P21).

5.8 Summary of the Study

We summarize the study result in Table 2. The fisheye lens demon-
strated significantly better performance than the linear lens in
terms of error rate, target search time, and total target selection
time. On the other hand, the linear lens exhibited a significantly
faster target selection time compared to the fisheye lens.

For Lens Position, the Center condition showed significantly
better performance in terms of error rate, target selection time,
total target selection time, SUS, and NASA-TLX scores. Notably,
in the FC and LC conditions, participants were able to select 1°
objects, which is too small to select using a standard gaze interface,
with significantly lower error rates (3.37% and 2.38%, respectively).

For Lens Width, larger Lens Width values resulted in better error
rates for LU, FC, and FU. Additionally, a larger Lens Width improved
the target selection time for FU. In contrast, smaller Lens Width
values led to lower error rates and total selection time for LC, as
well as improved target search time for LU.

6 Discussion

We conducted the user study to investigate whether our method
can make it easy to select small targets in the condition combined
Lens Type and Lens Positoin. We discuss the selection performance
of GazeScope, the activation gesture, comparisons with existing
methods, and the limitations of this research.

Sato et al.

6.1 Selection Performance and Usability of
GazeScope

The user study results demonstrate that GazeScope can facilitate
the selection of small targets. In particular, in the Center condi-
tion, participants were able to accurately select significantly small
targets (Target Width = 1°) with an error rate of 2.88%. Therefore,
GazeScope is an effective method for selecting small targets in VR
environments.

On the other hand, the total selection time for GazeScope was
relatively long, even in the FC condition, where the fastest total
selection time was 3.73 s. This is because selecting a target with
GazeScope involves three steps: activating the magnifier, capturing
the target within the magnifier, and selecting the target inside
the magnifier. Nevertheless, GazeScope enables a highly accurate
selection of small objects. Therefore, GazeScope is better suited
for scenarios where selection accuracy is prioritized over speed or
when selecting targets that cannot be accessed using conventional
dwell time selection methods.

The SUS results showed that the FC condition achieved a high
usability score, suggesting that GazeScope, when appropriately
designed, offers better usability. However, based on participants’
feedback, many expressed dissatisfaction with the magnifier ac-
tivation gesture. This dissatisfaction stemmed from the gesture
requiring larger eye movements than usual. In this study, partici-
pants performed 252 gestures (or more, including practice), which
led to eye fatigue. However, since this gesture is only performed
when the user chooses to activate the magnifier, its frequency of
use is expected to be lower in real-world scenarios. Therefore, we
believe that the burden of the magnifier activation gesture would
not pose a significant issue in practical use.

6.2 Appropriate Parameters

The study results indicate that Lens Position had the most signif-
icant impact on GazeScope’s selection performance. The Center
condition showed significantly better selection performance com-
pared to the Upper-Right condition. As shown in Table 2, LC or FC
performed the best in six categories. This suggests that displaying
the magnifier at the gaze position when the magnifier activation
gesture is performed is not suitable for our method, which utilizes
an area of 25° from the head direction.

In terms of Lens Type, the fisheye lens received more positive
comments from participants than the linear lens. Unlike the linear
lens, the fisheye lens has no blind spots, which makes it superior
in terms of target search time. Some participants provided negative
feedback regarding the linear lens, noting that the target became in-
visible. Due to this occlusion, some participants preferred a smaller
lens width for linear lenses. Thus, the occlusion caused by linear
lenses negatively impacts the user experience. On the other hand,
the fisheye lens was inferior to the linear lens in terms of target
selection time. This is due to the additional time required to move
the target into the area of the magnifier where linear magnification
is applied (near the center of the fisheye lens).

Regarding Lens Width, fisheye lenses with a larger lens width
demonstrated superior performance. This is because the area ex-
panded using a fisheye lens increases as the lens width becomes
larger, making it easier to select smaller targets. In contrast, for
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Table 2: Table of performance metrics for each Lens Type X Lens Position condition (LC, LU, FC, FU). The top two values for each
metric are highlighted, with the best values shown in dark green and the second-best values in light green. Roman numerals

represent the ranking for each metric.

Error Rate (%)

Time (s) Time (s)

LC I: 231,775
LU 1III:4.70 + 1176 1II: 1.47 1098
FC [METRESENNETIEGSN 1112 2079
FU 1V:582.1371 II:1.18 +¢.89

Target Search  Target Selection Total Selection

Time (s) SUS NASA-TLX

IV: 1.52 103 _ I: 4.03 1 1.41

III: 1.29 +9.99

IV:1.64 +1.40

II: 73.54 +19.07
IV:56.04 1+ 20.99

II: 44.44 + 2065

IV:4.21 + 155 IIT: 53.51 4+ 20.60

I: 4.19 +1.70 II: 57.60 £ 2156 IV:55.03 £21.41

linear lenses, particularly LC, a smaller lens width resulted in bet-
ter error rates and shorter total selection time. This is because a
smaller lens width reduces the area obscured by the magnifier, facil-
itating easier target capture within the magnified region. Therefore,
a smaller lens width is preferable when using a linear lens as a
magnifying tool for GazeScope. Conversely, a larger lens width is
recommended when using a fisheye lens.

6.3 Comparison with Existing Methods for
Small Object Selection

GazeScope achieves higher accuracy in selecting small targets than
existing methods. According to the study results, the error rate
for FC was 1.12%, while the error rate for FC when selecting a
1° target was 2.38%. This error rate is lower than those of other
methods that use eye and head input [59, 60, 64]. Additionally, the
error rate is sufficiently low compared to methods that use hand
input [4, 9, 78]. This is because dwell time input eliminates the
possibility of “selecting outside the target” errors [48], resulting in
a lower error rate than those methods. Notably, direct comparisons
of error rates should be interpreted with caution due to differences
in experimental conditions. However, our proposed method can be
considered highly accurate in selecting small objects.

On the other hand, the total selection time for GazeScope, at 3.73
s, is significantly longer than that of other methods. The selection
time for Cone&Bubble [64], which uses both gaze and head input,
ranges from 1.5 s to 2.0 s, making it much faster than GazeScope.
Additionally, studies on methods that utilize other modalities have
also reported faster selection times than GazeScope [4, 8, 71]. Thus,
GazeScope is less efficient than existing methods in terms of selec-
tion time.

The key contribution of GazeScope is that it enables the use of a
magnifier in 3D environments hands-free. Approaches for selecting
small or occluded objects, such as removing occlusions [9, 43, 78],
generating different viewpoints[41, 80], and repositioning [7, 13, 22,
36, 54, 78], can only be applied to virtual objects and not real ones.
Although a magnifier cannot eliminate a target’s occlusion, it can
magnify small real objects. Additionally, a magnifier can be used
to expand the FOV in everyday life. We believe that GazeScope
is advantageous because it allows individuals who have difficulty
using their hands or whose hands are occupied to utilize a magnifier
in 3D environments.

6.4 Limitations

Our research has several limitations. First, our research did not com-
pare GazeScope with previous methods and instead focused solely
on the design parameters of GazeScope. Due to the lack of prior
knowledge about implementing a magnifier as a gaze interface in a
VR environment, it was necessary to investigate parameters related
to magnifiers. Now that our study has identified the appropriate
magnifier parameters for GazeScope, it should be compared with
previous methods in future research.

Second, the study of GazeScope’s magnifier activation gestures
is insufficient. Since we have only implemented a single magni-
fier activation gesture, it remains unclear whether this gesture is
superior to other potential gestures (e.g., blink, wink). Therefore,
further research is required to compare and evaluate alternative
input gestures for the magnifier activation.

Third, the functions necessary for the practical use of GazeScope,
such as closing the magnifier and adjusting the magnification rate,
have not been investigated. Although these functions are essen-
tial [58], they were not considered in this study. These functions can
be implemented by placing menu items around the magnifier [63] or
using gaze gestures toward its edge [28, 29]. Therefore, developing
and evaluating practical functionalities for GazeScope is necessary.

Finally, this study has limitations related to the participants and
study tasks. Most participants were young male university students,
leading to a narrow range of age and gender. Additionally, although
we conducted a controlled target selection task to examine the pa-
rameters of an appropriate magnifier for GazeScope, its selection
performance in scenarios such as selecting occluded objects or per-
forming tasks requiring visual search remains unclear. Moreover,
we did not explicitly evaluate selection errors caused by head rota-
tions, leaving the potential impact of such errors on target selection
unexamined. Future research should investigate how head move-
ments affect GazeScope’s performance and accuracy. Furthermore,
this study did not focus on selecting real-world objects in an AR
environment. Therefore, additional research is required to evaluate
the selection performance of GazeScope across various objects and
environments.

7 Conclusion

We presented GazeScope, a method for selecting small targets using
gaze and head input in VR environments. Our method allows the
magnifier to be activated solely through gaze input. We examined
whether GazeScope could facilitate the selection of small targets
and identified appropriate parameters for the magnifier. The results
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showed that GazeScope achieved an error rate of 2.9% when se-
lecting small targets, and displaying the magnifier in the direction
of the user’s head further improved selection performance. Our
method enables the user to effectively select small targets by acti-
vating the magnifier in a VR environment, significantly expanding
the potential applications of gaze interfaces.
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