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Figure 1: (a) An HMD and a hat-shaped touch device. (b) The direction of finger-dragging on the device and the corresponding
rotation of a VR plane. When the user drags the device in the arrowed direction, the plane rotates in the same direction. (c)
Pieces of conductive fabric were cut and sewn together to form the hat.

ABSTRACT
We developed a hat-shaped touch interface for virtual reality view-
point control. The hat is made of conductive fabric and thus is
lightweight. The user can touch, drag, and push the surface, en-
abling three-dimensional viewpoint control.

CCS CONCEPTS
• Human-centered computing → Virtual reality; Interaction
devices; Gestural input.
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1 INTRODUCTION
In virtual reality (VR) that employs a head-mounted display (HMD),
the viewpoint is generally controlled by head tracking. However,
the active head movements required for viewpoint manipulation
often cause fatigue and nausea.

Several studies have sought to reduce active head movements.
For example, Sargunam et al. [7] amplified small head rotations.
Bozgeyikli et al. [1] used teleportation to control orientation-specific
movement. Riecke et al. [6] used a chair that could be tilted to move
the viewpoint. In a previous study [2], we presented a helmet with
capacitive touch sensors; the viewpoint was controlled by touching
the surface of the helmet. Thus, dragging the surface of the head
directly controlled rotation of the viewpoint camera. However, the
device featured only 54 touch points, compromising continuous
finger tracking. In addition, the helmet was heavy and users became
fatigued.

Here, we present a lightweight touch device made of conductive
fabric; it is easier to use than the helmet. The new device contin-
uously detects touch points and pressures at high resolution. By
dragging the surface of the device, the user intuitively inputs the
three degrees of freedom rotation.
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2 IMPLEMENTATION
We created a hat-shaped touch device out of conductive fabric.
Other studies have employed such fabric. The Textile++ device [4]
features resistive sensors made of conductive fabric. Leong et al. [3]
and Parzer et al. [5] used interwoven (striped) conductive and non-
conductive fabrics, and piezoresistive fabrics, as touch sensors. We
cut anti-static, ultra-fine, non-woven conductive fabric of surface
resistance 3 × 104Ω/B@ using a paper pattern and made a hat from
four cut sheets (Fig. 1). The hat is sensitive to touch and pressure.

The user wears the hat on the head (Fig. 1a). Conductive sacs are
attached to the fingers. We attached four electrodes to the edge of
the hat to measure voltage. The electrode positions are shown in
Figure 2. We use two-dimensional coordinates (x, y) to describe the
hemisphere: the left-to-right orientation is the X coordinate and
the front-to-back orientation is the Y coordinate.
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(a)+1,+2 for X coordinate
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(b)+3,+4 for Y coordinate

Figure 2: The positions of the hat electrodes and touch posi-
tion acquisition by the electrodes. Electrodes that are inac-
tive are set to ground.

When a finger touches the hat and a voltage is applied to the
finger electrode, the device first measures the voltages at the left
and right electrodes and then those at the front and back electrodes
(Fig. 2). We obtain the touch position (X, Y) by deriving the ratio
of the two voltages. In addition, as the contact resistance between
the finger and the hat decreases as the touch pressure increases,
the average acquired voltages increase when resistance decreases.
Thus, the average voltage percentage reflects the touch pressure % .
Multiple finger positions can be derived by delivering sequential
voltages to each finger.
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A microcontroller (ESP32) measures the voltages, calculates the
touch position, and sends the data to a PC via Bluetooth. The touch
coordinates are converted into rotation angles around the three axes
using the Unity program. These values are used to rotate objects
and present multi-touch gestures. Figure 3 and Figure 4 show plots
of the touch positions and pressures.

3 APPLICATION
We implemented a VR flight game (Fig. 1b) whereby the user con-
trols the direction of a flying plane. By dragging the surface of
the device, the user can change yaw, roll, and pitch with a single
finger. Pinch-in and pinch-out gestures (two-point touches) cause
the camera behind the plane to move forward and backward.

Figure 3: A plot of the touch positions acquired when the
user drags on the hat in the yaw, roll, and pitch directions.

Figure 4: Changes in pressure while pressing the device.

4 CONCLUSION AND FUTUREWORK
We present a hat-shaped touch interface for VR viewpoint manip-
ulation and a touch detection system featuring conductive fabric
sensors. Our interface enables three-dimensional viewpoint control
and object rotation.

In future work, we will compare our device with handheld con-
trollers and head movement trackers. We will also investigate
whether users develop fatigue or nausea, and the relationship be-
tween dragging direction and the direction of camera rotation.
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