筑波大学大学院博士課程

システム情報工学研究科修士論文

スケジュール情報と在室情報に基づく
伝言掲示板システム

藤原 仁貴
(コンピュータサイエンス専攻)

指導教員 田中 二郎

2011年3月
概要

オフィスでは、業務について分からないことを知っている人にたずねる、顔を合わせて打ち合わせを行うなど、メンバー同士でコミュニケーションを行いつつ業務を進めていく。しかしメンバーによって居室が異なる、居室に来る時間がまちまちであるなど、作業場所や作業時間が分散しているような環境では、メンバー同士で接触するためのタイミングを合わせることが難しい。そのため、顔を合わせた時点でに済ませることができる用件に対しても接触のための日程調整が必要となる。本論文では、このような環境において、接触のための日時を日程調整することなく相手と接触するためのシステムについて述べる。

本研究におけるアプローチは、スケジュール情報と過去の在室情報とを閲覧できる伝言掲示板システムを開発することである。本システムをオフィスに設置することによって、相手に用件と、自身の空き時間や、自身が在居居室に在居している時間帯を伝えることができる。また相手のスケジュール情報や在居情報の履歴を閲覧することもできる。これによって、互いに都合の良い時間帯に接触することが可能になる。

システムを開発するに当たって、試作システムを運用しフィードバックを得ることによって機能の改良を行った。また、システムが実際にメンバーとの接触に用いられるかどうか評価を行った。
目次

第1章 はじめに 1
1.1 研究の背景 1
 1.1.1 分散環境におけるセミフォーマルコミュニケーションの問題点 2
 1.1.2 先行研究の問題点 2
1.2 研究の目的 3
1.3 本論文の構成 3

第2章 関連研究 4
2.1 会議日程調整支援に関する研究 4
2.2 コミュニケーションの機会の創出を目的とした研究 5
2.3 アウェアネスの促進を目的とした研究 5

第3章 DOCoCa の設計 7
3.1 システムが満たすべき要件 7
3.2 システムの設計 7
3.3 端末ソフトウェアのインタフェース設計 8
 3.3.1 居場所の変更インタフェース 8
 3.3.2 在室傾向を示す手法 8
 3.3.3 在室傾向の閲覧インタフェース 9

第4章 DOCoCa の試作と評価 10
4.1 システム構成 10
4.2 端末のインタフェース 11
4.3 端末ソフトウェアの実装 12
4.4 運用による評価 13
 4.4.1 評価結果の考察 14

第5章 IrukaBoard の設計 16
5.1 システムが満たすべき要件 16
5.2 システムの設計方針 16
5.3 揭示板システムを用いた用件の共有 17
5.4 スケジュール情報と在室履歴の閲覧インタフェース 18
5.5 在室判定サブシステムによる在室情報の自動記録 18
5.5.1 メンバーの存在検知を行う方法の検討 18
5.5.2 Bluetooth デバイスの存在検知 .. 19
5.6 IrukaBoard 端末の設置場所 ... 20
5.7 伝言の入力インタフェース設計 .. 20
5.8 揭示板の画面設計 .. 20

第6章 IrukaBoard の作成 ... 23
6.1 システム構成 ... 23
6.2 IrukaBoard 端末 ... 24
 6.2.1 揭示板部のインタフェース .. 24
 6.2.2 リスト部のインタフェース .. 30
 6.2.3 端末ソフトウェアの実装 ... 30
6.3 在室判定サブシステムの実装 .. 31
 6.3.1 デバイス検知クライアントの実装 33
 6.3.2 在室判定サーバの実装 ... 34

第7章 試作 IrukaBoard システムの評価 35
7.1 システムの運用環境 ... 35
7.2 評価1 ... 37
 7.2.1 結果 ... 37
 7.2.2 考察 ... 37
7.3 評価2 ... 38
 7.3.1 結果 ... 38
 7.3.2 考察 ... 39
7.4 評価3 ... 40
 7.4.1 結果 ... 40
 7.4.2 考察 ... 42

第8章 まとめ ... 45

謝辞 ... 46

参考文献 ... 47

付録 A IrukaBoard の評価に用いたアンケート用紙 50

付録 B IrukaBoard の評価に用いたアンケート 53
図目次

3.1 アルキメデスのうずまき ... 8

4.1 DOCaCa のシステム構成 .. 10
4.2 DOCaCa の外観 .. 10
4.3 端末ソフトウェアのスクリーンショット 11
4.4 居場所の入力操作 ... 12
4.5 メンバー一人分の表示 ... 12
4.6 習慣に規則性のあるメンバーと規則性のないメンバーの表示 15

5.1 スケジュール情報と在室履歴の閲覧インタフェース 18
5.2 ダイアルによる期限の入力 21
5.3 揭示板の画面設計 .. 21
5.4 伝言のカードの設計 .. 22

6.1 IrukaBoard のシステム構成 23
6.2 IrukaBoard 端末の外観 24
6.3 IrukaBoard の画面の外観 25
6.4 伝言入力ボタン ... 25
6.5 伝言入力ウィンドウ ... 26
6.6 入力者名の入力 ... 26
6.7 宛名の入力 .. 27
6.8 用件の入力 .. 28
6.9 ソフトウェアキーボードによる用件の入力 28
6.10 カードの外観 ... 29
6.11 強調されたカード .. 29
6.12 期限を過ぎたカード .. 29
6.13 伝言の編集・複製・削除ウィンドウ 30
6.14 スケジュール情報と在室履歴の閲覧インタフェース 31
6.15 リスト部のインタフェース 32

7.1 居室 A の見取り図 .. 36
7.2 居室 B の見取り図 .. 36
7.3 予測結果の正解率 .. 38
<table>
<thead>
<tr>
<th>章節</th>
<th>項目</th>
<th>頁碼</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>評価 2 の結果</td>
<td>39</td>
</tr>
<tr>
<td>7.5</td>
<td>日ごとの伝言入力回数</td>
<td>41</td>
</tr>
<tr>
<td>7.6</td>
<td>分類ごとの伝言数</td>
<td>42</td>
</tr>
</tbody>
</table>
第1章 はじめに

1.1 研究の背景

オフィスでは、同じ作業グループ内で互いに様々なコミュニケーションが行われる。オフィスにおいて行われるコミュニケーションは、計画的の観点から、フォーマルコミュニケーションとインフォーマルコミュニケーションの2種類に分類される [松下 95]。フォーマルコミュニケーションは、コミュニケーションを行うスケジュールや参加者、議題が事前に定められているコミュニケーションである。会議やミーティングが例として挙げられる。一方インフォーマルコミュニケーションは、参加者、議題が事前に定められていない、偶発的に発生するコミュニケーションである。廊下や休憩スペースなどの共有スペースにおいて行われる立ち話や雑談が例として該当する。フォーマルコミュニケーションとインフォーマルコミュニケーションの特徴の比較を表1.1に示す。なおこの表は、[FKC90]の図を元に作成された [松下 95]の図を一部引用したものである。

<table>
<thead>
<tr>
<th></th>
<th>フォーマル</th>
<th>インフォーマル</th>
</tr>
</thead>
<tbody>
<tr>
<td>スケジュール</td>
<td>前もって予定されている</td>
<td>偶発的</td>
</tr>
<tr>
<td>参加者</td>
<td>前もって予定されている</td>
<td>ランダム</td>
</tr>
<tr>
<td>議題</td>
<td>前もって予定されている</td>
<td>その場で決まる</td>
</tr>
</tbody>
</table>

しかし実際には、オフィスではスケジュールや参加者、議題全てがあらかじめ定められていないわけではなく、その一部が定まっているコミュニケーションも行われる。例えば、書類を上司にチェックしてもらう、打ち合わせを行う、業務について分からないことがあるので知っている人にたずねるなど、顔を合わせる程度で済む用件において行われるコミュニケーションである。このようなコミュニケーションの特徴を以下に示す。

議題 「書類をチェックしてほしい」「打ち合わせをしたい」「ある情報について知りたい」など、議題は定まっている。

参加者 「上司に書類をチェックしてもらいたい」という場合であれば、参加者が定まっていると言える。不特定の人に対して情報提供を求める場合であれば、参加者は定まっていないと言える。

1
スケジュール 「今日中に」「明後日の夕方頃までに」など期限が定まっていることもあるが、
いつでも良い場合もあるが厳密にスケジュールが定められてはいないことが多い。

本論文では、このような「議題と参加者は決まっているが、スケジュールは明確に定まっ
ていない」コミュニケーションをセミフォーマルコミュニケーションと定義する。

1.1.1 分散環境におけるセミフォーマルコミュニケーションの問題点

企業や研究所などでは、全てのメンバーが１つ居室に入りきらないという理由から、複数
の居室にメンバーが分かれて作業を行うという、オフィスの空間的分散が進んでいる。特に
都心部では、地価が高いため、十分な広さを持つオフィスを用意することが困難であるため、
オフィスの空間的分散は顕著である。またオフィスは、出張による不在、フレックスタイム
制による作業時間の分散といった、メンバーの時間的分散も抱えている。このような空間的、
時間的分散環境の問題は、大学の研究室においても起こり得る。例えば著者が所属している
研究室では、４ヶ所の居室に分かれて研究活動を行っている。４ヶ所の内２ヶ所は同じ建物の
別の階に、残り２ヶ所はそれぞれ別の建物に分かれている。また、学生は各々の都合の良い
時に作業を行うため、居室内滞在する時間帯は人それぞれである。

分散環境では、メンバー同士で顔を合わせる機会は少ない。このため、いつ居室にやって
来ていつ帰宅するのかというような在室している時間帯の傾向や、出張やミーティング、講
義といったメンバーそれぞれのスケジュールなど、分散の少ない環境では自然と共有できる
情報が不透明になりがちである。なお、在室している時間帯の傾向のことを本研究では在室
傾向と呼ぶ。このように活動状況が不透明な環境においては、コミュニケーションを行うた
めのタイミングを計ることが難しく、セミフォーマルコミュニケーションを行うために日程
調整が必要になり、メンバーにとって手間である。

1.1.2 先行研究の問題点

これまでコミュニケーションを支援するために様々な研究がなされている。
会議やミーティングなどのフォーマルコミュニケーションの予定を日程調整するための手
法やシステムが古くから研究・開発されている [BPH 90, FM06, cyb]。これらは会議やミー
ティングを効率的に日程調整することを目指したものであるが、セミフォーマルコミュニケーション
のような顔を合わせる程度で済む用件に対してその都度日程調整することは手間であ
ると考えられる。

一方分散環境において、インフォーマルコミュニケーションを活性化させる研究が行われ
ている。例えば、グループ内において、インフォーマルコミュニケーションの機会を増加さ
せる研究が行われている [椎尾 01, 松原 03, 中野 06]。これらの共通点は、グループ内のメン
バー同士が顔を合わせるきっかけを提供することによってインフォーマルコミュニケーション
の機会の増加を狙っている点であり、インフォーマルコミュニケーションの偶発性に注目
したものである。しかしセミフォーマルコミュニケーションはあらかじめいくつかの情報が
定まったコミュニケーションである。定まった情報はコミュニケーションを取りたい相手と共有すべきであると考える。

このように、セミフォーマルコミュニケーションに注目してシステムのデザインが行われた先行研究はなく、セミフォーマルコミュニケーションに焦点を当てることも重要であると考えている。

1.2 研究の目的

本研究の目的は、分散環境におけるセミフォーマルコミュニケーションを支援するためのシステムを設計し評価することである。そのためには2種類の行動の支援が必要であると考える。1つ目は、会議、電話を掛けるなど、相手と接触するタイミングを計ることの支援である。これによって日程調整を行うことなく相手と接触することが可能になる。2つ目は議題を相手と共有することの支援である。これによって、例えば相手が不在であったとしても、相手からの接触を望むことができるようになる。これら2つの支援によって、あらかじめ日時を定めない接触の実現が可能になる。

本研究では、接続のタイミングを計るために必要な情報を明らかにすると共に、その情報と議題を共有するために最適なシステムの設計を行うことである。本研究ではまず初めに、各メンバーの在室傾向を、各メンバー間において共有するためのシステム「DOCoCa」の設計、開発および評価を行った。次に評価の結果を基に、「伝言」による議題の共有機能を追加したシステム「IrukaBoard」の設計、開発および評価を行った。

1.3 本文論の構成

本論文の構成を以下に述べる。本章では分散環境において行われるコミュニケーションとその問題点を示し、研究の目的を示した。第2章では関連研究について述べ、本研究の位置づけを示す。第3章では、DOCoCaの設計を行い、第4章においてDOCoCaの実装と評価について述べる。第5章では、DOCoCaの評価結果を基にIrukaBoardの設計を行い、第6章ではIrukaBoardの機能と実装について述べる。第7章ではIrukaBoardの評価と結果の考察について述べ、第8章でまとめる。
第2章 関連研究

本章では、フォーマルコミュニケーションを支援するシステムとインフォーマルコミュニケーションを支援するシステムについて述べ、本研究の位置づけを述べる。

2.1 会議日程調整支援に関する研究

フォーマルコミュニケーションである会議やミーティングの日程調整を支援するために、様々なシステムや手法が研究・開発されている。

Beard らは、個人の予定管理に広く用いられているカレンダーに習った GUI を導入し、迅速、柔軟に日程調整を行うことができる会議日程調整システム Visual Scheduler を開発した [BPH+90]。このシステムによって、ユーザーはマウスを利用して自身の予定の入力や編集を行うことが可能になった。また、複数のメンバーの予定を、予定の優先度を考慮した枠組みで半透明に重ね合わせて表示することによって、一目で空き時間やミーティングを設定しやすい時間帯を把握することが可能になった。このように、Beard らは今日の会議日程調整システムの GUI の基礎を作ったとえる。

Faulring らは、時間帯ごとに、ミーティングの設定のしやすさを表の明度でユーザーに対して示すことにより、会議日程調整をサポートする手法を述べた [FM06]。この手法では、メンバーがミーティングに参加しやすい時間帯を一目で把握できる他、スケジュールの優先度を考慮した会議日程調整をインタラクティブに行うことができるよう工夫が凝らされている。

Ephrat らは、スケジュール情報を基に会議を日程調整する手法を述べた [EZR94]。彼らの手法は、ゲーム理論を用いることによって会議を行うことができる日時を求める。

また商用グループウェアパッケージの内には、スケジュール管理機能を持つものが多く存在する。例としてサイボウズ [cyb] や Bizca[biz], Aipo[aip] などが挙げられる。これらのグループウェアは、メンバー個人のスケジュール管理やグループ全体のスケジュール管理、会議のスケジュール調整など、グループ内でのスケジュール管理に必要な機能を備えている。

これらの研究は、スケジュール情報を基に相手との接触を支援している点において本研究と関連している。一方で、日程調整を行うことなく相手と接触することを目的としている点において異なる。
2.2 コミュニケーションの機会の創出を目的とした研究

インフォーマルコミュニケーションは、偶然対面したメンバー同士で発生するコミュニケーションである。この点に注目した、顔を合わせる機会を増加させる研究が行われている。

Fishらは、大型スクリーンを用いて分散オフィスの様子を映し出すことによって、偶発的な対話を支援することを試みた [FKC90]。映像は24時間映し出されるが、またFishらは、映像だけでなく音声も双方向で伝わるようにした。

松原は、共有スペースにメンバーが集まり、インフォーマルコミュニケーションへ発展するきっかけとして「言い訳オブジェクト」の概念を提案した [松原03]。松原らは、共有スペースに存在する「もの」を何気なく見ること、さわるなどする行為が共有スペースに働くことや居ることを自然にしているという、ものの「言い訳効果」を見出した。そして、言い訳効果を共有スペースにメンバーを集めるものとして利用することを試みたシステム「サイバー開炉裏」を開発した。サイバー開炉裏には、タッチパネルディスプレイが埋め込まれ、そこに水や泡のエフェクトが表示され、メンバーはこれに触れることができる。このエフェクトが言い訳効果として機能する。松原らは、サイバー開炉裏によって、メンバーを共有スペースに集め、インフォーマルコミュニケーションの機会を増加させることを狙っている。

椎尾らは、共有スペースに人が集まりつつあるということを、個室やパーティションで区切られたスペースにおいて作業をするメンバーに伝えることによって、共有スペースに出向くきっかけを作り出す手法について述べた [椎尾01]。本手法では、人が集まりつつあるということをコーヒーメーカーの利用状態から取得している。またコーヒーの香り風アロマを用いてアンビエンス [IU97] に人が集まりつつあることを伝える。

中野らは、パーティションで区切られた個人スペースにおいて作業をするメンバーに声をかけるためのきっかけとして、「コーヒーを注ぎに行く」という行為に着目した [中野06]。中野らの開発したシステムは、各メンバーのコーヒーの残量をセンシングし、残量が少なくなってきた人を休憩へ移行するかもしれない候補者と判断する。そして休憩移行候補者が誰であるかをメンバー同士で共有する。あるメンバーの声を掛けたい人は、そのメンバーが休憩移行候補者である場合に、コーヒーを注ぐにいくという建前で声を掛けに行く。これによって、作業中のメンバーに対し声を掛ける際の心理的障壁を下げるすることを狙っている。

これらの研究は、各メンバーの様子を互いに共有するという点において本研究と共通する。その一方で、相手に対し議題を伝えることに焦点を当てていない点において本研究と異なる。

2.3 アウェアネスの促進を目的とした研究

インフォーマルコミュニケーションに関連して、アウェアネス（Awareness：気付き、意義）という概念が良く議論される。アウェアネスとは、特別コミュニケーションも含めるジェン性も行わないので、互いどんな状態に今あるか、何をしているかが分かるのを意味する [石井94]。例えば居間や作業状態をメンバー間で互いに共有している状態が例として挙げられる。アウェアネスの促進は、誰がどうコミュニケーションをとるかと思えた時に、相手に声をかけるタイミングを計るために重要である。しかし分散環境においては、アウェア
ネスが不足しかたである。そのため、分散環境におけるアクティグネスの促進に焦点を当てた研究が行われている。

Kuzuoka ならびに遠隔地にいる人に自身が居室にいることを、人の動きによって生じたような伝える手法について述べた [KG99]。この手法では、物理的な距離を離れた 1 つの居室に 1 つずつの人形が設置される。この人形はペアになっている。人形はセンサーデバイスマシンであり、近くに人がいるかどうかを示す。片方の人形の近くを人が通ったとき、もう片方の人形が動く。これによって、自身が人形の近くになっていることを遠隔地にいる相手に伝えることができる。

清水らは、不在および作業状況の情報を、コミュニティスペースに設置されたディスプレイを使って表示するシステムについて述べた [清水 04]。このシステムでは、居場所をアクティプ RFID により取得する。活動状況を、マウス、キーボードおよび特定のソフトウェアの使用状況から取得し推定に用いている。居場所および活動情報は、各メンバーに対応するキャラクターを用いて表現する。

高橋らは、オフィスのライプカメラから取得された映像に、メンバーの活動状況を重畳表示させる手法について述べた [高橋 07, 高橋 09]。この手法では、キーボードやマウスから取得した活動状況を、効果線や模様などによって表し、ライプカメラの映像に重畳表示させる。この手法には、ライブカメラから得ることができる現在のオフィスの様子と各メンバーの活動状況の両方を視覚的に伝える工夫が見られる。また中村らは、KokaCam の関連手法として、「オフィスの脈やかさ」をオフィスに設置されたマイクで取得し、脈やかさの度合いを花火風効果によってライプカメラの映像に重畳表示させる手法の提案と実装を行った [中村 05]。

Sellen らは、メンバー間でメンバーの現在地や状況を共有するためのシステムを示した [SEIH06]。システムは、現在地をモバイル端末によって自動取得する。またメンバーは、端末にあらかじめ用意された選択肢から、自身の現在の状況を入力できる。これらの情報は、居場所に設置された時計メタファの情報共有用端末に表示される。

これらの研究は、分散環境において相手とコミュニケーションを取るためのタイミングを計る情報を提供するという点において共通する。一方で、議題があることを明示的に伝える手段が用意されていない点は本研究と異なる。
第3章 DCOCa の設計

本章では、メンバー間にて在室傾向の共有を行うためのシステム「DCoCa」の設計を示す。システムが満たすべき要件を示し、要件に従ってシステムの設計を行う。

3.1 システムが満たすべき要件

別の居室のメンバーとの接触を試みる場合、まず知る必要があることは相手が在室しているかどうかである。相手が在室している場合、その時点で居室を訪れると接触できるからである。しかし、相手が不在である場合は、いつ居室を訪れるか良いタイミングを計る必要がある。タイミングを計るための情報として、「何時に居室にやって来て何時に帰宅するか」、「相手はいつも何時から何時までに居室に滞在するか」などの在室傾向をメンバー間において共有することが有効であると考えた。なぜならば、在室傾向を共有することによって、相手が在室しているであろう時間帯を推測できるからである。在室傾向を共有するためには、以下に示す3点の要件を満たすシステムを設計する必要がある。なお、在室情報を、「居室を出入したメンバー」、「居室を出入した日時」、「出入後の居場所」によって構成される情報であると定義する。また在室情報の履歴を在室履歴と定義する。

- 在室情報の記録を行う。
- 在室履歴を、在室傾向が分かるように可視化する。
- 可視化された在室履歴をメンバーが閲覧できるようにする。

3.2 システムの設計

示した要件を満たすようシステムの設計を行った。具体的には、各居室の出入口にタッチディスプレイを備えた端末を設置することにした。居室の出入口はメンバーならば誰もが通る場所である。出入口に端末を設置することによって、メンバーは居室への出入りのついでに端末の画面を見ることができる。このため、メンバー間における在室傾向の共有が促進されることを考える。また端末によって、メンバーは居室を出入する際に居場所の変更を行うことが可能になる。各居室に設置された端末は在室履歴を同期する。これによって、分散環境においてもメンバー間で在室傾向の共有が可能になると考えられる。居室の出入口に端末を設置することにはメリットがある。IC カードによる認証や生体認証を用いた電子ロックシステム
3.3 端末ソフトウェアのインタフェース設計

3.3.1 居場所の変更インタフェース

メンバーが端末を用いて認証操作を行うと、数秒間・居場所の一覧が表示される。メンバーは出入後の居場所を一覧から選んでタッチすることによって変更する。居場所の変更操作が行われると、変更後の居場所、変更操作を行ったメンバーおよび変更された日時が在室情報として在室履歴に追加され、各居場間で共有される。

3.3.2 在室傾向を示す手法

人は1日を基準に生活を行うため、居室に在室する時間帯には1日ごとに周期性があるはずである。従って、周期性を強調する可視化手法をメンバー1人分の在室履歴に適用することによって、そのメンバーの在室傾向を示すことができると考えた。そこで在室履歴の可視化にCarlisらの手法[CK98]を適用した。Carlisらの手法は、周期性を持つ時系列データを式$r = a \theta$で定義されるアルキメデスのうずまき状に配置することにより周期性を強調する可視化手法である。図3.1に、可視化された在室履歴を示す。1周を1日分に対応させ、合計7日間の在室履歴を可視化する。一番外側の周が7日間のうち最新の日付にあたる。また、スパイラルの一回下が0時に対応する。

うずまきの円周長は円の半径に比例する。よって、うずまき上に時間軸を配置すると、外側の周ほど時間解像度が高くなる。直近の在室履歴は詳しく表示されるべきであると考えられるため、在室履歴の可視化にあたって、うずまきの中心から外側に向かって新しいデータが表

![図3.1: アルキメデスのうずまき](image-url)
示されるように時間軸を配置することにした。在室履歴の利用方法として、あるメンバーと接触したい場合に在室履歴を参照することが考えられる。例えば、接触したいメンバーが昼に外出中であった場合に、いつ戻ってくるのかを推測したいとする。居室を出した時刻と、そのメンバーが普段昼食にどれくらい時間をかける傾向があるかを知ることができれば、例えば1時間ほどして戻ってくるだろうという推測を行うことができる。このような推測を行う場合には、より詳細に時刻を把握できる、解像度の高い情報が提示された方が望ましいと考えられる。このように時間軸を配置することによって、全体を俯瞰表示しつつ直近の情報を詳細に表示することが可能となる。

3.3.3 在室傾向の閲覧インタフェース

在室傾向の閲覧インタフェースは、各メンバーの可視化された在室履歴を1画面に並べるものである。このインタフェースは端末のタッチディスプレイに常時表示される。
第4章 DocoCaの試作と評価

本章では、第3章の設計を基に作成したDocoCaの試作システムについて述べる。また試作システムの評価についても述べる。

4.1 システム構成

図4.1にDocoCaのシステム構成を示す。システムは、各居室に設置された端末とシステム全体で1台のデータベースサーバによって構成される。ICカードにFeliCa1を用いた。FeliCaを用いた理由は、携帯電話にはFeliCaを搭載したものが多いためである。携帯電話は日頃から持ち歩けるものであるため、メンバーは認証の際に素早く携帯電話を取り出すことが可能である。

端末1台は、PC、タッチディスプレイ、ディスプレイスタンド、FeliCaリーダ・ライタであるSonyRC-S3202によって構成される。図4.2に端末の外観を、図4.3に端末ソフトウェアのスクリーンショットを示す。

図4.1: DocoCaのシステム構成

図4.2: DocoCaの外観

1http://www.sony.co.jp/Products/felica/
2http://www.sony.co.jp/Products/felica/business/products/RC-S320.html
図4.3: 端末ソフトウェアのスクリーンショット

4.2 端末のインタフェース

メンバーは、タッチディスプレイを用いて在室履歴の閲覧や居場所の変更を行う。図4.4に
居場所の変更操作を示す。メンバーがICカードをリーダにかざすと、端末のタッチディスプ
レイに、DOCoCaに入力することのできる居場所の一覧が表示される。目的の居場所をタッ
チすることによって、居場所を変更する。登録されている居場所には、居室名の他に場所以
外のもも含めた。具体的には、「外出中」、「会議中」、「帰宅」の3つである。これは、居場
所の入力が手動にて行うため、活動情報を含むような居場所の入力が可能になるためである。
次に図4.5にメンバー一人分の表示を示す。一人分の表示は、そのメンバーの氏名、可視化
された在室履歴と、そのメンバーの現在の居場所によって構成される。現在の居場所は接触
を計る際に重要な情報である。しかしこうずまき中から現在の居場所を確認するためには、う
ずまき中の現在の時刻に対応する場所を探す必要があるため、一目で確認が難しい。そこで
うずまきの下部に、現在の居場所を表示することにした。

在室履歴の可視化には、表4.1に示す色の対応を用いた。アクティブな状態を表す居場所
ほど膨張性の高い色を割当て、非アクティブな状態を表す居場所ほど収縮性の高い色を割当
てた。この割当てにより、アクティブな状態を表す居場所を強調することができる。

表4.1: 居場所と色の対応

<table>
<thead>
<tr>
<th>居場所</th>
<th>会議中</th>
<th>作業場所</th>
<th>外出中</th>
<th>帰宅</th>
</tr>
</thead>
<tbody>
<tr>
<td>色</td>
<td>赤</td>
<td>緑</td>
<td>灰</td>
<td>紺</td>
</tr>
</tbody>
</table>
4.3 端末ソフトウェアの実装

端末ソフトウェアは、.NET Frameworkを上に動作する。また、FeliCaリーダ・ライダを制御するために、felicalibを用いた。在室情報を記録するためにMySQLを用いた。図

4.1 に示すように、メンバーが各端末において居場所の入力操作を行うと、データベースサーバに居場所情報が記録される。また、各端末はデータベースサーバから在室履歴を取得し可視化を行う。

4.4 運用による評価

DOCoCa を実際に稼働させて在室履歴の収集を行った。登録メンバーは、21 歳から 32 歳までの、同じ研究室の同じ研究グループに所属するコンピュータサイエンスを専攻する学生 11 名であった。なお、この 11 名には著者も含まれる。端末は、ユーザが作業拠点としている、同じ棟内の 10 階と 12 階にある居室 2 か所の出入口付近に設置された。8 名の活動拠点は 10 階、3 名の活動拠点は 12 階であった。稼働開始日は 2009 年 7 月 1 日であった。そして 2009 年 11 月にアンケートの収集を行った。

アンケート収集とその結果

端末がどのように利用されているか調べるために、7 名からアンケート収集を行った。得られたコメントを以下に示す。

操作に関するコメント

A1 居室に入る時に操作を忘れることが多かった。居室から出る時は操作した。
A2 自分が入力を忘れると、他人も同じだ、と思っててしまう。
A3 ちょっとそこまで行く程度では、ざわざわ居場所を変えなくて良いと思い操作しなかった。

端末の表示の利用に関するコメント

B1 電話の取り次ぎをしたい時や人が訪れてきた時に、他のメンバーの居場所を見ただけで、操作ミスが多いためあまり参考にはならなかった。
B2 研究室にいない人の現在の状態を推測するために、可視化された在室履歴を利用した。
B3 夜に研究室において 1 人で作業をしている時に、他の居室にメンバーがいることを確認し、安心感を得ることが多かった。

在室履歴からの気付きに関するコメント

C1 自分の行動にはパターンがあることに気付いた。
C2 自分の生活が乱れていないかの確認に利用した。また、実際に不規則であることが分かった。
その他得られたコメント

システムの運用中に、以下に示すコメントをインフォーマルな形式で得た。

D1 自分の作業機が出入口から遠いため、端末をもっと近い場所設置してほしい。
D2 在室情報を自動的に記録するようにしてほしい。

4.4.1 評価結果の考察

A1 から A3 に示すように、変更操作忘れに関するコメントが多く得られた。評価においては、端末は退室時に良く見える位置に設置された。しかし逆に、その位置は入室時にはあまり目につかない位置であった。この結果操作忘れが起こったと考えられる。また操作忘れに関連するコメントとして B1 が挙げられる。B1 から操作忘れの常態化によって可視化された在室履歴が信用されてなくなったということが分かった。ただし、B1 から B3 のコメントに見られるように、端末は他のメンバーと接触したい時や他のメンバーの状態を確認したい時に利用された。

C1, C2 は在室傾向の理解に関するコメントである。図 4.6 にて、在室傾向に規則性のあるメンバーと不規則なメンバーの在室履歴の可視化例を示す。この図の例のように、在室傾向が規則的かどうかを一目で確認することができる。従って、可視化した在室履歴をメンバー間で共有することによって、普段は気に留めていない在室傾向に気付くことができると考えられる。さらに他のメンバーの在室傾向を気付かせる以外にも、自身の在室傾向、すなわち生活の習慣を振り返らせる効果も考えられる。

D1 から、端末の設置場所として、各メンバーの作業機からできるだけ近い共有スペースが適していることが分かった。D2 は、居場所の変更操作の煩わしさに関するものである。電子ロックシステムに DOCaCa を組み込んだ場合は、解錠操作と統合できるため操作忘れも操作の煩わしさも問題にならないと考えている。しかし著者の所属する研究室はこのような環境ではない。このため操作忘れや操作の煩わしさが問題となった。

以上の考察から分かったことを以下に挙げる。

- 可視化された在室履歴によって在室傾向を共有できること
- 端末の設置場所として適切な場所は各メンバーの作業機から近い共有スペースであること
- 在室情報の記録を自動化する必要があること
図 4.6: 習慣に規則性のあるメンバーと規則性のないメンバーの表示
第5章 IrukaBoard の設計

本章では、セミフォーマルコミュニケーションを支援するシステムの設計について述べる。まず初めにシステムが満たすべき要件と設計方針を示す。次に、要件、設計方針および第4章にて得られた改良すべき点に従いシステムの設計を行う。

5.1 システムが満たすべき要件

本システムにて支援するタスクは「分散環境において、都合の良い時ならばいつでも構わない用件にて相手と接触する」ことである。このタスクは以下の2通りの場合に分けることができる。

相手から自身に接触してほしい場合 必要な書類を持ってきてほしい場合や不調である自身のPCを診てほしい場合など、相手から接触してほしい場合である。この場合、相手に用件と自身の都合の良い日や時間帯を伝えることができれば良い。また書類に縛め切りがある場合や数月中に話をしたい場合など、期限に希望がある場合は、期限も伝える必要がある。また相手は複数の場合や不特定の場合もあり得る。不特定な場合には、例として食事に行きたい人を募る場合が挙げられる。

自身から相手に接触したい場合 相手に業務について分からないことを聞きに行きたい場合や書類を持っていきたい場合など、相手のところへ会いに行きたい場合である。この場合、相手がいつ都合がよいかを知ることができれば良い。ただし、相手に用件や自身の都合の良い日、時間帯、議題の期限を伝えておくことによって、相手からの接触を望むことができる。

以上の考察から、システムが満たすべき要件を以下のように定める。

- 相手に議題、期限を伝えることができる。
- 相手と都合の良い日や時間帯を共有できる。

5.2 システムの設計方針

5.1節において述べたタスクのみに利用シーンが限定されるシステムは、システムの利用者にとってメリットが限定的である。そこで、要件を満たしつつ、汎用的に利用できるシステムとなるよう設計方針を定める。
議題は、用件として相手に伝えることができる。そこで議題以外にも、用件を自由なメッセージとしてやり取りできるようにする。

積極的にメッセージのやりとりを行わなくてもシステムの画面を眺めることでメリットが生まれる。これによってメッセージの共有を促す。

システムを容易に利用できるようにする。そのためにメッセージや日時、時間帯の入力の手間を少なくする。また各情報の閲覧の手間を少なくする。

5.3 揭示板システムを用いた用件の共有

用件をメッセージとして相手と共有するために、本研究では伝言を用いる。伝言は、相手に用件を伝えることを目的として、相手と直接やりとりを行うことができない場合に行われる間接的なコミュニケーション方法である。伝言には、メッセージを仲介する手段として、人によって伝える方法や書き置きを残す方法、Webサービスやグループウェアなどシステムを用いた電子的な方法など様々なものが考えられる。本研究では、メッセージを仲介する手段として「電子的な伝言掲示板システムを構築し、システムの端末を居室の共有スペースに設置する」という方法をとる。なおこの端末を「IrukaBoard 端末」と呼ぶ。目につきやすい場所にIrukaBoard 端末を設置することによって、仕事に集中力が切れたときや通りがかったときなど、ちょっとしたタイミングでも気軽に伝言を見ることができるようになる。また個人のPCや携帯端末を用いてシステムにアクセスする必要がないため、PCや携帯端末を用いないような作業を行っている時にもシステムの利用が可能である。次に伝言のメッセージを表す手段について述べる。用件を表す手段として、手書き文字による表現や音声による表現、テキストによる表現などが考えられる。本研究では、用件を、8文字以内の文字列を2つまで用いることによって表現する。これは表現できる用件の内容を限定し単純化することによって気軽にメッセージ入力を可能にするためである。このような表現の幅を限定する手法はTwitter1にも見られる。この8文字以内の文字列1つをタグと呼ぶ。

1つの伝言は、以下の4つの属性を持つ。

入力者 伝言を入力したメンバーの氏名である。
宛名 メッセージを伝えたい相手の氏名である。複数人の氏名が指定される場合や、宛名が指定されない場合もありうる。
用件 メッセージである。タグ2つまででメッセージを表現する。
期限 メッセージの期限である。

1http://twitter.com/
5.4 スケジュール情報と在室履歴の閲覧インタフェース

伝言を入力する度に、都合の良い日や日時を入力することは手間である。そこで2つの情報
を閲覧できるようにする。1つ目はスケジュール情報である。あらかじめ不在にする日時
が明るかである情報は、タイミングを計る上で重要だからである。しかし、居宅にやってく
る時間や帰宅時間など、日常の行動をスケジュール情報として定めることは手間である。そ
こで2つ目の情報として、在室履歴も閲覧可能とする。在室情報に第3，4章において述べた
DOCoCaの可視化手法を適用することによって、在室傾向を示す。これら2つの情報によっ
て、各メンバーの「空いている日時」の推測が可能となる。

図5.1にスケジュール情報と在室履歴の閲覧インタフェースを示す。このインタフェースは、
指定したメンバーのスケジュール情報と在室情報の履歴を閲覧するためのインタフェースで
ある。本インタフェースの左側は、指定されたメンバーのスケジュール情報を示す。右側は、
在室履歴を示す部分である。

図5.1: スケジュール情報と在室履歴の閲覧インタフェース

5.5 在室判定サブシステムによる在室情報の自動記録

DOCoCaでは、手動による在室情報の記録がメンバーの操作に依存していたため、操作忘
れや手間の点において問題があった。そこでIrukaBoardでは、在室情報の記録を自動化する
ためのサブシステムを構築する。

5.5.1 メンバーの存在検知を行う方法の検討

自動で在室判定を行う場合、メンバーを識別するためのIDとして用いることができるデ
バイスをメンバーに持たせ、そのIDをセンシングすることによって在室しているか不在で
あるかの判定を行うことができる。IDとして用いるデバイスには、RFIDタグを用いる方法

18
[清水04, MIT09], 無線LANインタフェースを用いる方法[山田09, KHNFO5], Bluetooth2インタフェースを用いる方法[新井08, 勝野03]などが考えられる。表5.1にそれぞれの方法の特長を比較したものを示す。

<table>
<thead>
<tr>
<th>ID</th>
<th>特徴</th>
<th>価格</th>
</tr>
</thead>
<tbody>
<tr>
<td>アクティブRFID</td>
<td>モバイル機器に組み込まれていることはあまりない</td>
<td>高価</td>
</tr>
<tr>
<td>無線LAN</td>
<td>モバイル機器端末に搭載されていることが多いため</td>
<td>安価</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>モバイル機器に搭載されていることが多い</td>
<td>安価</td>
</tr>
</tbody>
</table>

本研究ではBluetoothインタフェースを用いることにした。理由は2つである。1つ目は、システムの構築にかかる費用が安価である。という点である。この点は無線LANインタフェースを用いる方法も同様である。2つ目は、著者の所属する研究室では、iPhone3や携帯電話などBluetoothインタフェースを備えた携帯端末の所持率が高かったことである。これらの携帯端末は、移動の際は持ち歩くことが多いため、正確に在室判定を行うことができた。また、携帯端末は頻繁に充電が行われるため、バッテリー切れの心配が少ない点もBluetoothインタフェースを利用する際の利点である。

[新井08, 勝野03]において提案されている方法は、応答速度が求められる場合や、デバイス間の距離を測定する必要がある場合が考慮されている。しかし本研究では、一定時間ごとに、居室内にいるメンバーを検知できれば良いため、独自のアルゴリズムを用いて在室判定サブシステムを実装した。

5.5.2 Bluetoothデバイス的存在検知

Bluetoothとは、Bluetoothインタフェースを搭載したデバイス（Bluetoothデバイス）同士で無線通信を行うための規格である。Bluetoothインタフェースには、デバイスごとに固有のIDとして16進数12桁の整数が割り当てられている。Bluetoothには、通信可能な範囲に存在するBluetoothデバイスを検知するコマンドが用意されているため、IDをメンバーごとに割り当てることによって、メンバーの在室判定を行うことができる。

Bluetoothデバイスの存在検知を行うためのコマンドはいくつか用意されている。その中でも、InquiryコマンドとRemote Name Requestコマンドの2種類のコマンドを検討した。以下に各コマンドを比較する。

Inquiryコマンド 検出可能な範囲内に存在するBluetoothデバイスを探索するためのコマンドである。ただし、検出される側のBluetoothインタフェースの電源が入っている他、接続待ち状態に設定されていなければならない。常に接続待ち状態に設定できるBluetooth

1 http://www.bluetooth.com/
2 http://www.apple.com/jp/iphone/
デバイスは、PCや一部の携帯電話など限られており、マウスやヘッドセットなど大半の機器はペアリングに必要な僅かな時間のみ接続待ち状態に設定できる。このため、在室状態を判定するためのIDとしてメンバーに持たせるには制限がある。

Remote Name Requestコマンド検出可能な範囲に、指定したBluetoothアドレスを持つBluetoothデバイスが存在する場合、そのデバイスにつけられたデバイス名を取得するコマンドである。デバイス名の取得に成功した場合、デバイスが検出可能な範囲に存在すると判断できる。Bluetoothインタフェースの電源が入っており、そのインタフェースを持つデバイスのBluetoothデバイスのアドレスをあらかじめ把握していれば検出可能である。このためどのようなBluetoothデバイスでも利用可能であり、在室判定サブシステムに用いるデバイスとしては汎用性が高い。

上記の比較から、本研究での在室判定サブシステムにはRemote Name Requestコマンドを利用することにした。

5.6 IrukaBoard端末の設置場所

IrukaBoard端末のハードウェアには、DOCoCa端末からICカードリーダを取り除いたものを用いる。DOCoCaでの知見を活かし、各メンバーの作業場からできるだけ近い共有スペース、例えば居室内の通路や休憩スペースにIrukaBoard端末を設置する。

5.7 伝言の入力インタフェース設計

伝言の入力はタッチディスプレイを用いて行われる。そのため文字の入力方法としてソフトウェアキーボードを用いる。また図5.2に示すように、期限の入力方法として、[Ss04]に見られるようなダイアル風インタフェースを用いる。以降ダイアル風インタフェースのことを「ダイアル」と呼ぶ。元々はペンコンピューティング環境において用いられるインタフェースであるが、指による期限の入力にも応用できると考えられる。

5.8 掲示板の画面設計

掲示板の画面設計を行うに当たって、自身から相手に接触したい場合と相手から自身に接触の依頼がある場合について考察する。自身から相手に接触したい場合は、相手のスケジュール情報、在室履歴などの情報を閲覧できれば良い。すなわち、相手を選択して情報を閲覧できれば良い。一方自身宛に伝言の入力者から接触するよう依頼がある場合は、接触の依頼は伝言を通じて行われる。このため伝言から伝言の入力者の情報を閲覧できれば良い。

図5.3に掲示板の画面設計を示す。掲示板は、「リスト部」と「掲示板部」によって構成される。リスト部はスケジュール情報や在室履歴を閲覧したいメンバーの氏名を選択するための
図 5.2: ダイヤルによる期限の入力

図 5.3: 掲示板の画面設計

インターフェースである。目的のメンバーを選択することによって、スケジュール情報と在室履歴の閲覧インターフェースが表示される。掲示板部は伝言が表示されるインターフェースである。伝言はカード形式によって表示される。図 5.4 に伝言のカードの設計を示す。伝言部および宛名がボタン上に表示される。ボタンを押すと、そのメンバーのスケジュール情報と在室履歴を閲覧することができる。伝言のカードから閲覧する場合は、期限までのスケジュール情報が表示される。これによって期限の確認を行うことができる。
図5.4: 伝言のカードの設計
第6章 IrukaBoard の作成

第5章の設計を元に、伝言掲示板システム「IrukaBoard」の作成を行った。本章ではシステムの構成、機能説明および実装について述べる。

6.1 システム構成

図6.1にIrukaBoardのシステム構成を示す。IrukaBoardはIrukaBoard端末と在室判定サブシステム、およびGoogle Calendar\(^1\)によって構成される。IrukaBoard端末は、各居室の共有スペースに1台ずつ設置される。在室判定サブシステムは、各メンバーが居室に在室しているかどうかを判定し、在室情報を自動記録するシステムである。各居室に1台ずつ設置されるデバイス検知クライアントと、システム全体で1台設置される在室判定サーバから構成される。またGoogle Calendarからは、各メンバーのスケジュール情報を取得する。

図6.1: IrukaBoardのシステム構成

\(^1\)https://www.google.com/calendar/
6.2 IrukaBoard 端末

IrukaBoard 端末のハードウェアは、PC、タッチディスプレイ、ディスプレイスタンドにより構成される。図6.2に端末の外観を示す。図6.3はIrukaBoard端末ソフトウェアの画面の外観である。ソフトウェアのインタフェースは、掲示板部とリスト部によって構成される。掲示板部は伝言の閲覧や入力などを行うための部分である。リスト部は、各メンバーの閲覧するための部分である。

図6.2: IrukaBoard端末の外観

6.2.1 掲示板部のインタフェース

伝言の入力

図6.4に示す、掲示板部右下にある伝言入力ボタンをタッチすると、図6.5に示す伝言入力ウィンドウが表示される。メンバーはこのウィンドウから、伝言の入力者自身の氏名、宛名、
図 6.3: IrukaBoard の画面の外観

用件、伝言の期限を入力する。

図 6.4: 伝言入力ボタン

入力者名の入力 伝言の入力者が、図 6.5 中の「From」欄右にある「選択」ボタンをタッチすると、図 6.6 右に示すようにメンバーの一覧が表示され、入力者名の入力が可能な状態になる。なおこの一覧表示をメンバーリストと呼ぶ。入力者がその中から自身の氏名をタッチすると、From 柱に選択された氏名が入力され、メンバーリストは消える。自身の氏名が一覧にならない場合は、リストのスクロールによって探索が可能である。メンバーリストは、タッチディスプレイ上において指をはじくような操作であるフリック操作を行うことによって、操作した方向へ慣性スクロールを行う。
図 6.5: 伝言入力ウィンドウ

図 6.6: 入力者名の入力

宛名の入力 図 6.5 中の「To」欄右側にある「追加」ボタンをタッチすると、宛名を入力できる状態になる。また追加ボタンは「決定」ボタンに変化する。入力者が伝言を行いたい相手の宛名を選択すると、図 6.7 に示すように、To 欄にメンバーが追加されていく。宛名は 8 人分まで追加することができる。入力者が追加する宛名を間違えた場合は、消去したい宛名をタッチして「消去」ボタンを押すことによって消すことができる。入力終
了後、メンバーが決定ボタンを押すことによって、宛名の入力が可能な状態が終了する。

図 6.7: 宛名の入力

用件の入力 図 6.5 中の「用件」欄右側にある「追加」ボタンをタッチすると、図 6.8 に示すように、用件の入力が可能な状態になる。この状態では、図 6.8 に示されるようにタグのリストが表示される。このリストのことを「タグリスト」と呼ぶ。タグリストにはあらかじめ幾つかのタグがテンプレートとして用意されている。入力者は、テンプレートの中に都合の良いタグがある場合はそれをタッチするだけで追加できる。これによってタグ入力の手間を軽減する。タグリストの操作方法はメンバーリストと同様である。タグの入力は2つまで可能であり、宛名欄と同様に、メンバーが入力を間違えた場合は消去することもできる。

タグリストの中に都合の良いタグがない場合は、図 6.9 に示すように、8文字までの任意のタグを入力することができる。入力者がタグリスト下部にあるテキストボックスをタッチすると、ソフトウェアキーコードが起動する。ソフトウェアキーボードにはフリーウェアである PIGY² を用いた。入力者が「タグ入力」ボタンをタッチすると、「用件」欄にタグが入力される。

期限の入力 入力者は、図 6.5 の「期限」欄に示すダイアルによって期限を設定できる。期限の初期値は現在時刻に一番近い 30 分または 0 分である。例えば現在時刻が 12 時 25 分であれば期限の初期値は 12 時 30 分となる。ダイアルの期限の分解能は 30 分である。ダイアルを回すと期限が 30 分ずつ延長される。メンバーがダイアルを1周回転させると期限が12時間増加する。期限は最長で7日×24時間先、すなわち168時間先に設定で

²http://www.atlantisdo.com/
図 6.8: 用件の入力

図 6.9: ソフトウェアキーボードによる用件の入力

きる。
伝言の表示

掲示板部には、図6.10に示すように、入力された伝言がカード形式で表示される。カードには、入力者の氏名、相手の氏名、タグが表示される。氏名の背景色は、そのメンバーの居場所を表す。居場所と背景色との対応はデータベースサーバーに記録されている。メンバーがどこかの居室に在室中であり、スケジュールが空いている場合は、氏名の周りが赤枠によって強調される。これによって在室中のメンバーを強調する。入力者がどこかの居室に在室中であり、かつ相手の内1人以上がどこかの居室に在室中である場合は、図6.11に示すように、今が接触のタイミングであることが強調される。また期限を過ぎた伝言は、図6.12に示すように、24時間かけて徐々に透明になりながら消えてゆく。期限切れの伝言を一目で判別することができる[塚田02]。また、メンバーの氏名はボタンになっており、タッチするとそのメンバーのスケジュール情報および在室履歴を閲覧することができる。

図6.10: カードの外観　図6.11: 強調されたカード　図6.12: 期限を過ぎたカード

伝言の編集・複製・削除

掲示板部に表示された伝言をダブルクリックすると、図6.13に示すウィンドウが表示される。このウィンドウからは伝言の編集、複製、削除が可能である。例えば重要な用件であることを強調したい場合は、同じ伝言を複製することによって強調することができる。

スケジュール情報および在室履歴の閲覧

選択されたメンバーのスケジュール情報および在室履歴は、図6.14に示すウィンドウに表示される。このウィンドウの左側には、そのメンバーの空き時間を示す表が表示される。緑色で示された部分が空き時間である。この空き時間は、Google Calendarより取得したスケジュール情報から求められる。示される空き時間の期間は、現時刻から伝言の期限の日時までである。現時刻は青い線で表中に示される。また伝言の期限までで空き時間の最後の時刻、すなわちこのメンバーと会うことができる最後のタイミングは、赤い線で表中に示される。
ウィンドウの右側には在室履歴が可視化される。可視化期間は7, 14, 28日から選ぶことができる。可視化期間の選択は、在室履歴下部のボタンから可能である。可視化期間は現在の時刻から、選択した可視化日数分である。

6.2.2 リスト部のインタフェース

リスト部は各メンバーの居場所やスケジュール情報、在室履歴を閲覧するためのインタフェースである。図6.15にリスト部のインタフェースを示す。1画面に表示されていないメンバーは、上下にスクロールすることによって探すことができる。メンバー1人分の表示には、メンバーの氏名と居場所が表示される。それぞれはボタンになっている。氏名をタッチすると、タッチされたメンバー宛の伝言が光ることによって強調される。また居室をタッチすることによって、タッチされたメンバーの在室履歴および1週間分のスケジュール情報が表示される。

6.2.3 端末ソフトウェアの実装

IrukaBoard端末のソフトウェアは、.NET Framework上において動作する。データベースサーバにはMySQLを用いた。MySQLからのデータの読み込みには.NET Framework用の
図6.14：スケジュール情報と在室履歴の閲覧インタフェース

MySQLライブラリであるConnector/NET3を用いた。スケジュール情報の取得にはGoogle Data API4の.NET Framework用ラッパーを用いた。

6.3 在室判定サブシステムの実装

在室判定の流れは以下の通りである。

各メンバーが最後に発見された居室と日時の記録。居室ごとに設置されたデバイス検知クライアントは、各メンバーに対応するBluetoothデバイスが検知可能な範囲内に存在するかどうかをn_1分ごとに判定する。すなわち、居室ごとに、現在在室中メンバーは誰であるかをn_1分ごとに調べ、判定に用いられるアルゴリズムはAlgorithm 1に示す通りである。Algorithm 1は、n_1分ごとに実行される。なおAlgorithm 1は、各メンバーに対して1度ずつAlgorithm 2を実行する。発見されたメンバーについては、発見された居室と日時と発見された居室をデータベースに記録する。これによって、各メンバーが最後に発見された居室と日時がデータベースに記録される。

3http://dev.mysql.com/doc/refman/5.1/ja/connector-net.html
4http://code.google.com/intl/ja/apis/gdata/index.html
Algorithm 1 在室検査クライアントの手続き

for all member : 全てのメンバー do
 if member に対応するデバイスが発見された (Algorithm 2 において判断) then
 データベースにデバイスが発見された日時と場所を記録する
 endif
endfor

Algorithm 2 デバイス検知アルゴリズム

if member に対応するデバイスを発見した then
 return true
else
 return false
endif

各メンバーの現在の在室状態の判定 在室判定サーバは n2 分ごとに、各メンバーが最後に発見された居室と目時を基にして、各メンバーの在室状態を判定する。あるメンバーが最後に発見された日時と現在の差が n3 分よりも大きい時、そのメンバーの現在の在室状態を「居室外」と判断する。 n3 分以下の場合、そのメンバーの現在の在室状態
を、「最後に発見された場所に在室中である」と判定する。判定結果はデータベースに記録される。在室状態の判定に用いられるアルゴリズムは、Algorithm 3 に示す通りである。Algorithm 3 は n_2 分ごとに 1 度実行される。なお、Algorithm 3 は、各メンバーに対し Algorithm 4 を 1 度ずつ実行する。

Algorithm 3 在室判定サーバの手続き

| for all member: 全てのメンバー do |
| member の在室状態を記録する（Algorithm 4 によって判定） |
| endfor |

Algorithm 4 在室状態判定アルゴリズム

| if 現時時 - member に対応するデバイスが最後に発見された日時 > n_3 分 then |
| if member の在室状態 ≠ 居室外 then |
| return 居室外 |
| else |
| return member の在室状態 |
| endif |
| else if member の在室状態 ≠ member に対応するデバイスが最後に発見された場所 then |
| return member に対応するデバイスが最後に発見された場所 |
| else |
| return member の在室状態 |
| endif |

6.3.1 デバイス検知クライアントの実装

まずデバイス検知クライアントのハードウェアについて説明する。デバイス検知クライアントは、Ubuntu を搭載したマシンと Bluetooth アダプタによって構成される。Bluetooth アダプタには、居室の大きさを考慮し class 2 に対応したものを用いた。次にデバイス検知クライアントのソフトウェアについて説明する。Algorithm 1, 2 を実行するソフトウェアをシェルスクリプトによって実装した。Bluetooth スタックには、Unix 向けの Bluetooth スタックである BlueZ を用い、デバイスの存在検知には、BlueZ 付属のコマンドである hcitool を用いた。また Algorithm 1, 2 が実装されたスクリプトは、crontab によって実行される。

http://www.ubuntulinux.jp/

Bluetooth にはクラスという概念が規定されている。クラスは電波強度を規定したもので、class 2 はデバイスを検知可能な範囲がアダプタを中心として半径 10m 前後である。

http://www.bluez.org/

hcitool に特定とオプションを指定して実行すると、Remote Name Request コマンドが実行される。

crontab は、指定したコマンドの定期的な実行をスケジューリングするために用いるコマンドである。

33
2分ごとに実行される。すなわち $n_1 = 2$ と設定した、ということである。

6.3.2 在室判定サーバの実装

在室判定サーバのハードウェアには、Ubuntu を搭載した計算機を用いた。Algorithm 3, 4 を実行するソフトウェアを PHP\(^{10}\) によって実装した。理由はデータベースサーバとの連携を行うためのインタフェースが充実しているためである。なお、$n_3 = 2$ として実装した。このソフトウェアは、crontab によって1分ごとに実行される。すなわち $n_2 = 1$ と設定した、ということである。

\(^{10}\)http://www.php.net/
第7章 試作 IrukaBoard システムの評価

本章では、試作システム IrukaBoard の評価について述べる。評価の目的は、試作システムがどのような利用のされ方をするかを明らかにすることと、セミフォーマルコミュニケーションがシステムによって支援されるかを確認すること、およびシステムの設計に関する改良点を見つけることである。

まず評価を行う前に、著者が所属する研究室にて試作システムを運用し、メンバーに1ヶ月間システムを使用してもらった。その後アンケートを中心としたシステムの評価を行った。本章では、システムの運用とその後の評価、および評価結果について述べる。

7.1 システムの運用環境

2010年12月3日から著者の所属する研究室において IrukaBoard の運用を行っている。システムへの登録メンバーは、著者の所属する研究室のメンバーの内、著者と同じ研究グループに所属するメンバー11名と、著者とは別の研究グループに所属するメンバー5名の計16名である。各メンバーが所属する居室は1つの研究棟の10階と12階の2箇所に分かれている。以降10階の居室を居室A、12階の居室を居室Bと呼ぶ、また各居室の色の割り当てを表7.1に示す。

表7.1: 居室と色の対応

<table>
<thead>
<tr>
<th>居室 A</th>
<th>居室 B</th>
<th>居室外</th>
</tr>
</thead>
<tbody>
<tr>
<td>緑</td>
<td>オレンジ</td>
<td>紺</td>
</tr>
</tbody>
</table>

17名の内、著者と同じ研究グループのメンバー4名は居室Bに所属している。4名の内1名は著者である。残りの13名は居室Aに所属している。著者の所属する研究室にはコアタイムは設定されておらず、各々の都合の良い日や時間帯に作業を行う環境である。また各研究グループには週2、3度ゼミが設定されている。

居室Aには、IrukaBoard端末が複合機の隣に設置された。この位置は居室内の通路であり、登録メンバーの通路になっている。居室Bには居室の出入口付近に端末が設置された。居室Bでは、各メンバーの作業機から最も近い共有スペースが出入口付近だったからである。図7.1、7.2に各居室の見取り図を示す。

またデバイス検知クライアントは、各居室に設置されたIrukaBoard端末のPC内にインス
図7.1: 居室Aの見取り図

図7.2: 居室Bの見取り図

トールされた仮想マシンを利用した。仮想マシンにはOracle 社のVirutualBox\(^1\)を利用した。

\(^1\)http://www.virtualbox.org/
7.2 評価1

評価1の目的は、スケジュール情報および可視化された在室履歴を提示することによって相手と接触するタイミングを計ることができるかどうかを検証することである。被験者はシステムに登録されたメンバーアの内、著者と同じ研究グループに所属する10名である。なお著者は被験者に含まれていない。この評価の1タスクは2名1組で行う、1組のメンバーの内片方の被験者を被験者A、もう片方の被験者を被験者2とする。1タスクの手順を以下に示す。

手順1 稼働中の端末を用いて、被験者2のスケジュール情報および在室履歴を被験者Aに提示する。

手順2 被験者2が居室Aまたは居室Bに在室しているであろう日時を、以下に示す条件下にて被験者1に予測してもらう。

- 実験日の次の平日から3日以内で予測
- 9:00から20:00までの時間帯で予測
- 時間は30分単位で予測

被験者10名が被験者1と被験者2の両方を1度ずつ行うように組を作成し、合計10タスクを行った。組を作る際、1度目と2度目で別のメンバーと組になるように配慮した。
またタスク中、各被験者1が予測する様子を観察した。

7.2.1 結果

図7.3に、被験者2ごとの予測結果の正解率を示す。なお、被験者1に予測してもらった時の10分前から10分後までの20分の間に、被験者2が5分以上在室していた場合に、その予測を正解とした。また居室に在室していたかどうかの判断を、在室判定サブシステムによって記録されたデータを用いて行った。

7.2.2 考察

被験者2ごとにばらつきが見られた。変則的な生活を送っている被験者2ほど正解率が低いと考えられる。この点は過去の在室履歴に頼った予測を行いわけ本研究の限界である。規則的な生活を送っている被験者2ほど接触を計るための情報として、スケジュール情報および在室履歴が有効であることが分かった。
観察結果から、各被験者1は、スケジュール情報と在室履歴を交互に見て予測を行うことが分かった。また被験者1の一部からは、「曜日ごとの在室履歴を見たい」という意見が得られた。以上の結果から、スケジュール情報に在室履歴を重畳表示させるインタフェースに改良することが考えられる。
図 7.3: 予測結果の正解率

7.3 評価 2

評価 2 の目的は、伝言入力インタフェースの設計が、手軽な伝言入力インタフェースとして妥当であるかどうかを検証することである。12月3日の運用開始から約1ヶ月間被験者16名に自由にシステムを利用してもらった後アンケートに回答してもらった。アンケートの各設問は、リッカート尺度を用いた4段階評価であった。1, 2点を否定的、3, 4点を肯定的評価に割り当てた。アンケートの各設問を以下に示す。

設問 1 伝言の入力を思いついた時に手軽に行うことはできましたか？

設問 2 氏名の入力は簡単でしたか？

設問 3 タグの入力は簡単でしたか？

設問 4 タグは2つで充分でしたか？

設問 5 タグの長さは8文字以内で充分でしたか？

設問 6 期限の入力は簡単でしたか？

また各設問の後、自由記述形式によりコメントを記述してもらった。

7.3.1 結果

図7.4、表7.2に評価2の結果を示す。なお、図7.4の縦軸は各設問ごとの評価の平均点であり、エラーバーは各設問ごとの表示の標準偏差を示す。
表 7.2: 各設問ごとの平均・分散・標準偏差

<table>
<thead>
<tr>
<th>設問</th>
<th>平均</th>
<th>分散</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>設問 1</td>
<td>3.444</td>
<td>0.2469</td>
<td>0.4969</td>
</tr>
<tr>
<td>設問 2</td>
<td>3.889</td>
<td>0.0988</td>
<td>0.3143</td>
</tr>
<tr>
<td>設問 3</td>
<td>2.556</td>
<td>0.6914</td>
<td>0.8315</td>
</tr>
<tr>
<td>設問 4</td>
<td>3.111</td>
<td>0.9877</td>
<td>0.9938</td>
</tr>
<tr>
<td>設問 5</td>
<td>3.333</td>
<td>0.4444</td>
<td>0.6667</td>
</tr>
<tr>
<td>設問 6</td>
<td>3.556</td>
<td>0.4691</td>
<td>0.6849</td>
</tr>
</tbody>
</table>

図 7.4: 評価 2 の結果

7.3.2 考察

設問 1 および設問 2 の結果から、伝言の入力全体および氏名の入力方法に関しては、手軽さの点において高評価を得たことが分かる。ただし設問 2 に関しては、「目的の氏名を探す作業が面倒である」というコメントが得られた。現在のメンバーリストの実装では、氏名が表示される順序に基準がない。また、インデックスの表示を行う機能もメンバーリストには実装されていない。そのため氏名を探すための手がかりがなく、氏名を探す作業が手間に感じられたと考えられる。よってメンバーの探索を行いやすいインターフェースにメンバーリストを改良する必要がある。この点は、タグリストに関しても同様のことが言える。

設問 3 から設問 5 は、用件の入力に関する設問である。設問 3 の平均値は肯定的でも否定的でもない結果となった。設問 4 の平均値は肯定的な結果となった。両設問とも分散が比較的大きかった。設問 3 については、標準偏差の値から、否定的な評価をしたメンバーも存在したことが分かる。理由として、ソフトウェアキーボードとタッチディスプレイとの間に相性の問題があり、誤入力が頻発したことが考えられる。「ソフトウェアキーボードが使いにく
い」というコメントが3人の被験者から得られたことも、この理由を裏付けています。従って、文字の入力方法を検討する必要がある。設問4については、「3つのタグを入れるようとして入れられなかった」というコメントを反映している。しかし、「軽いコミュニケーションのためならタグの数が少なくてもうまく利用できた」「制限のために逆に面白い表現ができた」というポジティブな意見も得られた。設問5の結果は、設問3、4と比べると肯定的である。文字数制限に関しては、「簡略で良い」というポジティブな意見が得られた一方、「大切な情報を書きたい時に文字数が足りず困った」というネガティブな意見も得られた。以上の結果から、タグの数、文字数をそれぞれ幾分か増やす必要があることを分かった。また、他のタグの入力に関して、「テンプレートに利用したいタグがなく、毎回手動入力するのが手間であった」「最近手動入力されたタグを再利用したい」というコメントが得られた。したがって、テンプレートを追加する機能や良好利用されるタグの推奨機能などを実装する必要があると考えられる。

設問6の結果は概ね肯定的であった。「ダイアルを気持よく操作できた」「期限の入力方法が良かった」というポジティブなコメントが得られた一方、「日付先に期限を設定するときに、何周も回さなければならないため面倒しかった」というネガティブなコメントが得られた。改良案として、周回数の増加に合わせて、増加させることができるように期間を大きくすることが考えられる。

7.4 評価3

評価3は、実験環境においてシステムの利用のされ方を検証することを目的とする。評価2と同じように、12月3日から約1ヶ月間の運用後、被験者10名に対し、システムの利用シーンについて自由記述形式にて回答してもらった。また、各利用シーンについて、以下の項目について役立ったか役立たなかったかをたずねた。

- 伝言
- スケジュール情報
- 在室履歴
- 居場所

システムの良い点、悪い点を自由記述によってコメントを収集した。

7.4.1 結果

運用期間のうち、2010年12月8日から2011年1月7日までの伝言入力回数の集計結果を7.3に、日ごとの伝言入力回数を図7.5に示す。なお休日日数は、土、日、祝日の9日間の他に、大学の正月休みである2010年12月29日、30日、31日、2011年1月3日4日間を含む。

また伝言の内容を基に3つに分類し、分類ごとに伝言数の集計を行った、各分類とメッセージの例を以下に示す。
表 7.3: 結果の集計

<table>
<thead>
<tr>
<th>期間</th>
<th>2010 年 12 月 8 日 ～ 2011 年 1 月 7 日</th>
</tr>
</thead>
<tbody>
<tr>
<td>日数</td>
<td>31 日</td>
</tr>
<tr>
<td>平日日数</td>
<td>18 日</td>
</tr>
<tr>
<td>休日日数</td>
<td>13 日</td>
</tr>
<tr>
<td>伝言入力回数（期間合計）</td>
<td>64 回</td>
</tr>
<tr>
<td>伝言入力回数（平日合計）</td>
<td>60 回</td>
</tr>
<tr>
<td>伝言入力回数（休日合計）</td>
<td>4 回</td>
</tr>
<tr>
<td>平日 1 日の伝言平均入力回数</td>
<td>3.333 回</td>
</tr>
<tr>
<td>休日 1 日の伝言平均入力回数</td>
<td>0.3077 回</td>
</tr>
</tbody>
</table>

図 7.5: 日ごとの伝言入力回数

接触の要求: 21 件 相談ごとの依頼や係の仕事に関する招集、食事の誘いなど相手に接触を求める内容の伝言

- 「原稿」「相談」
- 「買い物」「いつも行く」
- 「ご飯」「行こう」

通知: 15 件 自身の状況や電話がかかってきたことなど、接触を求めず、相手に伝えるべきことがある場合に入力された伝言
・「せみなー」「いくらも」
・「携帯」「なってた」

その他: 28件 上記2つ以外の伝言
・「頭がつらい」
・「風」「強い」
・「お疲れ」「休日に」

図7.6に、全伝言数に占めるカテゴリーごとの伝言数を示す。

図7.6: 分類ごとの伝言数

7.4.2 考察
伝言の入力回数の結果から、平日に数回程度の入力が行われたことが分かった。この状態が1ヶ月程度続ったことから、少なくとも導入から1ヶ月程度は継続的に利用されたことが分かった。このことは、以下に示すコメントがあったことからも伺える。

・プリントの横にあると印刷の待ち時間にちょっと触ることができた。
・他人が伝言によるコミュニケーションをとっているのを見て、自分も参加したくなった。
・Twitterのように、制限があるゆえの発信しやすさのようなものがあると思った。
・なんとなく他の人の在室履歴や居場所が気になって見てしまう。
・他人の伝言のやりとりを見るのが楽しい。またどんなことが起こっているか分から。
在室情報が自動的に記録されるようになり、自分のが細かく記録されていて面白かった。

ビジネスに関するコミュニケーションにも、関係のないコミュニケーションにも使うことができる。

上記のコメントから、積極的に伝言の入力を行わずとも利用者にとってメリットがあることが分かる。
次に利用シーンについて述べる。まずコメントにて回答が得られた得られた利用シーンの一部を以下に示す。

部屋掃除の打ち合わせの呼び掛けを行うために伝言を貼った、相手が不在であったため利用した。

メンバー全員にそれとなく情報を伝えたいときに伝言を貼った。

係で買出しに行く必要がある時に、係のメンバーを誘うために伝言を用いた。相手と生活リズムが異なるため口頭では伝えることができず、メールでは面倒だったので丁度良かった。

論文執筆の相談をするために共著者の状況を知りたかったため、スケジュール、在室履歴、居場所を見た。

在室履歴から、もう帰ったのだろうという予測を立てることができたため、無駄に待つ手間を省くことができた。

伝言が利用されるシーンでは在室履歴やスケジュール情報はあまり利用されず、在室履歴やスケジュール情報が役立つシーンでは伝言はあまり利用されない傾向があることが分かった。理由は２つ考えられる。１つ目は、運用環境における作業単位が基本的に個人であったためである。そのため相手との接触が必要な用件がほとんどなかったのではないかと考えられる。実際、「その他」に分類される伝言の割合は最も高かった。２つ目としては、伝言の表現方法や、相手との接触のタイミングを計る基準などで、自由度が高すぎるという問題があると考えられる。伝言が入力された場合、伝言を見たメンバーは、伝言を入力したメンバーのところへ行けばよいのか、入力者から来てくるのか判断する必要がある。しかし例えば「原稿」「相談」という伝言が入力された場合その判断が難しい。またタイミングについても、入力者から希望の日時を伝えられなければ、いつ行けばよいのか判断することは難しい。このことは、以下のコメントからも読み取ることができる。

相手が本当に伝言を見ているかどうかが分からず、結局連絡をとって二度手間だった。
至急の用事ではない場合、伝言の使いどこが難しかった。
相手に伝えたいことがある伝言を入力した。しかし相手が伝言を見る前に相手と会ったため意味はなかった。
システムの改良案として、お互いに「どのように接触したいのか」「いつ頃接触したいのか」
という情報をやりとりできるようにすることが考えられる。またそれらの情報を目立つよう
表示させることが考えられる。この際、システムの汎用的な特性を維持するために、入力手
順の簡便さや用件の表現の自由度を保つ工夫を行う必要がある。
第8章 まとめ

本研究では、セミフォーマルコミュニケーションの支援を目的に、あらかじめ予定として日程調整することなく接触を可能とするシステムを開発と評価を行った。そのためには、接触のタイミングを計るための仕組みと用件を伝える仕組みが必要であると考え、この2つの仕組みについて検討した。まず初めに接触のタイミングを計るための仕組みについて検討を行うためにDOCoCaを設計・開発し、著者の所属する研究室にて運用した。その結果、在室情報を自動記録し、在室傾向が分かるように可視化することが有効であると分かった。次にDOCoCaにて得られた知見を基に、相手に用件をスケジュール情報および在室傾向と共に伝えるシステムIrukaBoardを設計・開発した。IrukaBoardの運用結果から、伝言の入力を手軽に行うことができること、セミフォーマルコミュニケーションを行う目的でシステムが利用されること、システムの継続的な利用がなされることが確認した。インタフェースの設計やメンバー同士で共有する次第では、違った利用のなさ方がある期待できるだろう。
謝辞

本研究を行うにあたり、丁寧なご指導と多くのご助言を頂きました指導教員の田中二郎先生に心より感謝いたします。研究生活だけでなく、組織の一員としてのあり方から就職活動に至るまで多くのご助言を頂き、親身に相談にのって頂いたことは心に深く残っています。

IPLAB での 3 年間で人間的に大きく成長することができました。ここに厚く御礼申し上げます。

副指導教員の志築文太郎先生には、日頃の研究活動から論文の執筆に至るまで、WAVE チームの担当教員としてきめ細かいご指導を頂き、その中で多くのことを学ぶことができました。心より感謝申し上げます。学んだことをこれからの人生にも活かして行きます。

三木和男先生、高橋伸先生には、研究発表などの場において大変貴重なご助言を頂きました。頂いたご助言は研究を進める上で大変有意義なものでした。深く感謝いたします。

DOC与の開発は ICT ソリューション・アーキテクト育成プログラムのソリューション型特別プロジェクトから支援を受けました。ここに御礼申し上げます。またプロジェクトの遂行に当たって、村田雄一君、塩竈慈君、鈴木俊吾君には様々な面でお世話になりました。ありがとうございました。

IPLAB の皆様には公私共に大変お世話になりました。特に WAVE チームの皆様には感謝してもしかれません。ゼミ中や研究に行き詰まった時には多くのアドバイスを頂きました。また多くの議論の機会を皆様から頂きました。なにより 3 年間が非常に充実して楽しかったです。皆様、本当にありがとうございます。ルート係の皆様にもお世話になりました。ありがとうございました。

そして何よりも、金銭面、精神面の両方において両親、家族の支えがなければ大学、大学院生活 6 年間を無事に過ごすことはできませんでした。筑波大学に進学させてくれたこと、心から感謝します。

最後に、大学生活においてお世話になった全ての方々に心より御礼申し上げます。本当にありがとうございました。
参考文献

付録A データベーステーブルの仕様

Member テーブル

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Null</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>int(10) unsigned</td>
<td>NO</td>
<td>PRI</td>
<td>NULL</td>
<td>auto_increment</td>
</tr>
<tr>
<td>name</td>
<td>varchar(100)</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>firstname</td>
<td>varchar(8)</td>
<td>NO</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>familyname</td>
<td>varchar(8)</td>
<td>NO</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>googleaccount</td>
<td>varchar(64)</td>
<td>NO</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
</tbody>
</table>

BluetoothAdress テーブル

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Null</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>char(17)</td>
<td>NO</td>
<td>PRI</td>
<td>NULL</td>
<td>NULL</td>
</tr>
<tr>
<td>memberid</td>
<td>int(11) unsigned</td>
<td>NO</td>
<td></td>
<td>NULL</td>
<td>NULL</td>
</tr>
</tbody>
</table>

Place テーブル

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Null</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>int(10) unsigned</td>
<td>NO</td>
<td>PRI</td>
<td>NULL</td>
<td>auto_increment</td>
</tr>
<tr>
<td>placename</td>
<td>varchar(100)</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td>NULL 0</td>
</tr>
<tr>
<td>color</td>
<td>int(10) unsigned</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td>NULL 0</td>
</tr>
<tr>
<td>outofroom</td>
<td>tinyint(1)</td>
<td>NO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LastFoundPlace テーブル

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Null</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>memberid</td>
<td>int(10) unsigned</td>
<td>NO</td>
<td>PRI</td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>lastupdate</td>
<td>datetime</td>
<td>NO</td>
<td></td>
<td>0000-00-00 00:00:00</td>
<td>NULL</td>
</tr>
<tr>
<td>placeid</td>
<td>int(10) unsigned</td>
<td>NO</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
</tbody>
</table>

PlaceHistory テーブル

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Null</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>int(11)</td>
<td>NO</td>
<td>PRI</td>
<td>NULL</td>
<td>auto_increment</td>
</tr>
<tr>
<td>memberid</td>
<td>int(10) unsigned</td>
<td>NO</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>time</td>
<td>datetime</td>
<td>NO</td>
<td></td>
<td>0000-00-00 00:00:00</td>
<td></td>
</tr>
<tr>
<td>placeid</td>
<td>int(10) unsigned</td>
<td>NO</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Tag テーブル

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Null</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>varchar(128)</td>
<td>NO</td>
<td>PRI</td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>manuallyAdded</td>
<td>tinyint(1)</td>
<td>NO</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Message テーブル

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Null</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>varchar(128)</td>
<td>NO</td>
<td>PRI</td>
<td>NULL</td>
<td>4294967295</td>
</tr>
<tr>
<td>frommemberid</td>
<td>int(10) unsigned</td>
<td>NO</td>
<td></td>
<td>0000-00-00 00:00:00</td>
<td>0000-00-00 00:00:00</td>
</tr>
<tr>
<td>pastedtime</td>
<td>datetime</td>
<td>NO</td>
<td></td>
<td>0000-00-00 00:00:00</td>
<td>0</td>
</tr>
<tr>
<td>endtime</td>
<td>datetime</td>
<td>NO</td>
<td></td>
<td>0000-00-00 00:00:00</td>
<td>0</td>
</tr>
<tr>
<td>isdeleted</td>
<td>tinyint(1)</td>
<td>NO</td>
<td></td>
<td>NULL</td>
<td>0</td>
</tr>
</tbody>
</table>

Message_ToMember テーブル

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Null</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>int(10) unsigned</td>
<td>NO</td>
<td>PRI</td>
<td>NULL</td>
<td>auto_increment</td>
</tr>
<tr>
<td>messageid</td>
<td>varchar(128)</td>
<td>NO</td>
<td></td>
<td>NULL</td>
<td>4294967295</td>
</tr>
<tr>
<td>memberid</td>
<td>int(10) unsigned</td>
<td>NO</td>
<td></td>
<td>NULL</td>
<td>4294967295</td>
</tr>
</tbody>
</table>

Message_Tag テーブル

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Null</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>int(10) unsigned</td>
<td>NO</td>
<td>PRI</td>
<td>NULL</td>
<td>auto_increment</td>
</tr>
<tr>
<td>messageid</td>
<td>varchar(128)</td>
<td>NO</td>
<td></td>
<td>NULL</td>
<td>NULL</td>
</tr>
<tr>
<td>tagid</td>
<td>varchar(128)</td>
<td>NO</td>
<td></td>
<td>NULL</td>
<td>NULL</td>
</tr>
</tbody>
</table>
付録B IrukaBoard の評価に用いたアンケート
氏名：

記入日時：2011年1月 日 時 分

この度はご協力頂きありがとうございます。本紙は設問とアンケートで構成されていま
す。全てに回答をお願いします。回答頂いた内容は研究目的のみに利用します。また内容
を公開する時は、回答者を特定できるような情報は含めません。
ご不明な点はお気軽に藤原までお願いします。

IPLAB WAVE チーム 藤原仁貴(fujiwara@iplab.cs.tsukuba.ac.jp)
説明

さんが居室のどこかに在室しているような日時の候補を、端末のスケジュール情報及び在室履歴を参考に 3 つ予測してください。但し、以下の条件を満たしてください。

・ 今日を除く平日 3 日以内で予測
・ 9:00 から 20:00 までの時間帯で予測
・ 時間は 30 分単位で記入

候補１：2011 年 1 月 日 時 分

候補２：2011 年 1 月 日 時 分

候補３：2011 年 1 月 日 時 分
伝言の入力に関するアンケート

・伝言の入力を思いついた時に手軽に行うことはできましたか？

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>否定的</td>
<td></td>
<td>肯定的</td>
<td></td>
</tr>
<tr>
<td>できなかった</td>
<td></td>
<td>できた</td>
<td></td>
</tr>
</tbody>
</table>

・氏名の入力は簡単でしたか？

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>否定的</td>
<td></td>
<td>肯定的</td>
<td></td>
</tr>
<tr>
<td>簡単でなかった</td>
<td></td>
<td>簡単だった</td>
<td></td>
</tr>
</tbody>
</table>

・タグの入力は簡単でしたか？

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>否定的</td>
<td></td>
<td>肯定的</td>
<td></td>
</tr>
<tr>
<td>充分でなかった</td>
<td></td>
<td>充分だった</td>
<td></td>
</tr>
</tbody>
</table>

・タグは2つで充分でしたか？

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>否定的</td>
<td></td>
<td>肯定的</td>
<td></td>
</tr>
<tr>
<td>充分でなかった</td>
<td></td>
<td>充分だった</td>
<td></td>
</tr>
</tbody>
</table>

・タグの長さは8文字以内で充分でしたか？

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>否定的</td>
<td></td>
<td>肯定的</td>
<td></td>
</tr>
<tr>
<td>充分でなかった</td>
<td></td>
<td>充分だった</td>
<td></td>
</tr>
</tbody>
</table>

・期限の入力は簡単でしたか？

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>否定的</td>
<td></td>
<td>肯定的</td>
<td></td>
</tr>
<tr>
<td>簡単でなかった</td>
<td></td>
<td>簡単だった</td>
<td></td>
</tr>
</tbody>
</table>
その他伝言の入力に関して良い点・悪い点などありましたら記入をお願いします。
IrukaBoard 端末の利用に関するアンケート
IrukaBoard 端末はどういう場合に利用しましたか？最大 4 つまで回答してください。
また場合毎に、各設問についても回答してください。また最後にシステムに関するコメン
トなどがありますのでそこにも回答をお願いします。

（場合 1：）
• 伝言は役に立ちましたか？

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>否定的</td>
<td>否定的</td>
<td>否定的</td>
<td>肯定的</td>
</tr>
<tr>
<td>役立たなかった</td>
<td>役立たなかった</td>
<td>役立たなかった</td>
<td>役立った</td>
</tr>
</tbody>
</table>

（回答の理由：）

• スケジュール情報は役に立ちましたか？

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>否定的</td>
<td>否定的</td>
<td>否定的</td>
<td>肯定的</td>
</tr>
<tr>
<td>役立たなかった</td>
<td>役立たなかった</td>
<td>役立たなかった</td>
<td>役立った</td>
</tr>
</tbody>
</table>

（回答の理由：）

• 在室履歴は役に立ちましたか？

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>否定的</td>
<td>否定的</td>
<td>否定的</td>
<td>肯定的</td>
</tr>
<tr>
<td>役立たなかった</td>
<td>役立たなかった</td>
<td>役立たなかった</td>
<td>役立った</td>
</tr>
</tbody>
</table>

（回答の理由：）

• 現在地は役に立ちましたか？

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>否定的</td>
<td>否定的</td>
<td>否定的</td>
<td>肯定的</td>
</tr>
<tr>
<td>役立たなかった</td>
<td>役立たなかった</td>
<td>役立たなかった</td>
<td>役立った</td>
</tr>
</tbody>
</table>

（回答の理由：）
（場合2：）

- 传言は役に立ちましたか？

1 2 3 4
否定的 → 肯定的
役立たなかった → 役立った

（回答の理由：）

- スケジュール情報は役に立ちましたか？

1 2 3 4
否定的 → 肯定的
役立たなかった → 役立った

（回答の理由：）

- 在室履歴は役に立ちましたか？

1 2 3 4
否定的 → 肯定的
役立たなかった → 役立った

（回答の理由：）

- 現在地は役に立ちましたか？

1 2 3 4
否定的 → 肯定的
役立たなかった → 役立った

（回答の理由：）
（場合３：）

・伝言は役に立ちましたか？

1 2 3 4
否定的 ←→ 肯定的
役立たなかった → 役立った

（回答の理由：）

・スケジュール情報は役に立ちましたか？

1 2 3 4
否定的 ←→ 肯定的
役立たなかった → 役立った

（回答の理由：）

・在室履歴は役に立ちましたか？

1 2 3 4
否定的 ←→ 肯定的
役立たなかった → 役立った

（回答の理由：）

・現在地は役に立ちましたか？

1 2 3 4
否定的 ←→ 肯定的
役立たなかった → 役立った

（回答の理由：）
（場合 4：

- 伝言は役に立ちましたか？

（回答の理由：

- スケジュール情報は役に立ちましたか？

（回答の理由：

- 在室履歴は役に立ちましたか？

（回答の理由：

- 現在地は役に立ちましたか？

（回答の理由：

その他システム全体に関して良い点・悪い点などコメントがあれば記入をお願いします。

ご協力ありがとうございます。