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In this study, we explore context-aware cross-device interactions between a smartphone and smartwatch. We present 24 con-
texts, and then examine and prioritize suitable user interfaces (UIs) for each. In addition, we present example applications,
including a map, notification management system, multitasking application, music player, and video chat application, each
of which has its own context-aware Uls. To support these context-aware Uls, we investigate the performance of our context
recognizer in which recognition is based on machine-learning using the accelerometers in a smartphone and smartwatch.
We conduct seven different evaluations using four machine-learning algorithms: J48 decision tree, sequential minimal opti-
mization (SMO)-based support vector machine (SVM), random forest, and multilayer perceptron. With each algorithm, we
conduct a long-interval experiment to examine the level of accuracy at which each context is recognized using data previ-
ously collected for training. The results show that SMO-based SVM is suitable for recognizing the 24 contexts considered in
this study.
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1 INTRODUCTION

Although many people tend to carry both a smartphone and smartwatch, as smartwatches become increasingly
popular, many situations exist in which these devices are not readily usable in mobile computing environments.
For example, a person often keeps a smartphone in a pocket. In addition, if a user is wearing a smartwatch
on the same arm he uses to hold a child’s hand while walking down a busy street, he or she cannot see the
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smartwatch screen. These examples suggest that the usability and design of mobile computing environments
depend considerably on the context in which these devices are being used.

Fortunately, carrying both devices implies that numerous sensors and considerable computational power are
always available. Thus, contexts can be recognized by analyzing the data from the sensors. Such contexts in-
clude the manner of the user’s gripping on a smartphone and arm posture, as well as activeness. In addition,
as described in [8, 29], contexts can be used to enhance human-computer interaction. Furthermore, carrying
both devices implies that rich information channels are available, including two touchscreens and two vibration
motors. Therefore, providing an application user interface (UI) that is suitable for each context that is recog-
nized by the devices is now possible by synthesizing the layouts, feedback, and input methods (i.e., cross-device
interactions) of these devices.

In our study, we explore the possibilities of such context-aware cross-device interactions between a smart-
phone and smartwatch. We previously demonstrated that many contexts, all different but each including the
manner of the user’s gripping on a smartphone (grip), his or her arm posture (arm), and user’s activeness (ac-
tiveness), can be recognized by a context recognizer which is based on machine-learning that uses built-in ac-
celerometers in each device [18]. Note that we use accelerometers only to explore the simplest form of context
recognition. To demonstrate context-aware cross-device interactions, we also designed SynCro, a context-aware
Ul system that consists of a smartphone and smartwatch. SynCro provides a user with Uls suitable for differ-
ent contexts. It synthesizes the layouts, feedback, and input methods of these devices according to the context
recognized by these devices (e.g., the map application shown in Fig. 1).

In this study, we further explore context-aware cross-device interactions between a smartphone and smart-
watch. To this end, we investigate Uls suitable for each context by examining available Uls and prioritizing them
under each context. To demonstrate this investigation, we implement example applications, each of which has
its own context-aware Uls. To support these context-aware Uls, we investigate the performance of the context
recognizer, in which recognition is based on machine learning using the accelerometers of the smartphone and
smartwatch. In our investigation, we use both the same and different user data for training. Furthermore, we
determine whether a context recognizer can recognize contexts using data previously collected for training.
In these investigations, we tested the following four machine-learning algorithms: J48 decision tree (J48), se-
quential minimal optimization (SMO)-based support vector machine (SVM), random forest (RF), and multilayer
perceptron (MLP).

Fig. 1. Map application that demonstrates SynCro’s usability. (a) User can use the wide screen of the smartphone to browse
the map and select a destination using his or her thumb. (b) After the destination is selected, the smartwatch displays the
distance and an arrow to indicate the direction to the destination, which allows for easy viewing while walking. (c) The
smartwatch screen is mirrored on the smartphone when the user lowers his or her left arm. The user can then zoom in and
out by using a wrist-tilt gesture. The user can use his or her right hand to browse the map again easily and confirm that he
or she is walking the proper route.
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2 RELATED WORK

We review previous studies on context-sensing and cross-device interaction techniques, as well as context-aware
Uls.

2.1 Context Sensing

In our study, we consider contexts consisting of three factors: the manner of the user’s gripping on a smartphone,
his or her arm posture, and user’s activeness. Several studies focused on developing methods that recognize these
factors.

Various methods of grip sensing have been previously proposed. GripSense [9] recognizes the manner of
gripping as well as the touch pressure using a position of the user’s touch on the touchscreen, the built-in
inertial sensors, and actuators. Park and Ogawa [27] recognized grip postures on a smartphone by its built-
in accelerometer, gyroscope, and touchscreen. HandSense [41] detects six grip styles by utilizing capacitive
sensors on opposite sides of a device. Touché [34] recognizes complex configurations of a hand touching an
object, including the touch and grip style, by attaching a single capacitive electrode to the object. This method
analyzed the signal in the frequency domain. Similar recognition was achieved by vibration in [26]. In a manner
similar to GripSense, our recognizer recognizes the manner of the user’s gripping on a smartphone using built-in
accelerometers of a smartphone and smartwatch.

Previous research studied recognition of user posture using built-in or embedded sensors. For example, Lee
et al. [20] proposed a posture monitoring system using the built-in front camera and accelerometer of a smart-
phone. Mutlu et al. [24] proposed a system that can recognize seated postures by installing pressure sensors in
a chair. Nekoze [39] recognizes user’s head postures to detect poor user head postures using built-in electrodes
and inertial motion sensors in a smartglass. Liu et al. [23] proposed a system that recognizes driving postures by
using built-in accelerometers, magnetometers, and gyroscopes of both a smartphone and smartwatch mounted
inside a car. Shen et al. [38] proposed a system that tracks 3D arm postures of a user by using a smartwatch.
Our recognizer also recognizes the manner of the user’s gripping on a smartphone, user postures, and user’s
activeness by using a smartphone and smartwatch. Our recognizer shows that fusing the sensor data of each de-
vice has a potential to recognize many contexts. In addition, a long-interval experiment is performed to examine
whether our recognizer can recognize contexts using data previously collected for training.

Several user activity and/or activeness recognition methods have been previously proposed, including those
that utilize the following: a smartphone’s accelerometer, gyroscope, magnetometer, microphone, and proxim-
ity sensors [7]; the built-in accelerometer and microphone in a smartwatch [21]; the built-in nine-axis inertial
measurement unit in a smartwatch [30]; and the built-in sensors of both a smartphone and smartwatch [23].
Moreover, Bao et al. [2] developed and evaluated algorithms for physical activity recognition using five ac-
celerometers worn on different parts of the body. puffMarker [33] recognizes the first lapse during the act of
smoking by using the embedded accelerometers and gyroscopes in a smartwatch. Thomaz et al. [40] proposed
a technique that recognizes a user’s eating movements using the built-in accelerometer in a smartwatch. Goto
et al. [10] proposed a technique that recognizes user activities, such as walking, stopping, and travelling on a
train, by utilizing the built-in GPS and accelerometer in a smartphone. Kwapisz et al. [19] proposed a method
that recognizes six user activities by using the built-in accelerometer of a smartphone when the device is stored
in a pocket. These activities include walking, jogging, ascending and descending stairs, sitting, and standing.
Park et al. [28] proposed a method that uses devices, such as smartphones and tablets to classify device poses
(i.e., the device positions relative to the body) and to estimate a user’s walking speed. In our study, the built-in
accelerometers of a smartphone and smartwatch are used to recognize user postures.
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2.2 Cross-Device Interaction

Several studies explored cross-device interaction between two or more devices. For example, in Pick-and-Drop [32],
a user uses a pen to transfer data between multiple displays. Yoon et al. [43] proposed a cross-device interaction
that combines grip and micromobility when using a tablet. Schmidt et al. [37] proposed a cross-device interac-
tion style that utilizes a smartphone as a tangible input tool to a large display. Hinckley et al. [15] explored a
technique that combines grip and motion sensing on a pen and tablet. By contrast, our cross-device interaction
uses a smartphone and smartwatch.

Some studies explored cross-device interaction between a smartphone and smartwatch. Duet [5], which was
the study that most inspired ours, also uses a smartphone and smartwatch. In [5], the smartwatch is used as a tool
palette and serves as a sub-display showing clipboard content on a smartphone. From a map on the smartphone,
a location can be zoomed-out by bumping the smartphone twice on the smartwatch. TakeOut [25] is a drawing
application that uses a smartphone and smartwatch as a canvas and palette, respectively. WhichHand [22] de-
tects the hand that holds the smartphone (i.e., recognizing two contexts) and provides layouts for one-handed
applications suitable for the holding hand. In our study, we explore context-aware cross-device interactions
between a smartphone and smartwatch.

2.3 Context-Aware Ul

Some studies have shown the potential of context sensing to improve interactions. Schilit et al. [35] showed that
providing an optimal Ul based on a given situation is possible. For example, proximate selection is a UI technique
that makes selection easier based on a user’s location information. Schmidt et al. [36] developed a context-
aware system using a layered architecture based on sensors, and showed that this system enhances applications
by sensing a mobile phone’s context. Hinckley et al. [16] proposed a context-aware mobile interaction using
several sensors. Specially, their system rotates the Ul to conform to the device’s orientation (i.e., portrait or
landscape). Yang et al. [42] changed the function set on a smartwatch based on hand posture that was recognized
by electromyographic (EMG) sensors attached to the arm. iGrasp [6] changes the keyboard layout based on
grip recognition using a device case with embedded capacitive touch sensors. Mo-Bi [17] uses bimanual hand
postures recognized using accelerometers of a smartphone and two wrist-worn devices (one on each wrist),
to make interface layouts and functions of applications suitable to different postures. By contrast, our work
provides Uls for both the smartphone and the smartwatch suitable for contexts on a smartphone-smartwatch
cross-device interaction.

3 INTERACTION DESIGN

SynCro recognizes contexts and provides a user with Uls suitable to those contexts. In this section, we describe
the different contexts that SynCro recognizes and the Uls for cross-device interactions based on the recognized
contexts.

3.1 Contexts

The contexts considered in this study are shown in Fig. 2. The assumption is that the user wears the smartwatch
on the left wrist. Among the many contexts, a - j can occur while walking. Therefore, we define these as different
contexts, a’ - j’. By contrast, k —n can occur only while resting in a seated position.

These contexts consist of the following three factors: grip, arm, and activeness. The grip factor has five levels
as shown in Fig. 3a, including left-hand, right-hand, and both-hands. In addition, it has the following two levels
relating to the smartphone: in-a-pocket and on-a-desk. We include these two levels as part of the grip factor for
the sake of convenience, even though thse mean the smartphone is not being hand-held by the user. The arm
factor has four levels as shown in Fig. 3b. The activeness factor has two levels: resting and walking.
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Fig. 2. Contexts considered in this study. As an example scenario, each of the contexts can use a) a smartphone for noti-
fication/input because the user is using it; b) a smartwatch mainly for notification/input because the user is looking at it,
and a smartphone for simple actions such as stopping an alarm by tapping; c) a notification that can be reviewed on the
smartphone’s larger display; d) a smartphone mainly for notification/input because the user is using it; ) a smartphone for
notification/input because the user is using it, and a smartwatch for simple actions such as zooming in and out on a map
using a wrist-tilt gesture; f) both smartphone and smartwatch for notification/input because the user is using both devices
simultaneously; g) a smartwatch for notification/input because the user is looking at it, and a smartphone for simple actions
such as stopping an alarm by tapping the display with the right hand; h) a smartphone for notification, that can be reviewed
on the smartphone’s larger display; i) smartwatch for notification that is more instantly accessible than the smartphone in
the pocket; j) a smartwatch for notification/input because the user is using it; k) both smartphone and smartwatch for noti-
fication/input because the user is using both devices; ) a smartphone mainly for input because the user is touching it, and

a smartwatch for notification so as not to disturb the user operating the smartphone; m) smartwatch for notification/input
because the user is looking at it; n) smartwatch for notification/input.

Relations between grip and arm factors and the recognized contexts utilizing the two devices are shown in
Tables 1 and 2 for resting and walking, respectively. Note that our recognizer can recognize the arm factor of the
right hand only when the smartphone is gripped in the right-hand. In these tables, N/A denotes contexts that
do not apply. For example, under both-hands, lowering-the-hand, putting-the-arm-on-the-desk, and looking-at-
the-watch contexts do not apply. In addition, we combined similar contexts; thus, one ID appears two or more
times in these tables. Specifically, we combined raising-the-arm and looking-at-the-watch of the left-hand for the
case in which the smartphone is not gripped in the left hand. This is because raising the left arm is a preliminary

E

movement of looking-at-the-watch. Furthermore, “~” in Table 1 denotes contexts that our recognizer does not
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Fig. 3. Two of the three factors of contexts: (a) grip and (b) arm.

attempt to recognize (Note that we erroneously thought that putting a smartphone in-a-pocket could occur only
under a-j and a’-j’.)

3.2 Uls for Cross-device Interaction between Smartphone and Smartwatch

3.2.1 Mirroring. A mirroring function (Fig. 4a, b) can be used under a, d, and e where a user cannot look at
the smartwatch screen. This function shows the contents of the smartwatch screen on an area in the smartphone
screen (represented as a blue square in Fig. 4b). The position of the mirrored area can be adjusted by the user by
dragging it with a finger. This smartphone — smartwatch cross-device interaction allows the smartwatch to be
used even when the user cannot raise his or her left arm (e.g., when in a crowded place or when a user carries a
bag in his or her left hand).

Table 1. Relations between the grip and arm factor and Table 2. Relations between the grip and arm factor and
contexts while resting. contexts while walking.
Grip Factor Grip Factor
Right-hand -
Left Left- Both- — - In-a- | On-the- Right-hand
Raising- | Lowering- Left Left- | Both- In-a-
Arm hand hands h h Pocket | desk Raising- | Lowering-
the-arm | the-arm Arm hand | hands @ " Pocket
Raising- 6 e-arm e-arm
sEE OO O o ° 2 | am @ ©)
S | Lowering- ® oA ® ® @ ® [ the-arm
e S| s | @ | s ® |0
= Putting- < the-arm
the-arm- @ N/A @ — ® Looking- N/ A @ @
on-the-desk at-the-watch
Looking-
N/A
at-the-watch @ ® @ @
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Fig. 4. Examples of context-aware Uls. (a), (b): Mirroring. (c) Wrist-tilt gesture.

3.22  Wrist-tilt Gesture. A wrist-tilt gesture [31] can be used under c, e, h, i, n when the user lowers his or
her left arm (Fig. 4c). The main input method for the smartwatch is touching the screen. However, this requires
that the user raise the left arm. Moreover, lowering the left arm forces the user to perform one-handed thumb
interactions [3, 13, 14]. Therefore, we designed a smartphone — smartwatch cross-device interaction in which the
smartwatch serves as a controller to operate the smartphone. This offers the user another input channel to adjust
a parameter continually on the smartphone in a comfortable posture without having to look at it. Similarly, the
wrist-tilt gesture can be adopted under b, f, g, j, and m when the user raises the left arm, although this slightly
lowers the usability of the smartwatch.

3.3 Uls suitable for Different Contexts

We designed seven Uls and examined whether a user can use the Ul in each context (Table 3). The seven Uls are
right-handed input with a smartphone (RH), left-handed input with a smartphone (LH), both-handed input with
a smartphone (BH), left wrist-tilt gesture (TG), looking at a smartphone (LP), looking at a smartwatch (LW), and
input with a smartwatch touchscreen (IW). In this table, the symbol “v"” denotes Uls that the user can use in the
different contexts, and the symbol “~” denotes unusable Uls. In this table, we also use L' (i.e., limited) to denote
when the system cannot recognize the movement of the right hand. In addition, L? indicates that the user can
only perform simple actions (e.g., tap the smartphone with the right or left hand).

3.4 Priority of Uls in Each Context

For each context, we used Table 4 to determine the priority of Uls with respect to the following three categories.

Screen We determine the screen to be used in a context based on LP and LW in Table 3. If both LP and LW
are v/ in a context, we assigned the smartphone as the main screen and the smartwatch as the sub screen.
If either LP or LW is v/, we use v to establish the device as the main screen. If both LP and LW are “-”,
we do not assign any device as the main or sub screen.

Input Method We determine the input methods to be used in a context based on the screen and RH, LH,
BH, and IW in Table 3. If the main screen is the smartphone, we assign the input method (v') in Table 3 as
the main input. If only the smartwatch can be used as the screen, we assign TG as the main input because
the user can perform TG instantly.

Feedback We determine the feedback to be used in a context based on the screen. We assign the main screen
as the main feedback. If no main screen exists in a specific context, we assign the smartwatch as the main

feedback.
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Table 3. Uls suitable for each context. Here, “v/” denotes Uls that the user can use in that context, “~” refers to unusable
Uls, L! (i.e., limited) means that the system cannot recognize the movement of the right hand, and L? means that the user
can perform only simple actions (e.g., tap the smartphone with the right or left hand). For example, under d, the user can
operate a smartphone with his or her both hands, and look at only the smartphone. In case of j, the user cannot operate a
smartphone. However, the user can perform a wrist-tilt gesture and look at the smartwatch.
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3.5 Example Applications

The following applications were used to demonstrate context-aware Ul systems with a smartphone and smart-
watch.
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3.5.1 Map. In the smartphone—-smartwatch cross-device interaction described in [5], a smartwatch serves as
a sub-display showing a map application. We extended this application so that it changes the Uls automatically
for different contexts (Fig. 1). Fig. 1a shows the map UI when a user raises both hands (£, k). In this UL, the user
can use the wide screen of the smartphone to browse the map and select a destination with his or her thumb.
After selecting a destination, the smartwatch displays the distance and an arrow to indicate the direction to the
destination (Fig. 1b). This allows the user to view this information easily while walking (b, g, j, b, g, j). The
smartwatch screen is mirrored on the smartphone when the user lowers his or her left arm (Fig. 1c). In this UI,
zooming in and out by using one hand (e) is difficult. Therefore, we designed the Ul so user can zoom in and out
using a wrist-tilt gesture with the left arm while pushing a button on the smartphone. This enables the user to
browse the map easily with his or her right hand to confirm that he or she is walking the proper route to the
destination.

3.5.2  Notification Management System. We implemented a smartphone-smartwatch notification manage-
ment system that changes notified devices and notification methods (display or vibration) depending on the
context (Table 5). In Table 5, a non-vibration indicates that the system displays only the notification and does
not vibrate the device. By contrast, a vibration indicates that the system both displays the notification and vi-
brates the device.

The system displays notifications on both the smartphone (a, d, e) and smartwatch (b, g, j, m) without vibra-
tions when a user operates either device. By contrast, the system displays notifications on the smartphone and
vibrates it when a user does not operate, but merely holds the device(c, h). Otherwise, the system displays noti-
fications on the smartwatch (f, i, k, 1, m). Furthermore, the system displays all notifications on the smartwatch
and vibrates it to prevent manipulation while walking (a’-j’).

3.5.3 Multitasking. We implemented a multitasking application. We provide a scenario in which a user uses
a music player and web browser simultaneously (Fig. 5). This application includes a button that, when pushed,
causes the current application (e.g., the music player) to be mirrored on the smartwatch and operated there.
Thus, a user can use another application on the smartphone (e.g., a web browser), as shown in Fig. 5b. Moreover,
the application mirrors the smartwatch screen on the smartphone when a user lowers his or her left arm (Fig. 5¢).

Table 4. Priority of Uls in each context.

Context | Main screen | Sub screen | Main input Sub input Main feedback | Sub feedback
a Smartphone - LH RH Smartphone | Smartwatch
b Smartwatch - TG IW & LH (Tap) | Smartwatch | Smartphone
c - - TG LH (Tap) Smartwatch -

d Smartphone - BH - Smartphone | Smartwatch
e Smartphone - RH TG Smartphone Smartwatch
f Smartphone | Smartwatch RH TG Smartphone | Smartwatch
g Smartwatch - TG RH (Tap) Smartwatch | Smartphone
h - - TG RH (Tap) Smartwatch -

i - - TG - Smartwatch -

j Smartwatch - TG W Smartwatch -

k Smartphone | Smartwatch RH LH & BH Smartphone Smartwatch
1 Smartphone | Smartwatch RH - Smartphone | Smartwatch
m Smartwatch | Smartphone TG - Smartwatch | Smartphone
n Smartphone - TG - Smartphone | Smartwatch
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Table 5. Notifications.

Contexts Notified device and vibration
a, d, e smartphone, non-vibration
b, g j,m smartwatch, non-vibration
c,h smartphone, vibration
fi,k,Ln,a’-j smartwatch, vibration

In the smartwatch screen shown on the smartphone, the user can operate the music player with his or her finger.
Thus, the user can continue to multitask even when lowering his or her left arm.

3.5.4 Music Player. We implemented a music player application that selects Uls suitable for different contexts.
Fig. 6a shows the Ul when a user raises both hands (f, k). On this UI, tapping a track from the music list on
the smartphone displays corresponding music information on the smartwatch. Double tapping a track on the
smartphone plays the track. After a track is played, the music player displays a different UI (Fig. 6b). On this
UL the smartwatch displays a music player that can be easily controlled, even if the user places his or her
smartphone in a pocket (b, g, j, m). When the user lowers his or her left arm, the smartwatch screen is mirrored
on the smartphone (Fig. 6¢). This application displays yet another UL, as depicted in Fig. 6d. In this UI, even when
the user holds luggage in the right hand (b, j), thus preventing him or her from operating the player with the
right hand, the user can easily access other tracks using a wrist-tilt gesture with the left arm.

3.5.5 Video Chat. For video chat, the user selects a contact address with the smartwatch, as shown in Fig. 7a.
This can be done easily, even if the smartphone is in a pocket (j). After a connection is established, the contact’s
face is displayed on the smartwatch. Although the user can communicate through video chat on the smartwatch,
he or she may want to communicate on the smartphone when its larger display is available (a, d, e, f, k, 1, n).
At this time, the main screen changes automatically between a smartphone and smartwatch based on the user
context, which is recognized through our method. When the user wants to take a note when communicating
through the smartphone, he or she can use the smartwatch as a voice recording device (f, k, 1, m), as shown in
Fig. 7b. When a user is unable to use either device (c, h, i), the application notifies the contact that the user is not
looking at the display (Fig. 7c). If the user is walking (a’, b’, d’, €', f°, g’, j’), the main screen notifies the user to
stop (Fig. 7d). In addition, if the user is not looking at the display for a period (c, h, i), the application disconnects
from video chat.

Fig. 5. Multitasking application. (a) The user can transmit the current application to the smartwatch by pushing a button.
After transmission, the application can be operated from the smartwatch. (b) The user can use two applications using both
devices simultaneously. (c) When the user lowers his or her left arm, the smartwatch screen is mirrored on the smartphone.
This allows the user to continue multitasking (i.e., even when lowering the left arm).
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Previous

Fig. 6. Music Player. (a) The user can select music by double tapping with a thumb. (b) After a track is selected, the smart-
watch displays the player. (c) The smartwatch screen is mirrored on the smartphone when the user lowers his or her left
arm. (d) The user can access other tracks easily by using a wrist-tilt gesture with the left arm.

?,\ '?:\
NO LOOKING 22 CAUTION +

Voice memo App

Fig. 7. Video Chat. (a) The user can easily select a contact address using a smartwatch. (b) The user can use the smartwatch
as a voice recording device to record a note when using both devices. (c) When the contact is unable to use either device, the
application notifies the user that the contact is not looking at the display. (d) If the user is walking, a caution is displayed
on the screens of both devices.

4 IMPLEMENTATION

We implemented a context recognizer based on machine learning that uses the accelerometers in both a smart-
phone and smartwatch.

4.1 Devices and Configuration

We used a SONY Xperia Z3 Compact SO-02G and a SONY SmartWatch 3 SWR50. The smartphone has a quad-
core 2.5 GHz processor with 2 GB RAM. The smartwatch has a quad-core 1.2 GHz processor and 512 MB RAM.
After the smartwatch was connected to the smartphone through Bluetooth, the smartwatch transmitted frames
to the smartphone continuously. Each frame contained a time stamp and 3-axis accelerometer data (@, (1),
Ayy(t), a,z(t)). The frame rate is 20 Hz. We determined this frame rate empirically so that the smartwatch
achieved a stable transmission to the smartphone. The smartphone also stored frames at 20 Hz. Each frame con-
tained a time stamp and 3-axis accelerometer data from the smartphone (a,x(t), apy(t), ap(t)). The time stamps
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were used to synchronize the frames of both devices because those from the smartwatch arrived irregularly to
the smartphone as a result of latency of transmission.

4.2 Context Recognizer

Our context recognizer ran on the smartphone and used J48, SMO-based SVM, RF, and MLP in the WEKA data
mining software [11] with a default setting. It collected a series of 32 frames from both the smartphone and
smartwatch as a sliding window covering a time span of 1.6s. Then, it calculated a feature vector for each
sliding window. With this feature vector, the recognition result using machine learning was also obtained at
20 Hz.

To recognize the grip and arm factors, the recognizer first calculated a,(t)* and a,,(t)*, which are the sum
of the squares of acceleration from the smartphone and smartwatch, respectively. Furthermore, the recognizer
calculated a4(t)?, that is, by subtracting a,(t)* from a,,(t)?. These values are given as:

ap(t)° = ape(t)’ + apy(t)” + apz(t)’
a,(t)? B (1) + Ay () + (1)
aq(ty? (1)’ = ay(t)”
To recognize user’s activeness (i.e., resting or walking), we used a fast Fourier transform (FFT) to calculate
the following features:

Frequency Power (FP) [4] We used FFT for each ap(t)z, a.,(t)?, and ay(t)? of a sliding window. Therefore,
each sliding window produced 16 powers of frequency; the frequency range was 0-5 Hz with a resolution
of 0.31 Hz, because the sliding window consisted of 32 frames and the frame rate was 20 Hz.

Maximum Frequency Power (MFP) MFP in FFT for each a,(t)?, a,,(t)?, and aq(t).

Frequency of Maximum Frequency Power (FMFP) Frequency that shows the MFP for each a, (t)?, a,,(£)%,
and ag(t)?.

In addition, the recognizer calculates the following features:

Average Acceleration (AA) [2] AA in a sliding window for each axis of both the smartphone and smart-
watch.
Average Difference Acceleration (ADA) Average of ay(t)? in a sliding window.
Average Resultant Acceleration (ARA) [1] Average of each a,(t)* and a,,(¢)? in a sliding window.
In summary, our feature vector consisted of the following 63 features: 48 FPs, three MPFs, three FMFPs, six
AAs, one ADA, and two ARAs.

5 EVALUATION OF ACCURACY FOR CONTEXT RECOGNITION

We conducted a long-interval experiment to examine the level of accuracy of our recognizer in recognizing 24
contexts. Moreover, because we were interested in whether the recognizer could recognize these contexts when
using data previously collected for training data, we designed this as a long-interval experiment. Specifically, we
collected the data twice (first and second rounds), where the second round followed the first by approximately
five months later!. We designed this five month period so that we could collect data that had little learning effect.

5.1 Participants

Twelve Japanese male volunteers that included nine laboratory students, participated in the experiment. Their
ages were in the range of 21 — 24 years (M = 22.3) when the first round was conducted. Their experience with
smartphones ranged from 0 to 96 months (M = 50.25). All participants except one were right-handed and wore

IThe first round was conducted from 2016-04-09 to 2016-04-10; the second round was conducted from 2016-09-01 to 2016-09-11.
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a smartwatch on their left wrist. Four participants had previous experience using a smartwatch in the range
of 1-12 months (M = 6.0). Five participants had previously used a wristwatch. One round for each participant
required approximately 50 minutes to complete.

5.2 Procedure

We asked participants to perform the actions in the given contexts shown in Fig. 2, and then collected acceleration
data from the smartphone and smartwatch. We conducted this experiment in a quiet and closed room for safety.

First, we asked a participant to wear a smartwatch on his left wrist. Subsequently, we displayed the ID (i.e., a-n
and a’-j’) of one context on the smartphone. These contexts are described in a document containing instructions
and pictures, as shown in Fig. 2. When participants performed the actions in the given contexts, we allowed
them sufficient time between contexts to avoid one context affecting the next. If the participant failed to per-
form instructed actions in a context, we asked him to perform it again. When performing a’ -j’, we asked the
participant to walk between two tape markings on the floor: the distance between the marks was 10 m (10.94
yards). Furthermore, if the context allowed the participant to operate the smartphone (e.g., a and d), we asked
the participant to operate an image viewer application by swiping or tapping at an interval of approximately 1 s.
The participant performed the actions in the given contexts until he finished (i.e., when the data for 100 frames
were collected). In both rounds, we used the same chairs and desks to control the experimental conditions. In
each round, the participant performed four sessions. In each session, the participant performed the actions in
the 24 given contexts once in a randomized order. The participant took a break of five minutes between the two
sessions.

In total, 230,400 pieces of data (2 rounds X 12 participants X 24 contextsX 4 sessions X 100 frames) were col-
lected.

5.3 Results

To understand the performance of our recognizer, particularly to examine whether it could recognize contexts
by using data previously collected for training, we performed the following seven types of analyses. These
recognition tests were performed using J48, SMO-based SVM, RF, and MLP in WEKA data mining software [11].

5.3.1 Per-User Classifiers. To understand the feasibility of our recognizer for individual users, we assessed
the accuracy of per-user classifiers. First, we trained a model using the three sessions of data collected from a
single participant in a single round and tested it with the remaining session of data from that same participant.
All training and test combinations were tested and the results for each participant were averaged (i.e., four-fold
cross validation). We performed this four-fold cross validation using both rounds of data of each participant.
These results showed that, for the first-round data, the accuracies of the per-user classifiers for J48, SMO-based
SVM, RF, and MLP were 83.9% (SD = 6.9), 94.0% (SD = 4.6), 94.0% (SD = 4.3), and 93.7% (SD = 4.2), respectively.
For the second-round data, they were 86.2% (SD = 6.9), 93.2% (SD = 12.0), 93.3% (SD = 9.4), and 93.0% (SD = 13.1),
respectively, as shown in Table 6. However, we examined our data and found that the general classifier trained
with the second-round data exhibited considerably lower recognition accuracy for one participant. Therefore,
we removed that participant’s data from the average as outliers. The resulting accuracies were then 87.2% (SD
=5.9), 95.8% (SD = 3.9), 95.1% (SD = 3.3), and 95.5% (SD = 3.3), respectively.

5.3.2  General Classifier. We assessed the accuracy of the general classifier to evaluate the feasibility of the
recognizer for “walk up” users [12]. This involved training a model using eleven participants’ data and testing
that data with those of another participant (i.e., 12-fold participant-independent cross-validation). As shown
in Table 8, the results of the first-round data for J48, SMO-based SVM, RF, and MLP show accuracies of 84.9%
(SD = 6.1), 88.8% (SD = 2.9), 89.7% (SD = 2.8), and 85.0% (SD = 5.7), respectively. The confusion matrix for the
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results when applying J48 is shown in Table 7. Moreover, the accuracies of the second round data were 77.8%
(SD = 14.7), 84.0% (SD = 13.6), 84.0% (SD = 12.1), and 78.8% (SD = 14.3), respectively. However, we examined
our data and found that the general classifier trained with the second-round data exhibited considerably lower
recognition accuracies for one participant. Therefore, we removed that participant’s data from the average as
outliers. The resulting accuracies were then 81.5% (SD = 7.8), 87.6% (SD = 5.9), 87.3% (SD = 4.3), and 82.4% (SD =
7.2), respectively, as shown in Table 8.

5.3.3 Long-Interval Per-User Classifiers. To examine whether the recognizer could recognize contexts by us-
ing data previously collected for training, we first trained a model with the first-round data collected from a
single participant and then tested it with the second-round data of that same participant. All training and test
combinations were tested and the results for each participant were averaged. The accuracies of the long-interval
per-user classifiers for J48, SMO-based SVM, RF, and MLP were 69.4% (SD = 17.5), 84.7% (SD = 13.8), 77.8% (SD
= 9.1), and 83.8% (SD = 17.1), respectively (Table 9). However, we found that the recognition accuracy of one
participant was 24.9%, which was considerably lower than that of the other participants. After we removed that
participant’s data from the average, the resulting accuracies were 73.4% (SD = 11.0), 88.5% (SD = 5.1), 79.5% (SD
=7.3), and 88.5% (SD = 5.0), respectively.

5.3.4 Long-Interval General Classifier. We assessed the accuracy of the long-interval general classifier to eval-
uate the feasibility of the recognizer for “walk up” users over a long-interval. We trained a model using all par-
ticipants’ data from the first-round and tested that data with those of the second single participant’s data (all
combinations). The average accuracies of the long-interval general classifier for J48, SMO-based SVM, RF, and
MLP were 71.5%, 85.1%, 82.2%, and 82.9%, respectively (Table 9).

5.3.5 Volume of Training Data. We examined the amount of training data required to stabilize the recognition
accuracy. To this end, we trained models incrementally with the data of a greater number of participants and
tested them with the remaining data. For each n = {1,---,11}, we first selected n sets of participants’ data
randomly from 12 participants’ data and tested the remaining participants’ data. We conducted this training/test
set 12 times for each n by using the first-round data, and the results were averaged. We show the average
recognition accuracy for each number of participants in the training data in Fig. 8. The figure shows that the
accuracy stabilized with eight participants (i.e., 76,800 sets of data) in J48, SMO-based SVM, and RF and four
sets of training data (i.e., 38,400 sets of data) in MLP. Therefore, these results suggest that the data of eight
participants were sufficient to train the recognizer.

5.3.6  Recognition Accuracy when using Only One Device. We discussed the method of detecting contexts by
using a combination of smartphone and smartwatch. To test the hypothesis that using both devices simultane-
ously improves recognition accuracy, we analyzed the accuracy when using the data from either a smartphone
or smartwatch data. We selected the first-round data for testing because its data recognition accuracy was better
than that of the second round. In addition, we analyzed the accuracy of the per-user classifiers.

Table 6. Accuracy of per-user classifiers with the first and second round data. Values in parentheses are SD.

Classifier first round | second round | second round (except P2)
J48 83.9 (6.9) 86.2 (6.9) 87.2 (5.9)
SMO-based SVM | 94.0 (4.6) | 93.2 (12.0) 95.8 (3.9)
RF 94.0 (43) | 93.3(9.4) 95.1 (3.3)
MLP 937 (4.2) | 93.0(13.1) 95.5 (3.3)
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Table 7. Confusion matrix of the general classifier with the first-round data.
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Table 8. Accuracy of the general classifiers with the first- and second-round data. Values in parentheses are SD.

Classifier first round | second round | second round (except P2)
748 84.9 (6.4) | 77.8(14.7) 81.5 (7.8)
SMO-based SVM | 88.8(2.9) | 84.0 (13.6) 87.6 (5.9)
RF 89.7 (2.8) | 84.0 (12.1) 87.3 (4.3)
MLP 85.0 (5.7) | 78.8(14.3) 824 (7.2)

Table 9. Accuracy of the general classifiers with the first- and second-round data. Values in parentheses are SD.

Classifier long-interval per-user | long-interval per-user (except P2) | long-interval general
748 69.4 (17.5) 73.4 (11.0) 715
SMO-based SVM 84.7 (13.8) 88.5 (5.1) 85.1
RF 77.8 (9.1) 79.5 (7.3) 82.2
MLP 83.8 (17.1) 88.5 (5.0) 82.9

Using only Smartphone Data We used the following 22 features from the smartphone data: 16 FPs, one
MEFP, one FMFP, three AAs, and one ARA. The accuracies of the first per-user classifiers for J48, SMO-
based SVM, RF, and MLP were 50.7% (SD = 8.8), 54.2% (SD = 7.7), 53.2% (SD = 9.1), and 52.2% (SD = 8.4),
respectively, as shown in Table 10.

Using only Smartwatch Data We used the following 22 features from the smartwatch data: 16 FPs, one
MFP, one FMFP, three AAs, and one ARA. The accuracies of the first per-user classifiers for J48, SMO-
based SVM, RF, and MLP were 44.6% (SD = 8.7), 48.6% (SD = 7.9), 49.7% (SD = 8.3), and 49.7% (SD = 8.6),
respectively, as shown in Table 10.
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Table 10. Accuracy of per-user classifiers with the smartphone and smartwatch data.

Classifier Only Smartphone | Only Smartwatch | Both Devices
748 50.7 (8.8) 446 (8.7) 83.9 (6.9)
SMO-based SVM 54.2 (7.7) 48.6 (7.9) 94.0 (4.6)
RF 53.2 (9.1) 49.7 (8.3) 94.0 (4.3)
MLP 52.2 (8.4) 49.7 (3.6) 93.0 (13.1)

5.3.7 Important Features. We analyzed important features in RF for recognition by using WEKA data mining
software [11]. We selected the first-round data for testing because its data recognition accuracy was better
than that of the second-round. In addition, we analyzed the accuracy of the general classifier. These results are
shown in Table 11. In this table, {Phone/Watch/diff}FFTn is the FP at n x 0.31 Hz for each a,(t)?, a,,(t)% and
ay(t)?. {Phone/Watch}Accel{X/Y/Z} is the AA of each axis of the smartphone/smartwatch; DiffAccel is the ADA;
max{Phone/Watch/DiffJFFTHz is the MFP for each a,(t)?, a.,(t)?, and aq4(t)*; max{Phone/Watch/Diff}FFT is the
FMFP for each a,(t)?, a,,(t)?, and aq(t)*. As Table 11 shows, the most important feature was PhoneFFT2, which
is the FP of the smartphone at 0.62 Hz (i.e., 2 X 0.31 Hz = 0.62 Hz).

5.4 Discussion of Results

The per-user classifiers achieved over 90% recognition accuracy in both rounds, with the exception of J48. The
general classifiers achieved 80% recognition accuracy in both rounds with SMO-based SVM and RF. In addition,
the long-interval per-user and general classifiers achieved recognition accuracies of over 80% with SMO-based
SVM and MLP. However, the recognition accuracy with RF was less than 80%. These results indicate that SMO-
based SVM is suitable for recognizing the 24 contexts considered in this study.

As shown in Tables 6, 8, and 9, the accuracy of the second-round improved by removing participant data with
the lowest accuracy. We analyzed the outlier participant’s data and showed that the recognition accuracy using
data from a particular session is the lowest for per-user classifiers. This may have been because the smartwatch
belt was loose on that participant (due to a slender wrist). However, the classifiers trained with the second-
round data without those of the outlier participant still tended to show lower accuracies than data from the

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 3, Article 69. Publication date:
September 2017.



Exploring Context-Aware User Interfaces for Smartphone-Smartwatch Cross-Device Interaction « 69:17

Table 11. Averages of mean decrease impurity (MDI) in the first general classifier (higher is better in MDI).

# Feature MDI | # Feature MDI | # Feature MDI
1 PhoneFFT2 0.538 | 22 WatchAccelX 0.413 | 43 diffAccel 0.340
2 PhoneFFT3 0.520 | 23 WatchAccelY 0.413 | 44 diffFFT3 0.338
3 PhoneAccelX 0.515 | 24 WatchFFT1 0.410 | 45 diffFFT4 0.330
4 PhoneFFT1 0.501 | 25 WatchFFT3 0.408 | 46 | phoneAccelSum | 0.328
5 PhoneFFT4 0.499 | 26 WatchAccelZ 0.403 | 47 | maxDiffFFTHz | 0.327
6 PhoneFFT6 0.492 | 27 WatchFFT4 0.399 | 48 diffFFT8 0.324
7 PhoneFFT5 0.489 | 28 WatchFFT6 0.392 | 49 diffFFT6 0.323
8 PhoneFFT7 0.489 | 29 WatchFFT5 0.391 | 50 diffFFT5 0.320
9 PhoneFFT8 0.489 | 30 WatchFFT7 0.385 | 51 diffFFT10 0.320
10 PhoneFFT9 0.476 | 31 WatchFFT10 0.372 | 52 diffFFT7 0.319
11 PhoneAccelY 0.468 | 32 WatchFFT8 0.371 | 53 | watchAccelSum | 0.318
12 PhoneFFT10 0.467 | 33 WatchFFT11 0.369 | 54 diffFFT9 0.315
13 PhoneFFT11 0.458 | 34 WatchFFT9 0.367 | 55 diffFFT11 0.311
14 PhoneAccelZ 0.453 | 35 WatchFFT12 0.366 | 56 diffFFT12 0.308
15 PhoneFFT12 0.449 | 36 WatchFFT13 0.365 | 57 diffFFT13 0.306
16 PhoneFFT13 0.444 | 37 | maxWatchFFTHz | 0.363 | 58 diffFFT15 0.305
17 PhoneFFT14 0.433 | 38 WatchFFT14 0.358 | 59 diffFFT14 0.303
18 PhoneFFT15 0.425 | 39 diffFFT1 0.356 | 60 diffFFT16 0.299
19 | maxPhoneFFTHz | 0.422 | 40 WatchFFT15 0.349 | 61 maxDiffFFT 0.283
20 PhoneFFT16 0.419 | 41 WatchFFT16 0.347 | 62 | maxPhoneFFT | 0.000
21 WatchFFT2 0.415 | 42 diffFFT2 0.344 | 63 | maxWatchFFT | 0.000

first-round data. Therefore, the quality of the second-round data was found to be worse than that of the first-
round. A possible reason was traffic congestion with wireless communication. We conducted the first-round on
a Saturday and Sunday. The second round included weekdays. Therefore, the transmission rate from smartwatch
to smartphone could be low. To address this problem, we plan to modify our implementation such that all packets
from the smartwatch are time-stamped so that the system can synchronize the accelerometer data of both the
smartphone and smartwatch.

The accuracy when using both devices was more than 30% higher than that when using only one device, as
shown in 10. Therefore, numerous contexts could be recognized by using both devices.

As shown in Table 11, the features we used contributed to recognition, with the exception of max{Phone/Watch}
FFT. In this experiment, the MDIs of the max{Phone/Watch}FFT were 0.000 because the frequency of the maxi-
mum power spectrum was always 0 Hz. Therefore, we will modify our feature vector to use the frequencies that
show the second and third maximum power spectrum instead (max{Phone/Watch}FFT) in future studies.

6 DISCUSSION AND FUTURE WORK

The results of our experiment suggest that both per-user and general classifiers successfully recognize many
contexts with high accuracy. However, these classifiers must be substantially improved for commercial use. First,
there is a tendency to confuse similar contexts (e.g., a and d, a’ and d’, ¢ and i), as shown in Table 7. Specifically,
a and d (a’ and d’) are similar in terms of the grip and arm factors of the left hand. The difference between c
and i is based on whether the smartphone is held with the left hand or placed in a pocket. An immediate future
work will focus on resolving such confusion. Feasible approaches include using additional built-in sensors (e.g.,
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inertial sensor in a smartphone) and combining our technique with other previously established techniques
such as GripSense [9]. Second, the results described previously are per-frame results. Therefore, an immediate
future work is to use temporal low-pass filtering to improve classification accuracy. These will be followed by
evaluating the context recognizer in real-life applications.

Our experiment was conducted under limited conditions, that is, in a controlled environment (a closed room).
However, a daily user commonly uses a smartphone and smartwatch in various situations and settings (e.g.,
while riding a bus and outdoors). Therefore, it is necessary to conduct experiments to evaluate the influence of
various environments. Moreover, all participants in the experiment were Japanese males. Therefore, considering
similarities in term of race, culture, gender, and with respect to walking patterns and postures and how they
influence similar lifestyles is all necessary. We will explore these aspects by widening the range of participants
in the future.

The contexts shown in Fig. 2 are just a few that exist in daily life. Many others must be explored (e.g., using
a smartphone while in bed, taking off a smartwatch and placing it on a desk, and using a smartphone with both
hands under the table). Other simple contexts that involve daily activities such as carrying a bag with one hand
were also not examined in our study. A future study will explore whether a recognizer can recognize a greater
number of contexts and perform the same during daily activities.

In this study, we defined the priority of Uls suitable for contexts. However, these Uls were not evaluated as
to whether they were really suitable for the contexts. To address this issue, a user study should be conducted
to evaluate user experience of the proposed Uls. In addition, we plan to conduct an additional experiment to
investigate the period effect in detail and to evaluate the usability of SynCro’s applications.

Latency is another concern. In the recognition method, recognition latency occurs because of using FFT and
calculating recognition results. In our current implementation, the latency is 1.65 s: a sliding window covers 1.6 s
and the calculation requires 0.05 s. In future work, we plan to explore the effect of latency on the application’s
usability.

7 CONCLUSION

In this study, we explored context-aware cross-device interactions between a smartphone and smartwatch. First,
we showed 24 contexts, and then examine and prioritized suitable Uls for each. In addition, we presented example
applications that have their own context-aware Uls. These applications included a map, notification management
system, multitasking application, music player, and video chat application.

Moreover, to support these context-aware Uls, we investigated the performance of our context recognizer in
which recognition was based on machine-learning using the accelerometers in a smartphone and smartwatch.
We conducted seven different evaluations using four machine-learning algorithms: J48 decision tree, SMO-based
SVM, random forest, and multilayer perceptron. With each algorithm, we conducted a long-interval experiment
to examine the level of accuracy at which each context was recognized using data previously collected for train-
ing. The results showed that SMO-based SVM is suitable for recognizing the 24 contexts considered in this study.
The results also showed that a greater number of contexts can be recognized using both devices than when using
only a single device.
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