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Exploring Dwell-time from Human Cognitive Processes for
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In order to develop future implicit interactions, it is important to understand the duration a user needs
to recognize a visual object. By providing interactions that are triggered after a user recognizes an object,
confusion resulting from the discrepancy between completing a cognitive process, which we define as the
process from perceiving a visual stimulus to determining a selection, and triggering an interaction can be
reduced. To understand this duration, we developed a model to derive dwell-times, allowing dwell selection to
be performed after completing a cognitive process based on the Model Human Processor and the number of
fixations. Our model revealed a minimum dwell-time of 174.2ms for a colored target selection task. For an
image selection task, the minimum dwell-time was 272.5ms, which increased to 835.8ms when a participant
had not previously fixated on the object.

CCS Concepts: • Human-centered computing → HCI theory, concepts and models; User models; Inter-
action techniques.

Additional KeyWords and Phrases: gaze interface, model human processor, user modeling, perceptual behavior,
implicit interaction

ACM Reference Format:
Toshiya Isomoto, Shota Yamanaka, and Buntarou Shizuki. 2023. Exploring Dwell-time from Human Cognitive
Processes for Dwell Selection. Proc. ACM Hum.-Comput. Interact. 7, ETRA, Article 159 (May 2023), 15 pages.
https://doi.org/10.1145/3591128

1 INTRODUCTION
Implicit interactions have been gaining attention in the human-computer interaction (HCI) field as
future interactions, moving instead of the current explicit interactions, such as using a mouse or
touch panel. Explicit interactions rely on a user’s deliberate actions, allowing them to trigger the
interaction at will. In contrast, implicit interactions are triggered in conjunction with the detected
user’s intent, based on human behavior. One of the advantages of implicit interaction is that it can
be performed before or simultaneously as a user decides to perform it. Although this advantage
holds promise for faster and more intuitive interactions, there has been limited investigation into
the appropriate timing for triggering such interactions from the perspective of human cognitive
processes, which we define as the processes occurring between a human perceiving a visual stimulus
and determining a selection.
For example, dwell selection, which enables a user to select a target by merely looking at it

for a certain duration [15–17], relies on a time threshold called dwell-time to detect the user’s
intent to select the target. From the HCI perspective that faster interactions are preferable, most
dwell selection research has focused on using shorter dwell-times. However, previous studies have
reported that a small dwell-time (e.g., <200,ms) decreases usability, leading to user confusion [9,
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12, 34]. Thus, from the viewpoint of usability in gaze-based interaction, a small dwell-time may
not always be the optimal solution, contradicting the HCI perspective. Since “looking” is a human
behavior closely connected to cognitive processes, a user may feel confused if an interaction, such as
target selection, is performed before they complete a cognitive process in dwell selection, regardless
of whether the interaction is successfully executed. While determining appropriate dwell-times is
crucial for faster, more accurate, and more usable dwell selection, there is no systematic approach
to determine dwell-time. Consequently, various dwell-times have been used across different studies
and tasks.
If we derive the duration a user requires to complete a cognitive process, it can be helpful for

future interactions, including gaze-based interaction. We developed a model that derives the dwell-
time systematically, enabling dwell selection after a user completes the cognitive process based on
their behavior. We first devised three hypotheses regarding the relations between the information
of fixation and cognitive processes. Referring to the findings of a previous study [13] involving the
model human processor (MHP) [8], we then developed our model to derive the dwell-time using
a number of fixations (Nfixation) and the duration of fixations (Dfixation) that a user performs for a
target. The limitations of that study are that the Nfixation required for recognizing a target should
be predicted beforehand, but no prediction method was presented, and that the applicable situation
is only for image selection [13]. In contrast, we use Nfixation determined from user behavior. Using
this Nfixation, our model derives the dwell-time that fits the relation between Nfixation and cognitive
processes. Since cognitive processes differ depending on the task, we conducted five selection tasks
of different cognitive levels to evaluate our hypotheses and develop our model. We summarize the
contributions of this paper as follows.

• We devised three hypotheses about fixation during a selection and validated them through
an experiment involving five tasks having different cognitive levels.

• We developed a model that derives dwell-time systematically from the perspective of human
cognitive processes.

• We showed how our model derives dynamically changing dwell-times based on user behavior,
especially Nfixation.

2 RELATEDWORK
We describe how dwell-time has been determined in research on dwell selection. We then describe
how the MHP interprets the user’s cognitive processes during a target selection and how dwell-time
is determined using it.

2.1 Dwell-time in Dwell Selection
In dwell selection, solving the Midas-touch, which is a user’s unwanted selection, with a small
dwell-time has been investigated. Researchers on dwell typing (i.e., dwell selection on a key) used
180–600ms as dwell-times from two perspectives: user preference and robustness against the
Midas-touch [19, 22, 28, 29, 32]. To select a key that is likely to be selected, a small dwell-time
prevents the Midas-touch and enables a faster selection, while using a large dwell-time prevents the
Midas-touch for a key that is unlikely to be selected. Dwell-times dynamically decrease/increase
along with the previously typed keys and the probability of the next key typed.

Researchers reported that the dwell-time that can prevent the Midas-touch differs depending on
the task. For example, 650ms is adequate for a low-cognitive (selecting two digits) task, 1,100ms
is not adequate for a high-cognitive task (selecting two-words) [34], and 400ms is adequate for
selecting a colored circle [22, 33]. This is because a selection task includes visual searching. Visual-
search time varies with the size, arrangement, and color of a target or its content [25, 31]. Since

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 159. Publication date: May 2023.



Exploring Dwell-time from Human Cognitive Processes for Dwell Selection 159:3

“looking” and “searching” are human behaviors, a large dwell-time should be used to separate those
behaviors and dwelling and to prevent the Midas-touch. For searching tasks in a shopping situation,
[26] reported that 1,000ms is not adequate and 2,000ms should be used.

These dwell-times are determined to prevent the Midas-touch as well as provide a faster interac-
tion. However, since gaze-based interaction is closely connected to cognitive processes, dwell-times
should also be derived from these processes, not only considering the Midas-touch and faster
interaction. With a dwell-time less than 100ms, a user would feel confused when the target is
selected before they look at it [12]. This suggests the necessity of investigating a dwell-time that
enables users to select a target just after finishing their cognitive processes.
Since cognitive processes differ depending on the user’s previous behavior, we assumed that

dwell-time could be dynamically changed along with the user’s behavior, especially with the user’s
fixation before a selection. This dynamic change of dwell-time is the same concept as dwell typing.
For example, if a user knows about an object or has looked at it many times, they can quickly
recognize it. Thus, our model derives a small dwell-time systematically by taking into account
cognitive processes and potentially reduces user confusion.

2.2 Model Human Processor [8]
The MHP demonstrates human perceptual behavior in response to visual (and auditory) stimulus
by dividing the information-processing system into three subsystems: perception, cognition, and
motor. The perception subsystem completes perceiving a visual stimulus and encoding into a visual
code within 𝜏𝑝=100 [50–200]ms. Each range indicates that the Fastman (e.g., an expert) takes the
minimum time and the Slowman (e.g., a novice) takes the maximum time. The cognition subsystem
completes recognizing the visual code, classifying the recognized code into a meaning, matching
the meaning and instruction loaded on the working memory beforehand, and requesting to press
a button. The required cognitive processes differ among tasks. The time taken for one cognitive
process (𝜏𝑐 ) is 70 [25–170]ms. The motor subsystem completes pushing a button along with the
request from the cognition subsystem within 𝜏𝑚=70 [30–100]ms.
From the MHP, we can interpret a human’s perceptual behavior on performing an interaction,

especially selection with button pressing. While the cognitive processes in the perception and motor
subsystems are the same regardless of the task, those in the cognitive subsystem differ depending
on the task. For a simple reaction task, the cognitive subsystem requires one process (requesting).
For a class-match task, however, the subsystem requires four processes (recognizing, classifying,
matching, and requesting).

A previous study using the MHP explored a user’s preferred dwell-time in the dwell selection of
an image referring to the class-match task [13]; the preferred dwell-time is derived from the model
as follows:

𝜏𝑝 + (3Nfixation + 1)𝜏𝑐 [13] . (1)

In Equation 1, one cognitive-cycle, which consists of recognizing, classifying, andmatching processes,
is done during one fixation, and after a certain Nfixation, requesting is processed. Thus, 3Nfixation+1 of
𝜏𝑐 is required for completing a cognitive process. Because dwell selection does not require pressing
a button, 𝜏𝑚 is not counted. For example, if we know that Nfixation required to complete an image
selection is three, the user’s preferred dwell-time may be 800ms (100 + (3 × 3 + 1) × 70). The
limitations of that previous study [13] are that the method of determining Nfixation is unclear since
they reported that predicting Nfixation beforehand is challenging and that the applicable task is only
for image selection. We improved upon their model using a user’s previous selection behavior,
especially using Nfixation and Dfixation before a selection. We developed our model on the basis of
the results of five different selection tasks to make it more applicable to a wider range of tasks.
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2.3 Models of Human Cognitive Processes and Behavior for Visual Search Tasks
In many studies, human behavior and cognitive processes were modeled, similarly to the MHP.
For instance, the Adaptive Control of Thought–Rational (ACT-R) model [2, 3] is a representative
model of cognitive processes, including visual attention. The ACT-R model reports that it takes
a human 186ms to shift attention, with or without eye movement. In a visual search task, three
processes repeatedly occur: 1) responding “yes” (i.e., a looking candidate is a target), taking a
“base” time of 208ms, 2) shifting attention, taking a “shift” time of 186ms, and 3) responding “no”
(i.e., there is no target after searching all candidates), taking a “base” and “neg” time of 133ms1.
Another representative model is Fitts’ law [11, 18], which is for pointing behavior. The time for
pointing is expressed as 𝑎×log2 (𝐴/𝑊 + 1) + 𝑏, where A is the distance between the position of
a cursor and target, D is the target size, a can be interpreted as the time required for the motor
process (e.g., moving a hand for a mouse-based interaction), and b can be interpreted as the time
required for decision-making and triggering action. Numerous models have been proposed for
GUIs (e.g., [5, 10, 27]).
These models provide a precise representation of human cognitive processes and behaviors,

including the time required for each, making them useful for systematically determining dwell-time.
However, we use the MHP for the following reasons. The MHP describes the human cognitive
process through three systems, each having a required time (𝜏𝑝 for the perception system, 𝜏𝑐 for
the cognition system, and 𝜏𝑚 for the motor system). The MHP describes processes required for
completing visual search tasks, as outlined in Section 2.2.

3 HYPOTHESES
We devised the following three hypotheses.

H1. Nfixation required for selecting a target increases along with the cognitive level of a task. We
assume that the user needs to fixate on the target many times to recognize a more complex
target before selecting it.

H2. Dfixation of the last fixation before a selection decreases along with increasing total Nfixation.
We assume that the user can select the target by looking at it for a shorter period by fixating
on it frequently and recognizing it beforehand.

H3. Dfixation for large Nfixation converges to one duration regardless of the task. We assume that if
a user has already recognized a target, they can make a decision to select the target with a
duration regardless of the target.

4 EXPERIMENT
We used five selection tasks with different cognitive levels to verify the hypotheses and determine
the Nfixation required for a selection and Dfixation.

4.1 Participants and Apparatus
We recruited 20 university students (one female and 19 males, all Japanese) aged 20–26 (M= 22.9).
They use GUI-based interfaces on a daily basis. Fifteen previously participated in an experiment
using an eye-tracker. Each received JPY 2,500 (∼USD 18).
We used the Tobii Pro Spectrum, which samples gaze data at 1,200Hz (0.833 ms/sample). The

eye tracker was attached to the bottom of a 24-inch (1980×1080 pixels) non-glare display. The
participants’ heads were positioned approximately 65 cm from the display. The participants used

1These values depend on the difference in the types of targets and distractors (e.g., letters versus numbers) and the number
of candidates present in a visual search task.
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Fig. 1. Displays used for Experiment 1.

a wire-connected keyboard to control the task. The experiment was conducted in a room with
fluorescent light at approximately 810 lux.

4.2 Selection Method
We used gaze-button selection, which is performed on the gaze coordinate when pushing the ‘Enter’
key of the keyboard. Systematically, the selection is allowed when the gaze coordinate is inside a
target; otherwise, no selection is performed even if the participants push the key.

4.3 Selection Task and Interface
For gaze-button selection, we asked the participants to complete five selection tasks: simple, key,
word, icon, and image. One trial involved completing a selection. Each task consisted of 51 trials. We
used this number by taking into account the concentration and fatigue of the participants and used
the first trial as a training trial (not used for our analysis). The order of the tasks was randomized
among the participants. Before beginning the experiment, we calibrated the eye tracker with Tobii’s
9-point calibration for each participant. The task began with the instruction display, which gave
instructions to the participants for each task. The participants read the instructions then pushed
the space key to move on. The task display (Fig. 1) was then shown, and the participants were
asked to select a target with gaze-button selection. Between the tasks, we asked the participants to
take rest for at least one minute. The experiment took approximately 25 min.

The task display consisted of candidates specific to the task and one target. We did not give the
participants visual feedback for all tasks to eliminate any potential side effects. We determined the
target size at which the eye-tracking performance (i.e., the offset and precision) did not affect the
selection, as described in Sections 4.3.1–4.3.5. Although gaze data should be collected from various
tasks, it is difficult to conduct an experiment with such diverse tasks. Thus, we used these five
tasks representing daily interaction situations in reference to a previous study [14]. We list the
relationship between tasks and cognitive levels in Table 1.

4.3.1 Simple task. The simple task involves selecting a red circular target (Fig. 1a). We instructed
the participants to “select a red object.” This task is similar to the simple reaction task in which a
participant pushes a button after the visual stimulus is displayed [8]. The selection time shows the
minimum duration necessary for a human to perceive the visual stimulus. We displayed one red
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Table 1. Our definition of tasks and their cognitive levels. “Known candidates” means whether or not a
participant knew which keys/icons/words/images were shown in candidates before a task began. We assigned
“Cognitive levels” in accordance with the row of “Similar task in MHP” that each task requires a different
number of required cognitive processes. The difference in “Known candidates” between the key and icon
tasks results in a different cognitive level even though the task in the MHP is the same.

Tasks Target type Known candidates Similar task in MHP Cognitive level
Simple colored object beforehand simple reaction 1 (minimum)
Key key beforehand physical match 2
Icon desktop icon beforehand physical match 3
Word menu item depend on candidate name match 4
Image image none class match 5 (max)

target and 19 white candidates in a random position in an 8×5 grid. The size of each target was
2.5◦×2.5◦.

Since there is one red target and the others are white, the participants would not need to search
for it and would know all candidates before the task. This selection corresponds to a real situation
of a preprogrammed selection that can be done with less confirmation. For example, a close button
of the web browser could be selected with less confirmation. Such buttons are positioned at the top
corner of the browser2, and the user knows the content before looking at it. A situation of selecting
the most frequently selected targets is another example. Because these situations would be the
easiest interaction situations, we defined the cognitive level of the simple task as the lowest among
the tasks.

4.3.2 Key task. The key task involves selecting a key (Fig. 1b). For example, we instructed the
participants to “select [a] key”. This task is similar to the physical-match task in which a participant
pushes a button if a visual shape of a candidate and an instruction are the same [8]. We displayed
26 keys in a qwerty alignment. One key among the 26 was randomly chosen as a target. The size of
each target was 2.5◦×2.5◦.

Since we used a qwerty alignment, which the participants were familiar with, they could recognize
the position of all candidates and the content (i.e., a key) with less effort. However, more recognition
is needed to confirm a target than in the simple task. This task corresponds to a real situation of a
key selection and a selection of a radio button with a character.

4.3.3 Icon task. The icon task involves selecting a target that resembles a desktop icon (Fig. 1c).
For example, we instructed the participants to “select a [call] icon”. This task is similar to the name-
match task in which a participant pushes a button if the meaning of a candidate and instruction are
the same [8]. We used an icon set consisting of 20 icons that resemble desktop icons. As opposed to
the key task, the instruction and target differ (i.e., verbal instruction and visual target) while their
meanings are the same. We displayed one target and 19 candidates in a random position in an 8×5
grid. The size of each target was 2.5◦×2.5◦.

Before beginning the task, we asked the participants to memorize the correspondence between
the images and instructions to eliminate preconceived notions on the basis of previous interaction
experience. The participants needed to recognize the visual stimulus then match the meanings of
the stimulus and instruction before pushing the button. This selection task corresponds to the real
situation of a relatively simple image selection. For example, the desktop icons and tab-icons of the
web browser that a user already knows before looking at them.
2top-right in Microsoft Edge and top-left in Safari
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Fig. 2. Fixations we used (a and b) and did not use for later analysis (c and d).

4.3.4 Word task. The word task involves selecting a one- or two-word target consisting of at least
eight characters (Fig. 1d). For example, we instructed to the participants to “select a [copy text]”.
We created a word set consisting of 20 words extracted from text- and image-editing interfaces
such as Microsoft Word and Adobe PhotoShop. Similar to the key task, both the instruction and
target are verbal. The difference is the character length: one character vs. at least eight characters.
We randomly selected one target and 19 candidates from the word set in a random position in a
4×5 grid. The size of each target was 5.5◦×2.5◦.

Unfortunately, there is no similar task in the MHP [8]; however, the word task was used as
a higher cognition level than the one-character task [34]. For the above reason, the word task
required a higher cognitive level of the participants than the simple, key, and icon tasks.

4.3.5 Image task. The image task involves selecting an image target (Fig. 1e). For example, we
instructed to the participants to “select a [dog] icon”. We used the image-set extracted from Visual
Genome3. As opposed to the icon task, we did not show all images to participants beforehand.
While the icon and image tasks are both selection tasks against nonverbal candidates, there is a
difference in whether the participants knew or did not know which images/icons were shown in
candidates before a task has begun. This task is similar to the class-match task in which a participant
pushes a button if a class (e.g., a letter or digit) of a candidate and instruction is the same [8]. We
displayed one target and 39 candidates randomly selected from the image set in a random position
in an 8×5 grid. The size of each target was 3.5◦×3.5◦.
The participants needed to recognize the visual stimulus, classify the stimulus into an image

type (e.g., an image of a dog), then match the classes of the stimulus and instruction before pushing
the button. This selection task corresponds to a real situation of relatively more complex image
selection than that in the icon task. For example, images in an image-search result and an image
that a user rarely sees. For the above reason, the image task requires the highest cognitive level
among the tasks.

4.4 Results
We measured Nfixation and Dfixation that the participant performed on a target before pushing the
button. Using them, we first validated our hypotheses then developed our model that derives the
dwell-time that allows dwell selection to be performed after a user completes a cognitive process
on the basis of their behavior. Although a previous study used a duration in which gaze coordinates
are inside a target [13], we used Dfixation because it contains more meaningful information than
gaze coordinates.

3https://visualgenome.org/, licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/)
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Table 2. Nfixation required for completing each task. The number in the brackets is that of the participants.
For example, twelve participants required two fixations in 20 trials to complete the key task.

Task
Nfixation 1 2 3 4 5 6 7

simple 987 (20) 3 (3) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
key 946 (19) 20 (12) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
icon 865 (20) 87 (20) 6 (6) 5 (5) 0 (0) 0 (0) 0 (0)
word 768 (20) 172 (20) 23 (14) 3 (3) 1 (1) 0 (0) 0 (0)
image 548 (20) 308 (20) 79 (20) 3 (3) 2 (2) 2 (2) 0 (0)

Fig. 3. Dfixation of the last fixation before selection for each task and each Nfixation.

Wediscarded the first trial of each task as practice, thus used 1,000 (= (51−1) trials×20 participants)
trials for each task. Before detecting a fixation, we first excluded eye-tracking noise by applying
the median filter with a window size of six samples, which is equal to 5ms with 1,200Hz of the
eye-tracker. We then applied the I-DT algorithm [30] with a dispersion threshold of 30◦ and used
100ms as the minimum duration of the fixation. Thus, we defined the gaze coordinates in which
the velocity of gaze movement is below 30◦/sec over 100ms as one fixation. We used the fixations
detected with the algorithm and parameters in which the fixation point (i.e., the average gaze
coordinates) was inside the target. For later analysis, we used trials in which the participant pushed
a button and succeeded in a selection during fixation so that the trials would be consistent with the
analysis (Fig. 2a and b). We did not use the trials in which selection was not done during a fixation
(Fig. 2c) and the fixation was outside a target (Fig. 2d).

4.4.1 Number of fixations. We detected fixations for 4,828 trials. We could not detect fixations in
172 trials (3.4% of all trials) with the algorithm and parameters due to the eye-tracking noise and
our definition of fixation. For example, some noise may have remained and been affected by the
algorithm. Since we did not use the trials in which selection was not made during a fixation, these
trials were determined as errors, although the participant successfully selected a target. Thus, we
removed them as outliers.
We show the Nfixation the participants required for completing each task in Table 2. We did not

instruct participants on the selection strategy (e.g., select a target with a small Nfixation), and all
selections could be made by looking at a target at least once to observe participants’ selection
behavior. Although the participants did not frequently require a large Nfixation, they seemed to
require it (e.g., Nfixation≥ 3) for completing tasks with a higher cognitive level (i.e., icon, word, and
image tasks). From these results, we concluded that this result verifies H1 that Nfixation required for
selecting a target increases along with the cognitive level of a task.
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Fig. 4. Dfixation of the last fixation against the sum of Dfixation before the last fixation.

Table 3. Models and regression results for each task.

Equ. Model Simple Key Icon Word Image

(2) 𝑎 + 𝑏×(Nfixation-1)

R2 =1.0 R2=1.0 R2=0.918 R2=0.860 R2=0.935
a =244.2 a = 420.4 a = 480.5 a = 677.7 a = 834.1
b =10.2 b = -79.4 b = -53.9 b = -99.0 b = -109.2
AIC =-111.8 AIC = -110.5 AIC = 38.5 AIC = 58.5 AIC = 67.8

(3) 𝑎 + 𝑏×log2(Nfixation)

R2=1.0 R2=1.0 R2=0.972 R2=0.907 R2=0.972
a=244.2 a = 420.4 a = 494.3 a = 721.9 a = 905.8
b=10.2 b = -79.4 b = -82.6 b = -175.4 b = -217.9
AIC= -111.8 AIC = -110.5 AIC = 34.1 AIC = 56.5 AIC = 62.8

4.4.2 Duration of fixation. We first measured the Dfixation of the last fixation before the participant
pushed a button. Because the last fixation included the participant’s button pushing in our analysis,
we used the Dfixation of the last fixation as the duration required for recognizing the target then
making a decision. The average Dfixation has a tendency to decrease along with increasing Nfixation,
as shown in Fig. 3. When Nfixation was one (i.e., the participant fixated a target once), Dfixation
increased along with the increasing cognitive level of the tasks. We then investigated the relation
between the Dfixation of the last fixation and the sum of Dfixations before the last fixation (Fig. 4). For
example, if Nfixation is three, we calculate the sum of the first two Dfixations, and if Nfixation is one,
the sum becomes zero. The relation indicates that the Dfixation of the last fixation decreases along
with increasing sum. That is, when the participant fixated on a target for a long time, they could
make a decision in a small duration. Although certain Dfixations did not decrease along with the
increasing cognitive level and the sum of Dfixations before the last fixation, these results may verify
H2 Dfixation of the last fixation before a selection decreases along with increasing total Nfixation.

5 MODEL SYSTEMATICALLY DERIVING TIME REQUIRED FOR COMPLETING
HUMAN COGNITIVE PROCESS ON SELECTION TASK

Using the results of the experiment and the MHP, we developed our model. In contrast to a previous
study [13], we used Nfixation, which is counted from the user’s behavior.

5.1 Equations of Model
To evaluate our model, we first evaluated how Nfixation linearly affects the duration as a common
model of analysis with the following equation:

𝑦 = 𝑎 + 𝑏 × (Nfixation − 1). (2)
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Fig. 5. Regression results with average Dfixation and equation log2(Nfixation) for each task. Gray plots are the
average Dfixation for each participant. Red plots are the average for each Nfixation.

We then explored the following equation as a more efficient model in which Nfixation logarithmically
affects the duration:

𝑦 = 𝑎 + 𝑏 × log2 (Nfixation). (3)
In these two models, y indicates the duration in a certain Nfixation, a indicates the duration when
Nfixation is one, and b indicates a change in the Dfixation of the last fixation against increasing Nfixation.
We show the regression results of both models in Table 3 and Fig. 5. The R2 of Equation 3 was
higher than that of Equation 2 for the icon, word, and image tasks. Because the maximum Nfixation
was two in the simple and key tasks, R2 was 1.0. We assumed that the reason for achieving a higher
R2 in Equation 3 as the Dfixation of the last fixation logarithmically decreases, not linearly, because
a human can remember a stimulus (visual image in this paper) and proceed with the cognitive
process by referring it.
To determine a better formulation in a statistical manner, we compared the 𝐴𝐼𝐶 values [1] of

the two models. As a brief guideline, a model with a lower 𝐴𝐼𝐶 is better, and a model with 𝐴𝐼𝐶 ≤
(𝐴𝐼𝐶minimum + 2) is probably comparable with better models [6]. Thus, we used log2 (Nfixation) as an
independent variable of the expression in our model.

5.2 Decrease in Dfixation along with Increasing Nfixations
To interpret a decrease in Dfixation along with increasing Nfixation, we used the principle that a human
completes one cognitive cycle, which consists of recognition, classification, and matching during
one fixation [13]. Since the slopes of the equations (i.e., b in Equation 3) represent a downward
trend from 10.2 (simple task) to −217.9 (image task) as the cognitive level increases, we clarify
why these slopes are derived with the above principle by showing the relation between the slope
and estimated slope by using the MHP (i.e., the estimated time required for one cognitive cycle)
in Table 4. The differences between the slope with our model and the estimated slope are under
35.4ms. Since the original 𝜏𝑐 also ranged from 25ms to 170ms, this difference could be considered
covered by the range.

5.3 Minimum Dfixation for each task
There is approximately a 90ms difference in Dfixation when Nfixation is the largest between the simple
task and other tasks. This difference is due to the simple task requiring only requesting, while the
others require at least two cognitive processes. Moreover, 90ms is within the range of 𝜏𝑐 (25–170
ms). Thus, we assumed that the difference in the Dfixation of the last fixation between the simple task
and other tasks could be interpreted due to the difference in the cognitive processes. Since users can
generally select the target in a well-familiarized interface without careful fixation, even if the target
is a key, icon, word, or image, they can select the target without a cognitive process, in other words,
that they can select the target as equal to the simple task. For example, selecting a close button
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Table 4. The relation between the slope and estimated slope by using the MHP. The units of all digits are
in milliseconds. With respect to the principle of a previous study [13], the 𝜏𝑐 , requesting is not included in
the duration required for one cognitive cycle. Thus, the estimated slope was calculated with the number of
required cognitive processes except requesting. For example, in the image task, the cognitive processes are
recognizing, classifying, matching, and requesting, which require 4𝜏𝑐 . As the 𝜏𝑐 for requesting is not included
for one cognitive cycle, the estimated slope with the MHP is similar to 3𝜏𝑐= 210ms.

Task Required cognitive process Slope (ours) Slope (MHP) Diff.
Simple requesting 10.2 0.0 (0𝜏𝑐 ) 10.2
Key matching requesting −79.4 −70 (1𝜏𝑐 ) 9.4
Icon matching requesting −82.6 −70 (1𝜏𝑐 ) 12.6
Word recognizing matching requesting −175.4 −140 (2𝜏𝑐 ) 35.4
Image recognizing classifying matching requesting −217.9 −210 (3𝜏𝑐 ) 7.9

Table 5. Summary of regression results for each task.

Task Equation Max Nfixation Smallest dwell-time
Simple 174.2 + 10.2 × log2 (Nfixation) 2 174.2
Key 350.4 - 79.4 × log2 (Nfixation) 2 271.0
Icon 424.3 - 82.6 × log2 (Nfixation) 4 259.3
Word 651.9 - 175.4 × log2 (Nfixation) 5 244.6
Image 835.8 - 217.9 × log2 (Nfixation) 6 272.5

in a web browser that is often located at the top corner of the browser could be selected without
careful fixation (most are designed to be done so). Thus, we concluded one minimum Dfixation exists
regardless of the task and Dfixation converges to one in the simple task (i.e., 244ms), which verifies
H3 Dfixation for large Nfixation converges to one duration regardless of the task.

5.4 Range of Dfixation

In addition to the above analysis focusing on average values, we analyzed how the Dfixation in each
Nfixation varied among participants (Fig. 5). These ranges may be due to the same reason as in the
MHP, that is, the Fastman can complete a task with minimum duration, and the Slowman requires
maximum duration. Since we did not instruct participants on the selection strategy, Dfixation also
varied for each participant and each selection. Personality and background may have also affected
the results. For example, a user carefully searching for a target requires a large 𝜏𝑐 , and a user familiar
with a target (e.g., a user has used the menu item in the word task) requires a small 𝜏𝑐 . Thus, using
average values is generally one simple solution to reflect the duration that a human requires to
finish a cognitive process. However, using a calibrated 𝜏𝑐 for users is the better solution to estimate
a more precise duration.

6 USE OF OUR MODEL FOR DWELL SELECTION
We describe how our model can be applied to dwell selection. Since no action of pushing a button
is needed for dwell selection, we first subtract a duration of 𝜏𝑚=70ms from the model. Using
Equation 3 and regression results, we then define the adapted model for each task. We summarize
the equations and dwell-times derived with our model for each task in Table 5, which suggest that
we can dynamically change dwell-times with our model. For example, in an image-selection task,
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if a user fixates on a target three times beforehand, we can use 490.4ms as the dwell-time; if six
times, we can use 272.5ms.

We consider a span that keeps counting Nfixation. For example, a system keeps counting Nfixation
and discards those over 609, 996, 2,455, 3,620, and 23,565ms for the simple, key, icon, word, and
image tasks, respectively. We determined these spans from average durations taken for the trial (i.e.,
from displaying a target to finishing a selection) in the experiment. We did not consider Nfixation
more than those observed in our experiment (more than max Nfixation in Table 5) and determined
the minimum Nfixation for each task. However, as described in Section 5.3, the minimum Nfixation
may become one for the simple task (i.e., 174.2ms). Of course, if users prefer a faster interaction,
they can use under 174.2ms at will. Such a smaller dwell-time can be considered when users are
familiar with the situation.

In research on preventing the Midas-touch, a faster and more accurate dwell selection has been
developed (i.e., the best solution was been regarded as 0ms of dwell-time and zero Midas-touches);
however, this seems to be difficult. A minimum dwell-time that does not decrease usability may be
derived with our model, and the researcher can aim to prevent the Midas-touch with the minimum
dwell-time. Thus, solving the Midas-touch will be more realistic than aiming for 0ms as dwell-time.
As a dynamic adjustment of dwell-time for improving usability (e.g., [19, 22]), dwell-time can be
adjusted from the context of human cognitive processes by using our model.
Although we have described the use of our model in a real interaction, we can not strongly

conclude that it is useful due to the limitations of our experimental conditions and results. Further
investigation with an application adopting dwell selection with our model should be conducted.

7 LIMITATIONS AND FUTUREWORK
Our findings are limited by the experimental conditions. It is unclear whether our findings, i.e., the
duration that a human requires to finish a cognitive process, would hold under other conditions.
Regarding selection tasks, there are numerous situations of real interactions, for example, selecting
a sentence and thumbnail within an interface consisting of various types of targets. Since 𝜏𝑝 , 𝜏𝑐 ,
and 𝜏𝑚 were derived from certain user attributes [8], our model using the MHP may be suitable
for users whose attributes differ from those of the participants in this experiment (e.g., different
ages, experience with computer interaction, and experience with gaze-based interaction). However,
this is only a hypothesis, and we could not conclude anything from our current results, so further
research should be conducted with a large number of participants and more diverse participants.
Although we concluded that our model based on Equation 3 could effectively derive duration, it is
necessary to evaluate the model under other experimental conditions.
We developed our model from the perspectives of linear- and logarithmic-based equations and

the MHP [8]. Similar to Fitts’ Law [11] and ACT-R [2, 3], which has numerous variations of a model
regarding the context, we assumed that we could investigate a variation of our model for a specific
context or user attributes. For example, the keystroke-level model [7] indicates that the time to
complete a typing (i.e., key selection) task varies depending on the context and the user’s typing
skill. As with previous studies on adjusting dwell-time (e.g., [20]), our model can be improved
using the keystroke-level model. Our model is not the only one model and further development
combined with the above studies is also potentially helpful to understand dwell-time (or other
“time” parameters for visual search) from human cognitive processes. Of course, our model should
also be investigated in a real interaction situation, e.g., a dynamic adaption of dwell-time for dwell
selection.

As with the other adaptions, our model has the possibility of improving the usability of implicit
interaction, especially, an interaction driven by an intent prediction. Current interactions, especially
using GUIs (e.g., for a mouse [4, 21, 23]) will enable a selection that is done just before a user
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performs a specific action. Research has shown that an interaction system automatically corrects
an error input through intent prediction using gaze data [24]. Unfortunately, the time when the
error correction should be done has not been investigated in detail. In these scenarios, the same as
with dwell-time, we can adapt the duration that a human requires to finish a cognitive process to
improve usability. These are, of course, speculations; thus, it is necessary to verify them.

8 CONCLUSION
We developed a model that derives the dwell-time systematically, enabling dwell selection after
a user completes the cognitive process on the basis of their behavior. We first conducted an
experiment involving five tasks of different cognitive levels to measure the number of fixations
and their duration through a user’s selection behavior. We then validated our three hypotheses
related to fixations and developed our model using the fixations and durations by referring to the
MHP. We then showed how our model can be used for dwell selection and discussed the use of our
findings for future implicit interactions.
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