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ABSTRACT
The Steering Law is a robust model to predict the movement time (MT) for steering through a
constrained path, and the most representative example in human-computer interaction (HCI) is
navigating cascaded menus. In typical implementations of cascaded menus, however, users can
deviate from the path for a short time; we call this error-accepting delay, or Tdelay: Yamanaka
modified the Steering Law to predict MT under several Tdelay conditions, and our goal is to investi-
gate the reproducibility of his model with more various Tdelay values. In addition, HCI researchers
have recently formed a consensus that the goodness of models should be judged by the predic-
tion accuracy for future (untested) task conditions. Thus, for the sake of completeness, we con-
ducted two analyses: a shuffle-split cross-validation and leave-one-Tdelay-out cross-validation. The
results showed that, regardless of the all-data and cross-validation analyses, Yamanaka’s modified
model outperformed the baseline Steering Law, which strengthened his original experimental
report.
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Graphical user interfaces
(GUI); user performance
modeling; Steering Law;
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1. Introduction

Deriving new models to predict human performance is one
of the core topics in human-computer interaction (HCI)
research. In addition, the importance of replication studies
has been repeatedly claimed in HCI (Banovic, 2016;
Cockburn et al., 2020; Hornbæk et al., 2014; Wilson et al.,
2014). In this context, re-evaluating the validity of an exist-
ing model (i.e., reproducibility) should deepen the under-
standing of human motor behaviors and thus contribute to
various scientific fields.

In this article, the model we specifically investigate is
Steering Law (Accot & Zhai, 1997; Drury, 1971; Rashevsky,
1959), which predicts the movement time (MT) to navigate
a constrained path (see Figure 1a). In HCI, navigation in
cascaded menus has been considered a typical application of
Steering Law (Accot & Zhai, 1997; Ahlstr€om, 2005;
Dennerlein et al., 2000).

Contrarily, in many cascaded-menu implementations, a
submenu appears shortly after the cursor hovers over a par-
ent menu item. For example, as shown in Figure 1b, the
submenu related to “Computers” is kept open even while
the cursor accidentally enters the item labeled “Movies”
momentarily. In this case, although the user successfully
accomplishes this path-navigation task, it is unclear whether
Steering Law is applicable in its as-is formulation, because
Steering Law theoretically holds only when the cursor passes
through the path without deviating (Accot & Zhai, 1997;
Drury et al., 1987; Montazer et al., 1988).

Such a duration from when the cursor enters a parent
menu item to when its submenu opens is typically config-
ured by means of the setTimeout (JavaScript), delay
(jQuery), or other similar programming functions. We call
this delay “error-accepting delay” as a general term and use
“Tdelay” to describe it as an independent variable in the
experiment.

Note that, as the error-accepting delay increases, users
have to pay less attention to the path boundaries, and thus
the cursor-movement speed increases, resulting in a shorter
MT: If one can predict the MT for a given configurations of
path length (A), width (W), and Tdelay, designers and engi-
neers can develop appropriate cascaded menus so that, for
example, users can pass through each item within 1 s.

Recently, Yamanaka (one of the authors of this article)
measured users’ performance on steering tasks in which
users are allowed to deviate the cursor from a path for a
short duration (Yamanaka, 2019). He evaluated the effects
of Tdelay values of 0, 100, 200, 400, 600, and 800ms on MT,
and then he derived a modified formulation of Steering Law
to predict MT accurately even when Tdelay changed.
However, his model’s validity was examined only once, and
the experimental design had limited Tdelay values. Therefore,
as described above, it is worth testing its reproducibility
with a different participant group and more varied Tdelay

values.
More specifically, we should investigate denser and larger

values of Tdelay than those in the original study by
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Yamanaka (2019). The reasons behind this claim are as
follows.

� Keele and Posner (1968) reported that the human reac-
tion time is 190–260ms on average, and because the
delay in our experimental system was 57.9ms, the ability
of participants to react to the cursor’s deviation from the
path boundaries changes around 300ms, which was not
tested in the original study.

� According to Lin and Hsu (2014), the human reaction
time in their experiment was 273ms, but this was the
average value for all participants. They reported that
individual participant’s reaction times ranged from 87
and 441ms. As the reaction times of the participants in
our experiment may have been biased towards shorter or
longer, the slowest one may take approximately 500ms
to react to the path deviation (reaction time of 441ms
and system delay of 57.9ms; 498.9ms in total), so this
value was newly examined in our experiment.

� The longer the Tdelay, the more participants should be
able to complete the task without causing errors of stray-
ing outside the path boundaries for longer than Tdelay,
even if they deviated from the path. Hence, the task
requirement would turn into “Just clicking in the start
and end areas,” which is no longer modeled by Steering
Law. However, if the participants still pay attention to
pass boundaries under a long Tdelay condition,
Yamanaka’s modified model of Steering Law may be
suitable. Therefore, to better validate the modified model,
it is better to experiment with long Tdelay values. We thus
set the maximum value of Tdelay to 1000ms, which is
25% larger than the maximum value in the original
study, thus strengthening the validation of the modified
model.

Accordingly, this article is an extended version of the
conference paper (Yamanaka, 2019) with an entirely new
user study. The purposes of the study are twofold.

� First is to confirm the reproducibility of the superior
performance of Yamanaka’s model to the baseline (i.e.,
the original Steering Law) to predict MT accurately. To
do so, we collected another group of participants (none

of them joined the original experiment) and used more
Tdelay conditions.

� Second is to examine the prediction accuracy for future
(untested) task conditions for the sake of completeness
to evaluate the model performance. In the original study,
to evaluate the prediction accuracy of the candidate mod-
els, Yamanaka computed the values of adjusted R2 and
Akaike Information Criterion (AIC) (Akaike, 1974) by
using all 48 fitting points, i.e., 2A� 4W � 6Tdelay condi-
tions (Yamanaka, 2019). However, recently, HCI
researchers have become aware that a model’s capability
should also be discussed on the basis of the prediction
accuracy for untested data, and thus cross-validations
have been conducted, e.g., for target-pointing (Ko et al.,
2020) and path-steering studies (Yamanaka et al., 2020).
From this standpoint, the analysis in the original study
(Yamanaka, 2019) went only halfway: Yamanaka’s modi-
fied model fitted well when all the obtained data points
were used, while the robustness of the model for new
path conditions remained unclear.

We tackle the second issue by running a shuffle-split
cross-validation and leave-one-Tdelay-out cross-validation.
This approach is also applied to the dataset of the original
study (Yamanaka, 2019) for reanalysis. These results show
that Yamanaka’s model again outperforms the baseline for
all-data and cross-validation analyses, which emphasizes a
stronger robustness of his modified model than claimed in
the original study.

When extending the original paper (Yamanaka, 2019), we
reconstructed the Introduction and Related Work sections.
The subsequent sections from User Study onward are newly
added, which accounts for �62% (approximately 3,680
words out of 5,970) in this article.

2. Related work

2.1. Steering Law

To understand how Yamanaka (2019) modified Steering
Law to take error-accepting delay into account, we first
describe the derivation of Steering Law. To steer through a
constant-width straight path whose length is A and width is
W as shown in Figure 1a, Accot and Zhai (1997) proposed
the following model, the baseline Steering Law:

MT ¼ aþ b
A
W

, (1)

where MT is the movement time, and a and b are empiric-
ally determined constants. The A/W ratio is called the index
of difficulty (ID) of Steering Law.

Equation (1) indicates that if W is large, MT becomes
short because the user can move the cursor roughly
through the path without deviating from it. In previous
studies, researchers showed that Equation (1) is applicable
under the following conditions: multiple kinds of input
devices, such as a mouse or touchpad (Accot & Zhai, 1999;
Senanayake & Goonetilleke, 2016), small- and large-scale
displays (Accot & Zhai, 2001), dominant and non-

Figure 1. (a) Steering Law predicts the MT to pass through a constrained path
with length A and width W. (b) An example in which users can deviate from
the path boundaries for a short time.
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dominant hands (Hoffmann, 1997), various steering direc-
tions (Thibbotuwawa et al., 2012; Zhou et al., 2008), and
different priorities on speed or accuracy (Zhou & Ren,
2010).

Accot and Zhai proposed another form, which showed
that the average speed V throughout the path (i.e.,
V ¼ A=MT) is proportionally related to the path width:

V ¼ bW: (2)

Other studies also support this simple relationship
between V and W (Drury, 1971; Montazer & Drury, 1989;
Rashevsky, 1959).

We have W ¼ V=b0 from Equation (2) where b0 is a new
coefficient for distinction. This can be substituted into
Equation (1), and we obtain

MT ¼ aþ b
A
W

¼ aþ b
A

V=b0
¼ aþ b00

A
V

let b00 ¼ b � b0ð Þ:
(3)

Hoffmann also validated this model (Hoffmann, 2009).
In summary, for a constant-width straight path, although

there is an option to predict MT or V on the left side of an
equation, there are clear consensuses that the movement
speed V proportionally increases with the path width W and
that the time MT required to navigate the path decreases
inversely.

2.2. Modifications of Steering Law

Numerous studies have evaluated path shapes other than
horizontal straight paths of constant width. Examples
include circular paths (Accot & Zhai, 1999, 2001; Hoffmann,
2009), curved paths (Montazer et al., 1987; Nancel & Lank,
2017; Yamanaka & Miyashita, 2019), linearly narrowing
paths (Accot & Zhai, 1997; Yamanaka & Miyashita, 2016),
widening spiral paths (Accot & Zhai, 1997), paths with a
corner (Pastel, 2006), successive path segments (Yamanaka
et al., 2017, 2018), and diagonal direction paths
(Thibbotuwawa et al., 2012). Typically, researchers modified
Steering Law to predict MT under these specific conditions
and demonstrated that the novel model outperformed the
baseline Steering Law in terms of the prediction accuracy
(i.e., model fit, such as R2). In contrast, in our study,
because we consider an application of Steering Law to menu
operations to help designers and engineers set appropriate
error-accepting delays, we investigate only a straight path of
constant width.

Kulikov et al. proposed a model that included trials in
which the cursor deviated from the path (Kulikov et al.,
2005). They corrected the path width by an amount of
effective width in accordance with the cursor-coordinate
variability perpendicular to the direction of movement,
regardless of whether the cursor was in/outside the path tol-
erance. Hence, their task was a kind of path steering with
error-accepting conditions. However, they instructed the
participants to “pass through as quickly as possible without
deviating from the path.” Therefore, the participants had to
move the cursor so that it would not deviate from the path,

and thus this result is not suitable for designers who want
to know the average operating time under a certain accept-
ance for deviation from a given path. In contrast, Yamanaka
(2019) instructed the participants that they could purpose-
fully deviate from the path for a given error-accepting delay,
which should affect their cursor-operation speed.

2.3. Modified Steering Law model with error-accepting
delay

In Yamanaka’s experimental results, Steering Law in its
speed-prediction form (Equation (2), V ¼ bW) showed
adjusted R2 ¼ 0:882 (Yamanaka, 2019). Because he found
statistical main effects of W and Tdelay on V, he examined
the following form to model V:1

V ¼ bW þ cTdelay, (4)

where b and c are regression constants. This model showed
adjusted R2 ¼ 0:986, and W and Tdelay were significant con-
tributors (p< 0.001). These results indicate that the inclu-
sion of Tdelay significantly improved the prediction accuracy
for V.

By substituting Equation (4) for V in Equation (3), and
then merging some constants, Yamanaka proposed the fol-
lowing model (Yamanaka, 2019):

MT ¼ aþ b
A

W þ cTdelay
: (5)

Because Yamanaka’s model uses three free parameters
while the baseline Steering Law uses two (Equation (1)), he
compared the prediction accuracies by AIC, which penalizes
using more free parameters (Akaike, 1974). Yamanaka’s
model gave AIC ¼ 528 and the baseline Steering Law gave
647. A model with smaller AIC is better, and a difference
greater than 10 is statistically significant (Burnham &
Anderson, 2003). Thus, Yamanaka concluded that his new
model significantly improved the prediction accuracy of
MT: We will first follow this procedure when analyzing our
data.

2.4. Effects of delay on graphical user interface
operations

A concern with adding a delay in displaying submenus is
that the user then has to wait to view the submenu items,
which could negatively affect their subjective feelings. In
addition, a latency or lag in reacting to a user’s action dir-
ectly increases the task completion time.

For mouse-pointing tasks, researchers have proposed
models modified from Fitts’ law to capture the negative
effect of lag (Hoffmann, 1992; MacKenzie & Ware, 1993).
Tochioka et al. (2019) investigated the effect of visual
latency when steering with a finger while using a tablet
computer. Similarly, Friston et al. (2016) conducted a
Steering Law experiment with transmission latency.

Note that these studies added a lag from the mouse or
finger movement to the cursor displacement, whereas under
our condition, an error-accepting delay is added only in

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 3



exposing submenus when the cursor hovers over the related
parent menu item.

2.5. Menu-navigation techniques

There exist numerous techniques to help users to navigate
cascaded menus in a short time and/or with fewer operation
errors. For example, expanding each menu item’s height is a
direct approach to ease the cursor-movement difficulty
(Cockburn & Gin, 2006; Tanvir et al., 2011; Tanvir et al.,
2008). This strategy is theoretically supported by Steering
Law: expanding an item tolerance (i.e., W) enables users to
move the cursor less carefully, which increases V and
decreases MT: Shortening the path length A of Steering Law
is also promising to reduce MT, e.g., moving the cursor for
a short distance rightwards in a cascaded drop-down menu
item opens submenus immediately (Kobayashi & Igarashi,
2003), or using Jumping Menu with which the cursor jumps
to the related submenus (Ahlstrom et al., 2006).

Blocking the cursor from deviating from an item toler-
ance is also effective for menu navigation. Previous studies
have proposed using virtual gravity (or force-fields
(Ahlstr€om, 2005)) and a physical force (Dennerlein et al.,
2000) to pull the cursor to the path center. Each of these
techniques is a kind of error-accepting technique in motor
space, similar to expanding the path tolerance.

Using Marking Menu (Kurtenbach & Buxton, 1993) and
its variations (Bailly et al., 2008; Zhao et al., 2006; Zhao &
Balakrishnan, 2004) or using Pie Menu (Callahan et al.,
1988) enables users to select an intended item without pre-
cise cursor positioning. A thorough survey by Bailly et al.
(2017) encompasses menu-selection techniques. Still, except
for the original paper by Yamanaka (2019), no work has
been conducted to evaluate the effects of temporal support
for cascaded-menu navigation, although such a delay is
widely used in many cascaded-menu implementations.

3. User study

We conducted a user study to measure the performance of
steering tasks accepting a deviation within a short duration.
This study’s apparatus, task, design, and procedure were
almost the same as in the original study (Yamanaka, 2019).

A remarkable difference from the original study was the
levels of Tdelay; Yamanaka used 0, 100, 200, 400, 600, and
800ms to sufficiently cover times shorter than and longer
than human’s reaction time in path-steering tasks (approxi-
mately 273ms (Lin & Hsu, 2014)). The tested Tdelay values
were acknowledged as being slightly sparse and limited
(Yamanaka, 2019). Hence, in our experiment, we investigate
the reproducibility of Yamanaka’s model for denser Tdelay

values of 0 to 1,000ms with intervals of 100ms.

3.1. Participants

We used G�Power (Faul et al., 2007) to determine the sam-
ple size. Regarding our main interest of the effect of Tdelay

on MT, the previous study by Yamanaka (2019) showed

g2p ¼ 0:423, which is considered a large effect size (van den
Berg, 2022). As it is unclear whether a similarly large effect
size exists in our current experiment, a smaller (but still
large) effect size of g2p ¼ 0:05 was set here (Heidel, 2022).
The remaining parameters are a ¼ 0:05 and Power ¼ 0.8 as
the conservative values recommended by Cohen (1988).
With these settings, we found that we needed 15
participants.

As we had to balance the order of 11 Tdelay values, we
recruited 22 participants (21 males; age: M¼ 21.8, SD ¼
0:96 years). All had normal or corrected-to-normal vision
and were right-handed. Twenty participants were familiar
with mouse operations, and ten of them were daily mouse
users. This research was approved by the Institutional
Review Board at Research Ethics Committee, Faculty of
Engineering, Information and Systems, University of
Tsukuba (the approval number is 2022R608). Informed con-
sent was obtained from each participant.

3.2. Apparatus

We used a Sony Vaio Z (Core i7-6567U, 3.30GHz, four
cores; 16GB RAM; Windows 10) as a PC. The display was a
Dell 2407WFPb (24-in diagonal, 1920� 1200 pixel reso-
lution, 518.4� 324.0mm display area, 3.70 pixels/mm; 16-
ms response time; 60Hz refresh rate). The input device was
an iBUFFALO BSMBU05 optical mouse (81.6 g, 1,000 dpi).
We used the default cursor speed and enabled pointer accel-
eration to enable the participants to perform mouse opera-
tions with higher ecological validity. We also used a Sanwa
MPD-NS3-LL as a large mousepad (350mm � 260mm).

3.3. Task

A trial was to click on a blue start area, pass through a
white path, and then click on a green end area (Figure 2).
The movement direction was always to the right. Between
the two clicks, if the cursor entered the gray out-of-path
areas and then stayed there longer than the given Tdelay, the
operation was recognized as a steering error. In this case, a
beep sounded to inform the participants of the steering
error, and the cursor position was marked with a cross (i.e.,
“�”). On the other hand, if the cursor returned to the path
within Tdelay, a steering error was not marked. Even when
participants caused a steering error or clicked outside the
end area (designated as a click error), they had to complete
the trial. After each trial, a large circular button labeled
“Next” appeared, and the participants clicked it to display
the next path condition.

Participants were instructed to minimize the time
between the two clicks and to avoid steering errors and click
errors. The time from crossing the start line to crossing the
end line was measured as MT:

3.4. Design

This study was an 11� 2� 4 repeated-measures design with
three independent variables: Tdelay, the path length A, and
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the path width W. We used 11 levels for Tdelay (0, 100, 200,
300, 400, 500, 600, 700, 800, 900, and 1,000ms), which gave
more variety than in the original study (Yamanaka, 2019).

We used two values for A (480 and 640 pixels, or 130
and 173mm on the display, respectively) and four values for
W (15, 23, 33, and 45 pixels, or 4.05, 6.21, 8.91, and
12.2mm, respectively), which were all the same as in the
original study. The A/W ratios (10.7–42.7) were greater than
10, and thus the participants had to perform continuous
visually controlled steering movements under the Tdelay ¼ 0
ms condition (Senanayake & Goonetilleke, 2016; Senanayake
et al., 2013; Thibbotuwawa et al., 2012).

We measured five dependent variables: the steering error
rate (ERsteer), the temporal ratio of deviation from the path
(Ratioout), the average count of deviations from the path per
trial (Countout), MT, and V. The click error rate (ERclick)
was not included as a dependent variable, because our main
focus was the analysis of steering operations.

3.5. Procedure

In the study, one block consisted of a random order of 2A�
4W � 7 repetitions ¼ 56 trials with a fixed Tdelay value. The
first repetition was considered practice. Before each block,

the participants used our exercise application, shown in
Figure 3, to learn the Tdelay of the next block except for the
Tdelay ¼ 0ms condition. The experimental procedure for an
example participant is shown in Figure 4.

In that exercise application, the participants moved the
cursor into the top or bottom gray area from the center white
area and then returned the cursor to the white area. A beep
sounded if the cursor stayed in the gray area longer than
Tdelay, and the cursor position there was marked with a cross
(i.e., “�”). Through this task, the participants learned to
return the cursor within Tdelay after deviating from the path.
The participants repeated this until they felt they had suffi-
ciently learned Tdelay, which typically required 30–60 s.

The order of the 11 Tdelay values was balanced among
the 22 participants using a Latin square pattern. In
total, we recorded 2A� 4W � 6 repetitions� 11Tdelay �
22 participants ¼ 11, 616 data points: This task took about
40min per participant.

4. Results

We analyzed the experimental results by using repeated-
measures ANOVA, which can be robust regardless of the
data distribution (Dixon, 2008; Mena et al., 2017).

Figure 2. Steering Law task application for our user study.

Figure 3. Application for learning the error-accepting delay.
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4.1. Error rate

Figure 5 shows the results for ERsteer: We found significant
main effects of Tdelay (F10, 210 ¼ 25:336, p< 0.001,
g2p ¼ 0:547), W (F3, 63 ¼ 31:811, p< 0.001, g2p ¼ 0:602), and
A (F1, 21 ¼ 7:633, p< 0.05, g2p ¼ 0:267) on ERsteer: A signifi-
cant interaction was found for Tdelay �W (F30, 630 ¼ 5:465,
p< 0.001, g2p ¼ 0:207).

Consistent with the original study (Yamanaka, 2019), as
Tdelay increased, the participants tended to make less ERsteer:
This result suggests that adding error-accepting delays
helped users steer through a narrow constrained path more
easily. The smaller ERsteer for longer Tdelay should thus con-
tribute to increasing the movement speed as the participants
did not have to pay attention to deviating from the path,
which will be proven later.

4.2. Average count of path deviations (Countout)

We measured the number of times the cursor left the path
per successful trial as Countout , and the results are shown in
Figure 6. The measurement method was the same as in the
original study (Yamanaka, 2019). The figure shows that for
Tdelay values up to 600ms, Countout increased with Tdelay:
On the other hand, when the Tdelay value was 700ms or
more, Countout changed only slightly.

We found significant main effects of Tdelay

(F10, 210 ¼ 21:770, p< 0.001, g2p ¼ 0:509), W (F3, 63 ¼ 53:496,
p< 0.001, g2p ¼ 0:718), and A (F1, 21 ¼ 40:806, p< 0.01,

g2p ¼ 0:660) on Countout: Significant interactions were found
for Tdelay �W (F30, 630 ¼ 6:465, p< 0.001, g2p ¼ 0:235) and
Tdelay � A (F10, 210 ¼ 2:305, p< 0.05, g2p ¼ 0:099). The result
showed that increasing Tdelay tended to induce more path
deviations, which would help the participants steer through
the path more rapidly.

4.3. Ratio of path deviations (Ratioout)

We defined Ratioout as ½ðout of path timeÞ=MT� � 100%,
as in (Yamanaka, 2019). This metric was to analyze whether
a longer error-accepting delay caused users to move the cur-
sor less precisely. As shown in Figure 7, Ratioout increased
with Tdelay when Tdelay � 600 ms, similarly to the result
of Countout:

We found significant main effects of Tdelay

(F10, 210 ¼ 10:566, p< 0.001, g2p ¼ 0:335) and W
(F3, 63 ¼ 18:636, p< 0.001, g2p ¼ 0:470) on Ratioout , but not
for A (F1, 21 ¼ 0:436, p¼ 0.516, g2p ¼ 0:020). A significant
interaction was found for Tdelay �W (F30, 630 ¼ 2:472,
p< 0.001, g2p ¼ 0:105).

4.4. Movement time (MT)

We found significant main effects of Tdelay (F10, 210 ¼ 11:334,
p< 0.001, g2p ¼ 0:351), W (F3, 63 ¼ 28:848, p< 0.001,
g2p ¼ 0:579), and A (F1, 21 ¼ 55:549, p< 0.001, g2p ¼ 0:726)

Figure 4. Experimental procedure of an example participant. Except for the Tdelay ¼ 0ms condition, the participants first experienced the exercise application to
get used to the new Tdelay condition and then performed the actual data-collection block. The order of the 11 Tdelay conditions was balanced among the 22
participants.

Figure 5. Graph of ERsteer on Tdelay , with error bars representing 95% confi-
dence intervals.

Figure 6. Graph of Countout on Tdelay , with error bars representing 95% confi-
dence intervals.
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on MT: Significant interactions were found for Tdelay �W
(F30, 630 ¼ 10:497, p< 0.001, g2p ¼ 0:333), Tdelay � A
(F10, 210 ¼ 9:448, p< 0.001, g2p ¼ 0:310), A�W
(F3, 63 ¼ 24:551, p< 0.001, g2p ¼ 0:539), and Tdelay � A�W
(F30, 630 ¼ 2:228, p< 0.001, g2p ¼ 0:096).

As shown in Figure 8, MT decreased as Tdelay increased.
However, the effect of Tdelay plateaued at approximately
400ms. Because the human’s corrective reaction time is
�270ms and the system’s latency from the mouse move-
ment to the cursor displacement was 57.9 ms,2 we assume
that the participants could begin to return the cursor in
327.9 ms after noticing the cursor deviated from the path.
Therefore, giving Tdelay ¼ 400 ms was sufficient to help
the participants increase the movement speed, and using
Tdelay > 400ms did not significantly contribute to
reducing MT any more.

4.5. Average movement speed (V)

Finally, we found significant main effects of Tdelay

(F10, 210 ¼ 3:060, p< 0.01, g2p ¼ 0:127) and W(F3, 63 ¼
89:368, p< 0.001, g2p ¼ 0:810) on V, but not for A
(F1, 21 ¼ 2:463, p¼ 0.132, g2p ¼ 0:105). A significant inter-
action was found for Tdelay �W (F30, 630 ¼ 1:768,
p< 0.05, g2p ¼ 0:071).

4.6. Model fitting

We here used all 88 fitting points (i.e., 11Tdelay � 2A� 4W)
for regression expressions, as the same procedure used in
the original study (Yamanaka, 2019). The candidate models
for predicting V and MT were also the same as in the ori-
ginal study.

The fit of the baseline formulation of Steering Law to
predict the average speed (V ¼ bW; Equation (2)) is shown
as Model #1 in Table 1 and Figure 9. To evaluate how the
additional factor Tdelay affected the speed, we show the result
of the refined model with Tdelay of Equation (4) as Model #2
(see Figure 10). In Figure 10, as the optimized coefficient
values are b¼ 0.0308 and c¼ 0.000595, we obtain V ¼
bW þ cTdelay ¼ b W þ ðc=bÞTdelay

� �
, and thus the equation

in the figure is noted as y ¼ 0:0308x and the x-axis label
is W þ ðc=bÞTdelay ¼ W þ 0:0194Tdelay:

Table 1 also lists the fitting results for predicting MT:
The baseline Steering Law is denoted as Model #3 (Figure
11) and Yamanaka’s modified formulation is Model #4
(Figure 12). As seen in the table, the modified model had a
better adjusted R2 and AIC than those for the baseline
model. Therefore, for these all-data analyses, we conclude
that Yamanaka’s report was appropriately reproduced; i.e.,

Table 1. Model fitting results with adjusted R2 (higher is better) and AIC (lower is better) values for the candidate models.

Model a b c Adjusted R2 AIC

(#1) V ¼ bW 0.0397 0.729 1.83
p< 0.001

(#2) V ¼ bW þ cTdelay 0.0308 0.000595 0.942 	150
p< 0.001 p< 0.001

(#3) MT ¼ aþ b A
W 63.2 21.7 0.603 1166

p¼ 0.182 p< 0.001
(#4) MT ¼ aþ b A

WþcTdelay
–73.3 40.5 0.0238 0.964 953

p< 0.001 p< 0.001 p< 0.001

The significance results (p-values) are listed at the bottom of each row in the middle column.

Figure 7. Graph of Ratioout on Tdelay , with error bars representing 95% confi-
dence intervals.

Figure 8. Graph of MT on Tdelay : The error bars represent 95% confidence
intervals. Figure 9. Steering Law fitness of Model #1 for all data points.
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adding the Tdelay term significantly improved the fits in both
V and MT models.

5. Prediction accuracy for unknown data

The analyses in Section 4.6 used all known MT data.
However, model validity in terms of the prediction accuracy
should be judged for the future (unknown) data. For
example, by using the coefficients for the best formulation
to predict MT, Model #4 in Table 1, how accurately can we
predict the MT under an untested condition such as (Tdelay,
A, W) ¼ (375ms, 500 pixels, 17 pixels), compared with the
baseline Steering Law (Model # 3)?

To investigate this, we ran shuffle-split and leave-one-
Tdelay-out cross-validations to compare these two candidate
models. For the shuffle-split cross-validation, we randomly

split the 88 fitting points into two groups (train and test
datasets) and then compute the MT values for the test data-
set on the basis of the model coefficients obtained by the
train dataset.

In this process, the data-size proportion for each Tdelay is
not considered, and thus, for example, all eight fitting points
(¼ 2A� 4W) under the Tdelay ¼ 500 ms condition may be
included in the train dataset in frequent iterations. This
allows us to not predict MT values for Tdelay ¼ 500 ms,
which might be undesirable to evaluate the candidate mod-
els’ prediction accuracies.

In contrast, the leave-one-Tdelay-out cross-validation does
not have such a problem, but this method cannot evaluate
the prediction accuracy when we have to use a small dataset
for training. Running both cross-validations complements
these pros and cons.

5.1. Shuffle-split cross-validation

When the ratio of (train:test) datasets is (80%:20%), the
data-processing steps are as follows.

a. Randomly selecting 80% (rounded up) of the data
points for training, i.e., 71 out of 88 path conditions.

b. For the 71 fitting points of the train dataset, regressing
Steering Law, MT ¼ aþ bðA=WÞ, to obtain coefficients
a and b, and also regressing Yamanaka’s model to
obtain coefficients a–c.

c. Predicting MT values for the remaining 17 test-data
points by using these coefficients a and b of the base-
line Steering Law and by using a–c of the modified
model.

d. Checking the R2, mean absolute error MAE, and root
mean square error RMSE values between the predicted
and observed MT values of the 17 test-data points for
each of the two models.

To handle the randomness when splitting the whole data
into train and test datasets, we performed this process over
100 iterations and obtained the mean values of R2, MAE,
and RMSE: Because the prediction performance can change
depending on the sizes of the train and test datasets, we
report five ratios: (train:test) ¼ (90%:10%), (80%:20%),
(70%:30%), (60%:40%), and (50%:50%).

The results are shown in Figure 13. Note that the error
bars (95% confidence intervals) were often small for
Yamanaka’s model and not visible in some cases.
Regardless of the train and test data sizes, Yamanaka’s
model gave, on average, R2 > 0:94, MAE < 42 ms, and
RMSE < 53 ms. Even though the train data became
smaller, Yamanaka’s model outperformed the baseline
Steering Law in all the three metrics (R2, MAE, and
RMSE). The two models’ error bars do not overlap for
the three metrics, and thus we can fairly conclude that
the baseline Steering Law has almost no chance of outper-
forming the modified model.

Figure 10. Steering Law fitness of Model #2 for all data points.

Figure 11. Steering Law fitness of Model #3 for all data points.

Figure 12. Steering Law fitness of Model #4 for all data points.
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5.2. Leave-one-Tdelay-out cross-validation

For this analysis, we first remove the eight data points under
the Tdelay ¼ 0 ms condition, and the remaining 80 data
points are used for computing the coefficients for both mod-
els. We then predict the MT values for the removed eight
data points by using the obtained coefficients. The R2,
MAE, and RMSE were calculated by comparing the pre-
dicted vs. observed MT values. This process was iterated for
each of the 11 Tdelay values, and then we obtained the aver-
age values for each metric for each model.

The results for each Tdelay are shown in Figure 14.
Yamanaka’s modified model outperformed the baseline
Steering Law in most cases for R2, but there are several
counter-examples. For example, for Tdelay ¼ 800 ms, the
observed and predicted MT values are shown in Figure 15.
The baseline Steering Law had a higher R2 of 0.9868, but
this metric only indicates the correlation between the
observed and predicted values.

In contrast, to discuss how accurately a model can pre-
dict the task outcome, we should also look at MAE and
RMSE: Figure 15 shows that Yamanaka’s modified model
outperformed the baseline for these two metrics. In particu-
lar, the modified model predicted MTs more accurately than
the baseline when MT was small (< 500ms).

Figure 14-Middle and Right show that, for Tdelay ¼ 300
and 400ms, MAE and RMSE values for the baseline Steering
Law were lower (better) than those for the modified model.
However, for Tdelay ¼ 300 ms, the differences in MAE and
RMSE were 18.0 and 14.0ms, respectively; for Tdelay ¼ 400
ms, those were 12.4 and 3.97ms. Given our apparatus’s

refresh rate (60Hz, i.e., 16.7-ms loop), these differences are
too small to determine whether the baseline Steering Law
was a better model.

As a result, by averaging the 11R2 values in Figure 14-
Left, the baseline Steering Law gave M¼ 0.9813
(SD ¼ 0:01696), which was slightly worse than that for
Yamanaka’s model (M¼ 0.9876 and SD ¼ 0:01040). In the
same manner, for MAE, the baseline Steering Law gave
M¼ 123.8ms (SD ¼ 83:83), which was worse than that for
Yamanaka’s model (M¼ 47.97 and SD ¼ 19:56). For RMSE,
the baseline Steering Law gave M¼ 148.4ms (SD ¼ 95:45),
which was worse than that for Yamanaka’s model
(M¼ 56.00 and SD ¼ 20:71). In summary, on the average
prediction accuracy, this leave-one-Tdelay-out cross-validation

Figure 13. Mean and 95% confidence interval of the shuffle-split cross-validation for our user study.

Figure 14. Results of the leave-one-Tdelay-out cross-validation for our user study.

Figure 15. Comparison of predicted and observed MT values under the 800-ms
Tdelay condition in the leave-one-Tdelay-out cross-validation.
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showed that the modified model outperformed the baseline
Steering Law.

6. Reanalysis of Yamanaka’s dataset

We here investigate whether our finding on the superiority
of Yamanaka’s model to the baseline Steering Law in terms
of prediction accuracy for unknown task conditions holds
for Yamanaka’s original data. As an overview of his experi-
ment, 12 participants joined in the user study in which the
same A and W values as in our study were used but Tdelay

values were 0, 100, 200, 400, 600, and 800ms. In total, 2A�
4W � 6Tdelay ¼ 48 task conditions were examined. For the
all-data analysis to predict MT, the baseline Steering Law
gave adjusted R2 ¼ 0:577 and AIC ¼ 647, while Yamanaka’s
model gave adjusted R2 ¼ 0:966 and AIC ¼ 528:

6.1. Shuffle-split cross-validation

We ran the same procedure as in Section 5.1. The results
are shown in Figure 16. Regardless of the train and test data
sizes, Yamanaka’s model gave, on average, R2 >

0:92, MAE < 54 ms, and RMSE < 69 ms. While the train
data became smaller, Yamanaka’s model outperformed the
baseline Steering Law in all the three metrics (R2, MAE,
and RMSE).

The two models’ error bars do not overlap for the three
metrics, and thus, again, we conclude that the baseline
Steering Law has almost no chance of outperforming the
modified model.

6.2. Leave-one-Tdelay-out cross-validation

We ran the same procedure as in Section 5.2. The results
are shown in Figure 17. By averaging the six R2 values, the
baseline Steering Law gave M¼ 0.9857 (SD ¼ 0:009134),
which was better than that for Yamanaka’s model
(M¼ 0.9770 and SD ¼ 0:01988). For MAE, the baseline
Steering Law gave M¼ 177.5ms (SD ¼ 65:82), which was
worse than that for Yamanaka’s model (M¼ 57.71 and
SD ¼ 24:19). For RMSE, the baseline Steering Law gave
M¼ 211.3ms (SD ¼ 76:56), which was worse than that for
Yamanaka’s model (M¼ 65.30 and SD ¼ 24:03). As a
result, overall, this leave-one-Tdelay-out cross-validation
showed that the modified model outperformed the baseline
Steering Law.

To sum up, similar to our experimental results, the
superiority of the modified model to the baseline Steering
Law was consistently observed for Yamanaka’s dataset. This
supported the robust prediction accuracy of the modified
model for unknown task conditions more strongly than test-
ing cross-validations only for our data.

7. Discussion

7.1. Error-accepting delays ease path-steering difficulty

We demonstrated that increasing the error-accepting delay
eased the path-steering difficulty. However, tendencies also
differed depending on the participant. For example, the
results for Countout (Figure 6), Ratioout (Figure 7), and MT
(Figure 8) with Tdelay of 700ms were lower than the corre-
sponding results for Tdelay of 500, 600, 800, and 900ms. The

Figure 16. Mean and 95% confidence interval of the shuffle-split cross-validation for Yamanaka’s dataset.

Figure 17. Results of the leave-one-Tdelay-out cross-validation for Yamanaka’s dataset.
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lower results with Tdelay of 700ms could have been due to a
high ERsteer by one participant. This participant experienced
the 700-ms Tdelay condition first and thus might have lacked
familiarity with this path-steering task with error-accepting
delays. Therefore, these results may be affected by outliers.

The results of V and MT suggested that, overall, a longer
Tdelay helped the participants move the cursor more rapidly
and also reduced the ERsteer. The only difference in the
modified model from the baseline Steering Law is that
the Tdelay term acts to expand the path width. According to
the coefficient value c¼ 0.0238 in Model # 4 (Table 1), for
example, when Tdelay is 200ms, the width is essentially
expanded by �5 pixels (¼ 0:0238� 200 ¼ 4:76). Given that
the path width was tightly constrained (15 � W � 45 pix-
els), this increase of five pixels would be noticeable, e.g., a
33% expansion for the W¼ 15 pixels case.

7.2. Robustness of the modified model to all-data and
cross-validation analyses

We found that using the modified model improved the fit
(adjusted R2 ¼ 0:964) compared with the baseline Steering
Law (0.603). In addition, the AIC value of the modified
model was significantly lower (953) than that of the baseline
(1,166). These results demonstrated that, consistent with
Yamanaka’s original study (Yamanaka, 2019), taking the
error-accepting delay into account enables us to predict MT
significantly more accurately than the baseline formulation
of Steering Law.

Because of the differences in the participants and experi-
mental design, we cannot directly compare the model fits
between our experiment and Yamanaka’s study. Still, as a
non-rigorous check, there was only a 0.002-point difference
in adjusted R2 values of the modified model between our
experiment (0.964) and Yamanaka’s study (0.966). We thus
did not find a clear drop in model fit in our dataset, which
partially supported that the modified model can be robustly
used for more various and wider-range Tdelay values than
examined in the original study.

We newly ran cross-validations to evaluate the predic-
tion accuracy for unknown task conditions. The result of
shuffle-split one showed that the modified model safely
outperformed the baseline in terms of R2, MAE, and
RMSE over 100 random-sampling iterations with no over-
laps of error bars regardless of the train-test dataset sizes
(Figure 13).

For the leave-one-Tdelay-out cross-validation, although the
baseline model sometimes outperformed the modified one,
these counter-examples did not necessarily mean that the
baseline model was significantly better, as discussed in
Section 5.2. On average, we found the modified model to be
superior to the baseline in all the three fit metrics.

These cross-validation procedures were then applied to
the dataset from Yamanaka’s original study. Again, we con-
firmed the robust prediction accuracy for unknown task
conditions, which filled in a missing piece of his study
reporting only the all-data analysis result.

7.3. Contribution of the modified model over the
baseline

We have empirically confirmed the contribution of the modi-
fied model, i.e., high prediction accuracy for MT. If there is no
such a model, when designers want to configure a cascaded
menu with a new Tdelay value, they have no choice but to use
the baseline Steering Law. However, based on the result shown
in Figure 11, the regression line passes through an area where
there are no data points when the task difficulty is high, and
MT cannot be estimated accurately.

For example, under the condition where A¼ 640, W¼ 15
pixels, and Tdelay ¼ 50ms, designers expect that
“MT ¼ 63:2þ 21:7ð640=15Þ ¼ 989 ms” using the baseline
model. However, this baseline model does not include the
Tdelay term, and such a short MT would not be observed
when Tdelay is set to 50ms. In reality, the MT should prob-
ably be between 1,411 and 1,628ms (under the Tdelay ¼ 0
and 100ms conditions in our experiment, respectively),
which is approximately 50% longer than the predicted MT
of 989ms. In other words, the modified model contributes
to preventing wrong decisions in user interface design.

This contribution of the modified model also enables us
to lower the cost of conducting additional experiments
when changing Tdelay. Even if the modified model is not
used, the MT would be accurately estimated by conducting
an experiment with the new Tdelay. However, this requires
additional costs and efforts for both designers and partici-
pants. With the modified model, MT can be estimated when
Tdelay is varied; we simulated how the predicted MT changes
in accordance with Tdelay with a 1-ms step as shown in
Figure 18. This is not possible with the baseline model and
is a clear advantage of the modified model.

7.4. Limitations and future work

We tried resolving limitations in Yamanaka’s original study,
such as using only six Tdelay conditions. However, our results
are still limited due to the experimental conditions, e.g., test-
ing only two values for A, which should be addressed in the
future. Recruiting more numerous and diverse participants
(e.g., older adults) will also support the generalizability of
the modified model. We used the same input device as in
the original experiment (mouse), but given that Steering
Law holds for various devices and that input-to-display
latencies depend on the device, testing the modified model’s
validity with non-mouse devices will provide a further
contribution.

Our purpose in this study was to examine the reproduci-
bility of Yamanaka’s report, and thus further improvements
in modeling (e.g., examining a logarithmic or square-root
function of Tdelay when expanding W) to overcome
Yamanaka’s model were outside the scope. Another untested
refinement approach is to combine Steering Law with Fitts’
Law (Fitts, 1954). Provided that an expected implication of
the modified model is to help designing cascaded-menu
configurations, users have to click on an intended submenu
item after steering through a parent item (see Figure 1b).
This action is called a targeted-steering motion and is well-
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modeled by a combination of the Steering Law and Fitts’
Law (Kulikov & Stuerzlinger, 2006; Senanayake et al., 2013).
We assume that, to predict MT more accurately, the former
action (path steering) should be replaced with Yamanaka’s
model if the menu uses error-accepting delays. These poten-
tial refinements of Yamanaka’s model will be evaluated in
our future work.

8. Conclusion

We investigated human performance in steering tasks with
an error-accepting delay, by using a model previously pro-
posed by Yamanaka (2019). Our experiment used 11 Tdelay

conditions instead of six in the original study, resulting in
improving the validity of Yamanaka’s modified model to
predict MT across different Tdelay values. The empirical
results showed that the modified model outperformed the
baseline Steering Law (Accot & Zhai, 1997) in terms of
adjusted R2 and AIC metrics. In addition, we found the
modified model to have better prediction accuracy than the
baseline under new (untested) task conditions by shuffle-
split and leave-one-Tdelay-out cross-validations. This conclu-
sion also held for the dataset from Yamanaka’s original
study, which further strengthened the robustness of the
modified model. In the future, we plan to conduct user
experiments with different experimental apparatuses per-
formed by a larger number of participants to evaluate the
modified model’s prediction accuracy further.

Notes

1. This modification is justified by the fact that the simplest
approach to model a dependent variable is to sum the
additional factor (Tdelay) to the baseline model. This is
explained in introductory statistics textbooks or websites,
e.g., https://www3.nd.edu/�rwilliam/stats2/l55.pdf, retrieved
November 18, 2022.

2. We used the same apparatus as in the original study
(Yamanaka, 2019), and this 57.9ms latency was measured
by Yamanaka using a 1000-fps high-speed camera.
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