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In this study, we show a new gesture recognition method for clothing-based gesture input methods using active and passive
acoustic sensing. Our system consists of a piezoelectric speaker and a microphone. The speaker transmits ultrasonic swept
sine signals, and the microphone simultaneously records the ultrasonic signals that propagate through the garment and the
rubbing sounds generated by the gestures on the garment. Our method recognizes a variety of gestures, such as pinch, twist,
touch, and swipe, by incorporating active and passive acoustic sensing. An important feature of our method is that it does
not require a dedicated garment or embroidery embedded since our system only requires a pair of piezoelectric elements
to be attached to the usual garment with a magnet. We performed recognition experiments of 11 gestures on the forearm
with four types of garments made from different materials and recognition experiments of five one-handed gestures on the
button of a shirt and the pocket of pants. The results of a per-user classifier confirmed that the f-scores were 83.9% and 95.9%
for 11 gestures with four different types of garments and 5 gestures that were selected assuming actual use, respectively. In
addition, we confirmed that the system recognizes five gestures, which can be performed with one hand, with 89.2% and
92.6% accuracy in the button and pocket sites, respectively.
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1 INTRODUCTION
Wearable devices, such as hearables and smartglasses, have become more prevalent in daily life. However, these
devices have the problem of operating because the user is required to touch the device itself to operate it, which
limits operability. To address this problem, researchers have attempted to develop methods to extend these
devices’ operability by using hand and skin touch gestures. Such methods include those using electromyography
sensors [14] and those using a pair of piezoelectric speakers and microphones [30, 47]. These methods require
the users to directly attach the sensing devices to their skin. Hence, the user may feel uncomfortable because
the devices give the user a strong sense of mechanics and wear [21]. To address this issue, smart clothing has
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attracted attention as a future wearable sensing device; it has the potential to sense rich user information, such
as gestures, posture, and biometric data, in a manner that is integrated into our daily lives [10]. Since most users
in their daily lives wear clothing, the surface of the clothing could potentially be used as a touch interface, and if
so, uncomfortableness can be reduced compared with the device being attached to the skin directly.

In regard to the research of input methods for smart clothing, most of them use conductive fibers to recognize
gestures by detecting changes in resistance or capacitive values caused by the stretching and contact with the
fabric. However, the use of conductive fibers requires a dedicated garment or embroidery embedding in the usual
garment; hence, a lot of dedicated garments or embedding costs are necessary to always use the gesture input
function with smart clothing since clothing has many roles, such as assisting in body temperature regulation,
body protection, and self-expression, and thus different clothing is worn for different usage scenarios. Therefore,
a user should be able to add smart clothing functions to a garment that they wear daily.

In this paper, we show a new gesture recognition method that uses the surface of usual garments as an input
interface with active and passive acoustic sensing (Fig. 1). We focus on garment deformation and the rubbing
sound generated by the gestures on the garment. Specifically, our method uses a pair of piezoelectric elements:
one for transmitting ultrasonic signals and one for recording both ultrasonic signals that propagate through the
taut garment and the rubbing sound during gestures. With these elements, our system can sense the deformation
of the garment using an ultrasonic signal that propagates through it, and finger movements by the rubbing sound.
As a result, our method recognizes a variety of gestures, such as pinching, twisting, touching, and swiping, on a
garment that is difficult to propagate acoustic signals and has a changeable shape. Moreover, since our system
only requires a pair of piezoelectric elements to be attached to the garment, it can be used for gesture recognition
on usual garments and can be easily reconfigured the interface to other garments or sites by simply re-mounting
the device.
The main contribution of this paper is the investigation of the relationship between acoustic sensing and

garments (performance of each gesture, multiple garments/sites, effects of attaching/detaching the device, and
effects of noise) and a deeper understanding of our system. As a result, the feasibility of our system in the most
stable environment (under sitting conditions in the room), which is considered a possible usage scenario, was
fully demonstrated. However, the position of this paper is a basic investigation of the feasibility of our system, not
a study of its performance while walking or in many actual usage environments. In summary, the contributions
of this paper are:

• We show a new gesture recognition method that uses the surface of usual garments as an input interface
with active and passive acoustic sensing, which enables the user to input a variety of gestures on the
garment and reconfigure the interface to other garments or sites by simply re-mounting the device.

• We implement a prototype device and investigate the effect of the acoustic properties of garments on
gesture recognition through gesture experiments on the forearm using four different types of garments
with 12 participants.

• We show that the average f-score of the per-user classifier of 11 gestures for four types of garments was
83.9% and that of five gestures considering actual use was 95.9%, which reveals that the user can use our
system on multiple garments.

• We show that the average f-score of the per-user classifier of five gestures for the button site experiment
was 89.2% and that for the pocket site experiment was 92.6%, which reveals that the user can use our system
on multiple sites.
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Fig. 1. Assumed scenes of system use. a: Earphone control. b: Smart glasses control. c: Smart home appliance control.
d: User wearing the device. The user stretches the garment for the propagation of the ultrasonic signal during gestures.
The experiment was conducted in the most stable environment where the system is expected to be used (seated state) to
investigate our system’s basic performance comprehensively.

2 RELATED WORK
The goal of this study is to perform gesture recognition with a usual garment surface as an interface by acoustic
sensing. Our method intersects with previous studies in three main areas: smart clothing, garment-mounted
devices, and acoustic sensing.

2.1 Smart Clothing
Many studies on smart clothing range from basic research to realize an embedding method with high performance
in terms of implementation cost, durability, and sensing accuracy [1, 3, 9, 26, 29, 32, 34–36, 38, 39, 48] to research
for practical applications.

In the research on fiber embedding methods, RESi [36] and Project Jacquard [39] are novel sensing approaches
that enable a yarn-based resistive pressure sensing and capacitive touch capabilities, respectively. TexYZ [1]
is a method for the rapid and effortless manufacturing of textile mutual capacitive sensors using a commodity
embroidery machine. Wu et al. [48] proposed a dual-sided woven touch sensor that can recognize the interactions
on the top of the bottom surface of the sensor. They also evaluated the performance of gesture recognition by
embedding sensors in the cuff of a denim jacket.
Most research on practical applications focused on gesture recognition [13, 18, 37, 41, 45, 49], posture esti-

mation [7, 8, 24, 25, 27], and vital sign sensing [17, 19, 20, 40]. In regard to gesture recognition, there are two
mainstream methods: one is to use the surface of a garment as an interface to recognize touch gestures by
embedding conductive fibers, and the other is to use the Doppler effect to recognize touchless gestures by placing
conductive fibers to act as antennas. In the former study on touch gestures, SmartSleeve [37] is a sleeve-shaped
device with a grid of conductive parts that recognizes nine gestures, including twirl, twist, fold, push, and stretch,
with 89.5% accuracy. In the latter study on touchless gestures, Fabriccio [49] utilizes Doppler motion sensing with
embedded conductive fibers to recognize touchless gestures, such as rub, swipe, and thumb slide. The evaluation
results reported a 92.8% cross-validation accuracy and 85.2% leave-one-session-out accuracy with 11 touchless
gestures and one touch gesture. In regard to posture estimation, studies have been conducted to estimate a posture
by recognizing bends and twists in various parts of the body using conductive fibers embedded in clothing as
stretch sensors. Corinne et al. [27] proposed a garment prototype using strain sensors to recognize upper body
postures. Their evaluation showed that the recognition accuracy was 97.0% for 27 upper body postures when the
classification was adapted to the individual participant. Ruibo et al. [24] proposed a system that estimates elbow
joint angles by sensing the resistance change due to strain and pressure with off-the-shelf conductive fabrics and
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a micro-controller. The evaluation results reported that the median error was 9.69◦ across users with different
arm sizes under motions with various speeds and magnitudes. In regard to vital sign sensing, Phyjama [20] has
two types of textile-based sensors that obtain pressure changes in the textile due to cardiac and respiratory
rhythm and estimate heart rate and respiration rate with high accuracy. Li et al. [17] implemented a continuous
perspiration level monitoring system by sensing the amount of sweat absorption using conductive fibers covered
with cotton braids. In addition to the aforementioned research on the practical application of smart clothing, Wu
et al. [50] proposed a pocket-based textile sensor that detects user input and recognizes everyday objects that a
user carries in the pockets of pants.
These studies using conductive fibers require a dedicated garment or embroidery to be embedded into each

garment; hence, the user needs to prepare a dedicated garment and embroidery embeddings for each scenario. By
contrast, our system consists of a pair of piezoelectric devices that are easy to attach and detach; therefore, our
method can recognize gestures on usual garments, and the interface can be reconfigured to other clothing or
sites by simply re-mounting the device.

2.2 Garment-Mounted Device
Several studies have focused on devices that can be attached and detached from a garment for gesture recognition.
For example, Whack Gestures [15] is a casual eyes-free accelerometer-based device attached to a user’s pocket,
which can recognize a tap gesture. Zippro [22] is a zipper-shaped device with an infrared (IR) sensor, capacitive
sensor, and fingerprint sensor. The research explored the possibilities of interaction with ubiquitous zipper-
bearing objects, with a focus on opportunities for foreground and background interactions. SensorSnaps [6]
is a button-shaped device with a low-power wireless 9-axis inertial measurement unit (IMU) sensor that can
recognize tap, touch, and rotation gestures.

As with our study, the feature of these studies is that the device can be re-mounted from usual garments easily
and quickly. In contrast to these studies, we focused on a gesture recognition system that uses the surface of
usual garments as an interface to recognize a rich context of touch and motion gestures.

2.3 Acoustic Sensing
Acoustic sensing can be broadly classified into two types: active and passive. Research on gesture recognition
and the construction of touch interfaces using each type is summarized as follows:

2.3.1 Active Acoustic Sensing. Active acoustic sensing is a sensing technique that transmits acoustic signals
using speakers and captures the propagated or reflected signals using microphones. The system recognizes the
state of the target by analyzing the captured signals. Watanabe et al. [47] and Kubo et al. [23] proposed a gesture
recognition method using the propagation of an ultrasonic signal through a body. The Sound of Touch [30]
recognizes on-body touch and hand gestures using transdermal ultrasound propagation. Takemura et al. [44]
proposed a wearable sensor system that estimates the angle of an elbow and the position of a tapping finger
using bone-conducted sound. These studies focus on the recognition of movement and shape of a human body
by applying sound to it. In addition, several studies focus on using existing objects as touch interfaces and
recognition sensors [5, 33, 43]. For example, Touch&Activate [33] is an acoustic touch sensing technique that
recognizes a rich context of touches, including grasp on existing objects. SenseSurface [16] is a sensing system
that can recognize an object and its position on an acrylic flat plate.

2.3.2 Passive Acoustic Sensing. Passive acoustic sensing recognizes a user’s input and context by capturing and
analyzing the sounds generated by a user’s actions. The Sound of One Hand [2] recognizes fingertip gestures,
such as tapping, rubbing, and flicking, by analyzing bone-conducted sounds. Stane [31] is a hand-held interaction
device that can classify the sound generated by actions, such as scratching and rubbing. Scratch Input [11] is

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 41. Publication date: June 2022.



Gesture Recognition Method Using Acoustic Sensing on Usual Garment • 41:5

Speaker Microphone

ClothSkin

Fig. 2. Ultrasonic signal propagation and rubbing sound of garments.
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Fig. 3. Gesture recognition flow for our method.

an acoustic-based input technique using the unique sounds generated by scratching the surface of textured
material. Skinput [12] estimates the tapped position on the skin by the sound propagated through the body using
a microphone array. BackPat [42] identifies which finger is tapping on the back of a smartphone by analyzing the
sounds generated by it. Toffee [51] recognizes the tap position around a device using acoustic time differences of
arrival correlation. Mingshi et al. [4] proposed an input method that can recognize gestures and handwriting
by analyzing the sound generated by sliding fingers on a table. EarBuddy [52] recognizes gestures on a surface
around the ear, which was implemented in a commercial-off-the-shelf earbud.
Our method recognizes the context of touches on an object like Touch&Activate [33] and surface gestures

like EarBuddy [52]. In contrast, we focused on garments as a gesture interface. Note that, clothing is difficult
for acoustic signals to propagate and its shape is not as stable as the target used in previous studies [33, 52].
To address this problem, we used active and passive acoustic sensing simultaneously to recognize a variety of
gestures, even for objects such as garments that are difficult to propagate ultrasonic signals.

3 OUR GESTURE RECOGNITION METHOD
In our gesture recognition method, users attach a pair of piezoelectric elements to their clothing. One is used
to transmit ultrasonic swept sine signals through the garment, and the other is used as a microphone to record
acoustic signals from the garment. Generally, when the garment is deformed (e.g., when the user touches the
garment with a finger), ultrasonic signals obtained at the microphone change due to the cloth’s deformation and
absorption of the signals into the human body. When the garment is rubbed (e.g., when the user passes a finger
across the garment), a rubbing sound is generated by friction (Fig. 2). Furthermore, both the ultrasonic signals
and rubbing sound obtained during the gesture differ for each gesture due to the deformation of the garment,
trajectory of the movement, and time that a gesture takes to finish. Hence, the frequency response changes for
each gesture. With this phenomenon, our system recognizes a variety of gestures on a garment using active and
passive acoustic sensing. Specifically, our system detects the occurrence of a gesture on the garment and then
extracts features from the sounds of the gesture to be classified with machine learning. Fig. 3 shows the gesture
recognition flow of our method. In this study, we use ultrasonic swept sine signals for active acoustic sensing as
they are beyond the range of human hearing.
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Fig. 5. Changes in frequency spectrum. a: Tension test. b: Deformation test.

3.1 Active and Passive Acoustic Sensing on the Cloth
Because we could not find any studies that used acoustic signals to recognize gestures on garments, we conducted
preliminary investigations to examine whether ultrasonic signals propagating through clothing and a rubbing
sound can be used for gesture recognition on the garment. To test the possibility of gesture recognition using
active acoustic sensing, we observed the changes in the frequency response when tension and deformation were
applied to the cloth because such changes due to tension and deformation are expected to occur during gestures.
Fig. 4 shows the measurement environment. The cloth of the off-the-shelf jeans (100% cotton, non-conductive
fibers, thickness: 0.50mm) was cut into a rectangular shape and sewn so that tension weights could be placed on
it. We transmitted a swept sine signal that shifted from 18 to 48 kHz over approximately 170ms into the cloth.
The sampling rate was 96 kHz, and 16-bit quantization was applied. The piezoelectric elements were a Thrive
OMR20F10-BP-310 for the speaker and a Murata 7BB-20-6L0 for the microphone; they were placed 10.0 cm apart
on the cloth. We used a Roland OCTA-CAPTURE audio interface to convert signals from analog to digital and
digital to analog and a Lenovo ThinkPad X270 to analyze the data.

We observed the frequency spectrum in the following two tests: tension and deformation. In the tension test,
we placed a 50 g deformation weight at the midpoint between the two piezoelectric elements and varied the
tension weights to 100 g, 150 g, 200 g, 250 g, and 300 g. In the deformation test, we applied a 100 g tension weight
and moved a 50 g deformation weight to the microphone side, the midpoint, and the speaker side. Fig. 5 shows the
changes in the frequency response in the tension and deformation tests, respectively. As shown in these figures,
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Fig. 6. Spectrograms during gestures on garment around the inside of forearm. a: Twisting. b: Drawing a circle.

changes in tension or deformation cause differences in the frequency response on a usual garment. Therefore,
different gestures could generate different frequency responses since each gesture causes different changes in
tension and deformation in the garment, suggesting that active acoustic sensing could be used to recognize
gestures on such a garment.
Although active acoustic sensing is effective for recognizing a stationary state, such as the way of touch, by

continuously analyzing the frequency response, it is ineffective at recognizing a non-stationary state, such as the
trajectory trace of a swiping gesture [47]. In addition, we consider that passive acoustic sensing is effective at
recognizing a non-stationary state because such gestures generate a loud sound at the interface between the
object and skin. To test the possibility of gesture recognition using passive acoustic sensing, we investigated
the changes in a frequency spectrogram to determine whether a rubbing sound is different depending on the
gesture. Specifically, we attached a piezoelectric element on the off-the-shelf shirt (100% cotton, non-conductive
fibers, thickness: 0.33mm) around the inside of a person’s forearm. Then, we recorded the sound when the same
person performed different gestures around the piezoelectric element. The sampling rate was 96 kHz, and a 16-bit
quantization was applied. The piezoelectric element was a Murata 7BB-20-6L0 for the microphone. Fig. 6 shows
the actual frequency spectrogram when the person performed a twist gesture and drew a circle, respectively. As
shown in these figures, the frequency spectrum’s distribution, duration, and temporal variations were different
for each gesture. This result suggests that passive acoustic sensing could be used to recognize such gestures.

3.2 Gesture Part Extraction
Before recognizing a gesture, the system needs to detect the occurrence of gestures. In this study, we detect
gesture occurrences using a threshold based on a spectral moving average. By observing the spectrograms of
several gestures, we found that the sound caused by the gestures was loud in the audible range at the time of
contact between the garment and skin, and the spectral power remained high until the end of the gesture. Thus,
we use two moving averages: short-term and long-term moving averages. We first use the short-term moving
average to detect the moment of skin/garment contact and then use the long-term moving average to determine
whether the gesture was performed. The moving average𝑀𝐴(𝑘) of the spectrogram is expressed in the following
equation:

𝑀𝐴(𝑘) = 1
𝑛

𝑘∑︁
𝑖=𝑘−𝑛+1

𝑠𝑖 .

Here, 𝑘 is the 𝑘-th index of the spectrogram, 𝑛 is the number of total periods, and 𝑠𝑖 is the overall value of the
𝑖-th spectral power. We estimate the gesture occurrence using 𝑀𝐴(𝑘) with two different values: 𝑛𝑠 and 𝑛𝑙 for
the short-term and long-term moving averages, respectively. Let 𝑘 be the start time of the gesture when the
two moving average values obtained in these two total periods exceed the threshold set for each. The audio
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data before and after the start time of the gesture is extracted at a fixed length and used as the audio data of the
gesture for machine learning.

3.3 Feature Extraction and Classification
Feature extraction was applied to the audio data of the gesture to increase machine learning efficiency. In this
study, we used features that are commonly used in sound recognition since each gesture has a different completion
time and spectral features, as shown in Fig. 6. Specifically, we extracted spectral features and waveform features
from the audio data. For the spectral features, we used the linear frequency cepstral coefficients (LFCCs) [53]. In
contrast to the Mel-frequency cepstral coefficients (MFCCs), which are used for audio and speech recognition,
LFCCs use a linear filter bank to reduce the dimensions of the audio signal. We consider LFCCs to be suitable
features because MFCCs do not equally extract features from the target range, considering the characteristics of
human hearing. In addition to LFCCs, we used spectral features that are commonly used in sound recognition,
i.e., centroid, subband peak, flux, roll-off, flatness, and bandwidth. For the waveform features, we extracted four
types of features: zero-crossing rate, root mean square, variance, and attack time, which are commonly used in
sound recognition. Except for the LFCCs, these features were extracted without change because they were not
filtered to match the characteristics of human hearing.
In the classification, we used a support vector machine (SVM) as a classification algorithm. Although other

classification algorithms, such as decision tree algorithms or ensemble learning algorithms, can be considered,
we selected an SVM because the recognition result was the best. The data used for training is automatically
extracted by the algorithm described in the aforementioned section; hence, the amount of data for each label is
unbalanced. To make the amount of data for each label equivalent, we oversampled the other label data to match
the amount of label data that was extracted the most.

4 IMPLEMENTATION
Our implementation comprises hardware, which transmits ultrasonic signals and records the sound around the
garment, and software, which detects the gesture occurrence and predicts the gesture from the audio data.

4.1 Hardware
The hardware of our system consists of a pair of piezoelectric devices. The piezoelectric element on the speaker
side converts electrical energy into vibrations via the inverse piezoelectric effect, generating sound. In contrast,
the piezoelectric element on the microphone side converts sounds into electrical energy with the opposite effect.
For efficient audio transmitting and recording, it is important that the piezoelectric elements are in close contact
with the boundary surface. Hence, we adopted a method of pinching from both sides with magnets, which enables
the devices to be re-mounted easily and to adhere to the garment. Fig. 7a shows the implemented device, and
Fig. 7b shows the device and attaching structure. The top of the device was covered with glue so that the signal
strength propagating through the garment was sufficiently larger than that propagating through the air. We
observed the spectrograms in real-time and did not find Doppler shifts during gestures in the air. For signals
propagating through the human body, the part that touches the skin is the magnet at the bottom, and the magnet
and cloth are sandwiched between the piezoelectric element and the skin. Therefore, the signal propagating
through the human body is extremely small. We confirmed that there was no change in the spectrogram, although
we moved our fingertips and contracted the muscles on the inner side of the forearm while wearing the device.
Fig. 8 shows the configuration of the hardware used in this study. The piezoelectric elements were a Thrive
OMR20F10-BP-310 on the speaker side and a Murata 7BB-20-6L0 on the microphone side. We used a Roland
OCTA-CAPTURE audio interface to convert signals from analog to digital and digital to analog and a Mouse
Computer DAIV 4N to analyze the data.
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4.2 Software
The sampling rate for transmitting/recording sound signals was 96 kHz, and a 16-bit quantization was applied.
For the active acoustic sensing, we used a swept sine signal that shifted from 18 to 48 kHz over approximately
85ms (8,192 samples). For the frequency range, we used the maximum usable range considering inaudible for
humans (18 kHz or higher) and the Nyquist frequency (48 kHz). For the signal transition time, we conducted
preliminarily gesture recognition experiments with two patterns of transition time: 8,192 and 16,384 samples.
However, there was no difference in accuracy; hence, we selected 8,192 samples to reduce the window size for an
FFT. The speaker transmits the signal repeatedly, and the microphone records the response.
Fig. 9 shows the software flow of our system. For gesture detection and the extraction of the gesture part,

we set 𝑛𝑠 to 2 and 𝑛𝑙 to 8. We extracted 196,608 samples (approximately 2, 048ms) for the gesture part; it begins
32,768 samples (approximately 341ms) before the start of the gesture. We use only audio data extracted using a
threshold.

For feature extraction, we filtered the audio data with a 32,768-point Hamming window that includes at least
three cycles of the swept sine signal. The window was shifted with 8,192 samples to extract the time variation of
the features. Therefore, we acquired 24 frames ((196, 608 − 32, 768)/8, 192 + 1 = 24) of sound arrays (24 × 32, 768)
from the audio data of the gesture part. We extracted the features described in Section 3.3 from each frame;
however, the attack time was extracted from the audio data of the gesture part. For the number of filter banks,
we conducted preliminarily gesture recognition experiments with two patterns of filter banks: 20 and 60 banks.
However, there was no difference in accuracy; hence, we selected 20 banks to reduce the number of dimensions
of features. We removed the first LFCC, which is the DC component. The total number of feature dimensions
obtained from the audio data of the gesture was 673.
We used a swept sine signal that shifts from 18 to 48 kHz; hence, we categorized the audio data into three

frequency bandwidth patterns: ultrasonic range (18–48 kHz), audible range (0–18 kHz), and all range (0–48 kHz).
From these frequency bandwidth patterns, we selected audible range and all range for extracting features because
the recognition accuracy for the features generated by these two bandwidths had higher accuracy and was the
most robust to noise. The derivation of the selected frequency pattern is described in detail in Section 5.3. The
total number of dimensions of the features used for machine learning was 1,346 (673 × 2). We implemented the
software for the measurements and data analysis using Python 3.7.

5 EVALUATION
First, we explain the experimental setup, including the selection of gestures and data collection procedures. Next,
we present the evaluation of gesture extraction and the preliminary experiments for selecting frequency patterns
that are important in the recognition algorithm. Subsequently, we present forearm experiments to evaluate
differences in garments, the relationship between the amount of data and the recognition accuracy, and the
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Fig. 9. Software flow of our system.

reusability of a classification model. Finally, we present experiments in the button and pocket parts to investigate
gesture recognition performance for other sites.

5.1 Experimental Setup
5.1.1 Gestures. In this study, we conducted a gesture experiment using the area around the forearm as the basic
input area because it is the most studied position in related works [37, 41, 45] (Fig. 10). To design the gestures
used in our system, it is necessary to consider the following three conditions caused by the recognition algorithm
and device configuration of our system:

• Deformation of the garment between the speaker and microphone: Gestures must cause the garment to deform
between the speaker and microphone to change the propagation of the ultrasonic signal.

• Asymmetrical gestures with respect to the speaker and microphone: The movements of a gesture must be
asymmetric with respect to the line connecting the speaker and microphone with other gestures. This is
because two symmetric gestures, such as the upward/downward swipe where the finger crosses the line
perpendicularly, could generate audio data similar to each other.

• Gestures without touching the device: The distance between the devices is set to 7.0 cm for the forearm
experiment, which is described in Section 5.1.2. Gestures between the speaker and microphone must be
performed by the fingertip because hand gestures have a high possibility of touching the element at this
device’s distance.

We selected six gestures (twist, touch, swipe (right/left), and pinch in/out) that met the aforementioned conditions
from the related study that investigates the performance of gestures on garments [37]. In addition, we added five
gestures (pick up, rotation, grasp, and circle (clockwise/anticlockwise)) that met the aforementioned conditions.
As a result, we selected 11 gestures in total. A user pulls their sleeve to propagate the swept sine signal when
performing a gesture. In addition, a user performs the gesture between the microphone and speaker, except for
the rotation and grasp gestures. For the rotation gesture, the rotation angle was fixed at 90 degrees. For the grasp
gesture, the position to grasp is on the backside where the device is located.

5.1.2 Data Collection. Table 1 shows the garments that were used in the forearm experiment. A garment consists
of various parameters, such as fiber material, fabric thickness, weave, surface treatment, and fiber thickness.
To investigate the effect of these differences on gesture recognition accuracy, we need to prepare the garments
that differ only in one parameter. However, it would have been difficult to prepare such garments, and the
combinations of the experiments would have become large. Therefore, we investigated the difference in gesture
recognition accuracy following the type of garment (shirt, fleece, and jacket) in this experiment. We selected
these garments because they are the outermost part of one’s clothing. We collected the data for 12 participants
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Fig. 10. Gestures around the forearm used in this study.

Table 1. Garments used in this study and their characteristics.

Appearance

Type of garments shirt shirt fleece jacket

Label shirt A shirt B fleece jacket

Material 100% cotton 67% polyester,
33% cotton 100% polyester 100% polyester

Conductivity No No No No
Thickness [mm] 0.33 0.17 0.99 0.27

Texture

wearing each garment. Six participants experimented on all garments. All participants were 20 to 26 years-old
and were right-handed.

The experiments were conducted in our laboratory. Participants were asked to sit on a chair since recognition
performance in a seated position represents the typical performance of our method under practical use because
the users use seats in many cases, such as at home, in an office, and on the train. In the preliminary investigation,
we observed that conversations at other desks and the sound of air conditioning did not affect the recording at
the desk where the experiment was conducted. Therefore, we did not ask the other students to be quiet or to turn
off any devices that generate sound, such as air conditioners. We explained the gestures and the procedure of the
experiment to the participants and asked them to wear a short-sleeved top and appropriately sized garments
from S to LL. Then, we attached the devices to the garment. As shown in Fig. 1d, the device was attached to the
forearm of the left hand to perform gestures with the right hand. The speaker was the piezoelectric element on
the elbow side, and the microphone was on the wrist side. If the distance between the devices was too short,
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Table 2. Extraction accuracy of each gesture [%].

Gesture shirt A shirt B fleece jacket Average

Pick Up 97.8 93.3 98.3 98.3 97.1
Twist 98.3 98.3 100.0 95.8 97.9

Rotation 95.0 94.2 91.7 95.0 94.0
Touch 97.2 95.8 79.2 93.3 91.5
Grasp 91.7 93.3 90.8 85.0 90.2

Swipe (Right) 98.3 96.7 95.0 98.3 97.1
Swipe (Left) 97.2 95.8 100.0 97.5 97.5
Pinch In 98.3 94.2 99.2 99.2 97.7
Pinch Out 98.9 95.8 98.3 97.5 97.5

Circle (Clockwise) 99.4 92.5 95.8 95.8 95.2
Circle (Anticlockwise) 97.8 95.0 98.3 97.5 96.9

Average 97.3 95.0 94.9 95.8 95.7

there was a high possibility that a finger could touch the devices during a gesture, which could cause false
recognition from the sound generated from the collision. However, if the devices are too far away from each other,
the ultrasonic signal is attenuated, and the frequency information is absent, which may decrease recognition
accuracy. We determined the device distance to be approximately 7.0 cm considering a trade-off between the
comfort of performing gestures and the signal attenuation. Then, we randomly showed the name and illustration
of a gesture on a screen and asked the participant to pull his or her sleeve. When we observed that the participant
was ready to perform the gesture, we transmitted the swept sine signal continuously, started recording, and then
asked the participant to perform the gesture. We recorded the data for all gestures without removing the device
and defined these recordings as one round. We asked the participant to take the device off and put it back in place
between each round. In total, we acquired the audio data for 165 gestures from each participant (11 gestures × 15
rounds) in each experiment.

5.2 Gesture Extraction Accuracy
We acquired 7,920 audio data samples (12 participants× four garments× 11 gestures× 15 rounds) with the forearm
experiment and automatically extracted the gestures using a threshold based on a spectral moving average. We
calculated the percentage of automatically extracted data for each gesture. Table 2 shows the extraction accuracy
of each garment in this study. As shown in this table, there are several gestures in which the extraction accuracy
is low, such as touch and grasp. By observing the spectrogram, we concluded that the low accuracy for the touch
gesture extraction was due to the short gesture time, while that for the grasp gesture extraction was due to the
place where the user’s fingers touched the garment being too far from the microphone. If a gesture was not
extracted, although no further command will be executed, a user was required to perform the gesture again; hence,
it is desirable to have high extraction accuracy from the viewpoint of usability. We need to conduct real-time
gesture recognition experiments to evaluate gesture extraction and recognition simultaneously in the future.

5.3 Selection of Frequency Pattern
We consider that there are three frequency patterns for extracting features: audible range (0–18 kHz), ultrasonic
range (18–48 kHz), and all range (0–48 kHz), since the features generated by audio data that are filtered into these
ranges have different effects on machine learning; therefore, in this investigation, we compared the recognition
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Fig. 11. Accuracy for each frequency pattern without noise. Error bars show standard f-score deviation in each participant.

Car Noise Music Noise Voice Noise Arm Swing Noise
audible+all ultrasonic+audible+allaudible allultrasonic ultrasonic+all ultrasonic+audible

Fig. 12. Average accuracy of each frequency pattern with each noise added.

accuracies of the experiments without/with additional noise in seven possible combinations of frequency patterns:
ultrasonic range, audible range, all range, ultrasonic + audible ranges, ultrasonic + all ranges, audible + all ranges,
and ultrasonic + audible + all ranges.
In the experiment without noise, we trained the SVM classifier using the audio data of shirt A. Fig. 11 shows

the recognition accuracy of each frequency pattern. The frequency pattern with the highest recognition accuracy
was obtained by training with audible + all ranges. The frequency pattern with the lowest recognition accuracy
was obtained by training with ultrasonic range.

In the experiment with noise, we prepared four different types of noise: car, music, voice, and arm swing, and
added the pre-recorded noise data to the audio data using software to compare the effect of each noise at the
same signal-to-noise ratio (SNR). The noise was recorded with the same microphone (Murata 7BB-20-6L0) used
in the experiment. For the car noise, we recorded the running sound of a car under the condition of outdoor
walking. For the music noise, we recorded the rock music from the speaker at a volume set by listening to it. For
the voice noise, we recorded the voice of a user, who wore the microphone, reading some text. For the arm swing
noise, we recorded the noise by swinging the arm wearing the microphone, as in the experiment. The average
SNR of each noise (car, music, voice, and arm swing) was 4.9 dB, 3.6 dB, 6.6 dB, and 7.9 dB, respectively, and the
average standard deviation was 3.4 dB when the obtained noise data were added as is to the audio data. These
results show that the SNR distribution is roughly concentrated between 10 dB and 1 dB. Therefore, we adjusted
the SNR of each noise to 10 dB, 6 dB, 3 dB, and 1 dB, respectively, to make the conditions of each noise equivalent.
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a b

Fig. 13. Overall accuracy for each garment. Error bars show the standard deviation of the f-score in each participant. a: All
participants. b: Six participants who experimented for all garments.
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Fig. 14. Confusion matrix of all gestures with all garments.

We extracted the same features from the audio data with noise added and used these features as test data, and
we trained the SVM classifier using the audio data of shirt A. Fig. 12 shows the change in recognition accuracy
for each of the frequency patterns when the SNR was changed from 10 dB to 1 dB. For all SNRs and all noises,
the recognition accuracy of the audible + all ranges was the most accurate. For the experiment without noise, the
recognition accuracy of audible range was also high; by contrast, the recognition accuracy decreased significantly
by 21.0 points when noise was added. The recognition accuracy of the ultrasonic range also decreased because
the noise data contained internal noise from the electronic circuit, increasing the amount of added noise.
From the results of two experiments, we found that the audible range mainly contributes to the recognition

accuracy. However, the recognition accuracy of audible range, which does not include ultrasonic range, decreased
largely as the noise was added. The recognition accuracy of ultrasonic range alone was not high; however, we
found that the frequency of audible + all ranges, including ultrasonic range, was robust to noise. Therefore, we
concluded that the frequency pattern of audible + all rangeswas robust to noise and had high recognition accuracy.
We use audible + all ranges for the features in the following evaluation.

5.4 Evaluation for Different Garments
We investigated the accuracy of gesture recognition following different garment types. We collected audio data
for four different garments shown in Table 1. As in Section 5.3, two types of recognition experiments were
performed: data without noise and data with noise by changing the SNR.
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Fig. 15. Spectrograms of swipe (right) and swipe (left) for each garment.

5.4.1 Data without Noise. The overall accuracy of each garment for all participants is shown in Fig. 13a, and the
average accuracy of the six participants who experimented with all garments is shown in Fig. 13b. The f-scores
for shirt A, shirt B, fleece, and jacket were 87.4%, 80.2%, 85.4%, and 82.6%, respectively. Fig. 14 shows the confusion
matrix of all gestures with all garments. The touch and pinch-out gestures have the highest and lowest accuracies
for all garments, respectively (average f-scores 95.6% and 77.7%).

From Fig. 13, we confirmed that the recognition accuracies of shirt A and fleece are high, while those of shirt B
and jacket are low. Fig. 15 shows the actual frequency spectrogram when the same person performed swipe
(right/left) in different garments. As this figure shows, the spectral power obtained at the microphone decreased
as the garment thickness increased. Although the spectral power of fleece was the smallest, the recognition
accuracy of symmetrical gestures was the best among tested garments. We consider that this is because the
thicker the garment is, the more sound is attenuated, and high-frequency (5–15 kHz) sound is more likely to
attenuate. For example, as the spectrogram of fleece shows, at the beginning of the gesture of swipe right (the
place away from the microphone), the microphone captured only low-frequency sound (0–5 kHz). At the end of
the gesture (the place close to the microphone), the microphone captured the sound up to approximately 15 kHz.
Owing to these characteristics, even symmetrical gestures have different spectrograms. The same phenomenon
can be observed with swipe left. In contrast, other thinner garments (shirt A, shirt B, and jacket) propagated
sound more easily than fleece; hence, the microphone could detect high-frequency sound even at the place away
from the microphone. Therefore, obtained spectrograms were similar, and thus, it was more difficult to classify
symmetric gestures other than fleece.
As a result of the aforementioned experiment without noise, the overall average of the recognition accuracy

was 83.9%, which is insufficient for actual use. However, a few commands are sufficient to operate applications
such as music players or comic readers, and it is expected that the recognition accuracy will be improved by
narrowing down the gestures. Therefore, we will investigate the performance of the selected gestures in the
following evaluation. For example, five commands are used to operate the music player: play/pause, next song,
previous song, volume up, and volume down. Specifically, we selected twist, rotation, touch, swipe (right), and
circle (anticlockwise) for the five selected gestures on the basis of the recognition accuracy of each gesture and
the confusion performance between them. Fig. 16 shows the overall accuracy of each garment when training
using only the data of these five gestures. The overall average recognition accuracy for the five gestures was
95.8%. We will conduct experiments using data from these gestures only in the following sections.

5.4.2 Data with Noise by Changing the SNR. Fig. 17 shows the change in recognition accuracy of the five selected
gestures for each garment when the SNR was changed from 1 dB to 10 dB. The solid and dashed lines show
the accuracies of the classifier trained with audible + all ranges and audible range, respectively. The recognition
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Fig. 16. Recognition accuracy of each garment and the overall accuracy considering actual use. Error bars show standard
f-score deviation in each participant.

jacketshirt A fleeceshirt B
Car Noise Music Noise Voice Noise Arm Swing Noise

Fig. 17. Accuracy of each garment with each noise added. The solid and dashed lines show the accuracy of the classifier
trained with audible + all ranges and audible range, respectively.

accuracy decreased as the SNR decreased for all garments. The recognition accuracy across the noise in each
garment (shirt A, shirt B, fleece, and jacket) at an SNR of 1 dB decreased by 5.0, 3.8, 11.1, and 4.1 points from
no noise, respectively. The recognition accuracy across the garment of each noise (car, music, voice, and arm
swing) at an SNR of 1 dB decreased by 4.0, 7.5, 4.6, and 7.9 points from no noise, respectively. The accuracy
improvement was 4.3 points at an SNR of 1 dB compared with the accuracy for the training using only data of
audible range. The degradation of recognition accuracy was greatest for fleece, shirt A, jacket, and shirt B in that
order. This order is consistent with the garment thickness (Table 1). As shown in Fig. 15, the thicker the garment,
the smaller the propagation of the ultrasonic range. The larger the power of the ultrasonic range, the larger the
ratio of information for the ultrasonic range is contained in the features for machine learning. When noise data
are added to the audio data, the information in the audible range for the features becomes unstable; however, that
of the ultrasonic range is stable. Therefore, the classification model generated by audio data with a large ratio of
information in the ultrasonic range is more accurate in predicting noisy features.

5.5 Recognition Accuracy with Number of Data
In the evaluation described in Section 5.4, we used 14 rounds of data as the training data and the remaining one as
unknown data to evaluate the recognition accuracy for a per-user classifier. However, to train a per-user classifier,
the user must first measure the audio data. In this section, we investigate the change in recognition accuracy by
varying the amount of data used for training data to evaluate the relationship between the recognition accuracy
and the tolerance of the initial setup time. We conducted a questionnaire survey on the tolerance of the initial
setup time. We asked participants for their impressions with a Likert scale when the time required for the initial
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Fig. 18. Changes in f-score for the amount of training data from 4 to 14 rounds and changes in ratings of the tolerance of
the initial setup time. The measurement time for one round is calculated at 50 seconds, and the amount of training data is
converted to the measurement time.

setup was 3 min, 5 min, 10 min, or 15 min. The scale ranged from 1 (dissatisfaction) to 5 (satisfaction). From
the questionnaire, we found that the time required for the initial setup should be less than 5 min (3 min:𝑀=4.1,
𝑆𝐷=1.11, 5 min:𝑀=3.2, 𝑆𝐷=1.15, 10 min:𝑀=1.9, 𝑆𝐷=0.83, 15 min:𝑀=1.4, 𝑆𝐷=0.60). Additionally, we trained the
SVM classifier by varying the amount of data used for training data.

Fig. 18 shows the changes in recognition accuracy and standard deviation when the amount of training data is
changed (red line) and the ratings of the tolerance of the initial setup time (blue line). The measurement time for
the five gestures requires approximately 50 s per round (10 s × 5 gestures). This figure shows that the recognition
accuracy increased as the training data increased, and the rating decreased as the measurement time increased.
The recognition accuracy was more than 90% when the measurement time was greater than five min. In contrast,
the rating exceeded three points within five min of measurement time; however, the rating was less than two
points for more than ten min of measurement time. From the usability viewpoint, the number of required rounds
should be six or less; we need to improve the recognition algorithm to obtain sufficient recognition accuracy
with less than six rounds of data.

5.6 Reusability of Classification Models
To assess the reusability of the classification model, we evaluated the recognition accuracy when the gesture
data of another garment of the same model or the different mounting locations were given as test data for the
classification model created with the data obtained from the original garments.

5.6.1 Recognition Accuracy in Different Instance. We collected five rounds of audio data from the six participants
for another garment of the same model as shirt A. All participants were 20 to 26 years-old and were right-handed.
We then evaluated the recognition accuracy in the same manner as in Section 5.3.

Fig. 19a shows the average recognition accuracy for the six participants and the overall accuracy. For comparison,
we show the accuracy of leave-one-round-out cross-validation learning using only the original data. The figure
shows that the overall accuracy was 98.2% for the original data and 95.5% for another data. This recognition
accuracy was approximately the same for the experiment of Section 5.4.1.

5.6.2 Recognition Accuracy in Different Mounting Location. We used gesture data at two mounting locations
(wrist side and elbow side) for test data at different mounting locations. The distance between the devices was the
same as in the forearm experiment. The displacement width of the device was approximately 10 cm. We collected
five rounds of audio data from the six participants for each mounting location. All participants were 20 to 26
years-old and were right-handed, and shirt A was used. We then evaluated the recognition accuracy in the same
manner as in Section 5.3.
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Fig. 19. Recognition accuracy of each participant and overall accuracy. Error bars show the standard f-score deviation for
each participant. a: Different instance, b: Different mounting location.

Fig. 19b shows the average recognition accuracy for the six participants and the overall accuracy. The figure
shows that the overall accuracies were 90.7% and 88.6% for the wrist and elbow sides, respectively. We consider
that the decrease in recognition accuracy is due to the change in the garment’s shape around the device caused
by the change in the mounting location, which affected the acoustic characteristics. To improve the recognition
accuracy, the classification model should be trained using the gesture data at each mounting location; however,
this leads to a decrease in usability. To reduce the required number of training data, we consider incorporating
the gesture data at each mounting location into a part of the original training data. In this experiment, we
acquired data for five rounds; hence we incorporated four rounds into the original training data and evaluated
the recognition accuracy using the data from the remaining one as test data. As a result of the experiment, the
overall accuracies were 94.7% (𝑆𝐷=5.44) for the wrist side and 94.9% (𝑆𝐷=4.79) for the elbow side. We confirmed
that the recognition accuracy was improved; however, the usability issue remains since it takes approximately
three minutes to acquire data for four rounds. To avoid the need to reacquire data, we plan to investigate the
changes in acoustic characteristics when the mounting location is shifted and investigate the feasibility of a
robust classification algorithm for changes in mounting location.

5.7 Recognition Accuracy for General Classifiers
We evaluated the recognition accuracy of the general classifiers to examine the feasibility of our method for
new users. We trained the SVM classifier for each garment using five selected gestures and performed leave-one-
user-out cross-validation. Fig. 20 shows the recognition accuracy of the general classifiers for each garment. The
recognition accuracy for a general classifier in each garment (shirt A, shirt B, fleece, and jacket) decreased by 7.1,
5.8, 6.3, and 5.6 points from a per-user classifier, respectively. We consider that the decrease in accuracy for the
general classifier compared with the per-user classifier was due to individual differences in the speed and force
of the gesture. Fig. 21 shows the distribution of each feature of shirt A by the t-distributed stochastic neighbor
embedding (t-SNE) method [46], color-coded by the target participant and other participants. Most of the data
with high recognition accuracy has a scattered distribution for each gesture (Fig. 21a). On the other hand, the
data with low recognition accuracy has little variation in the distribution and shows a high degree of similarity
between the participant’s own data, indicating that it is not suitable for the general classifier (Fig. 21b).
In general, it is possible to use deep learning methods, such as convolutional neural networks (CNNs), to

improve recognition accuracy, though, at the moment, the amount of data is insufficient, and it is difficult to
improve the accuracy. Suppose our method becomes widely used in the future when the number of users increases
and more data is collected. In that case, it could be possible to recognize gestures using a general classifier by
CNN.
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Fig. 20. Recognition accuracy of the general classifiers for each garment. Error bars show the standard f-score deviation for
each participant. × is the accuracy of each participant.
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Fig. 21. Visualization of the features of shirt A data using the t-SNE method. Blue and red show the distributions of the
target and other participants, respectively. a: The target participant with the highest recognition accuracy. b: The target
participant with the lowest recognition accuracy.

5.8 Recognition Accuracy in Different Parts of Garments
To confirm that our system can be used on different sites, we conducted a gesture recognition experiment using
the button of a shirt and a pocket of pants (Fig. 22a). We asked participants to pull the gesture surface by using
their middle, ring, and pinky fingers to propagate the swept sine signal when performing a gesture. Fig. 22b
shows the gestures for each site. The gestures were designed to be executable with one hand in consideration of
usability. We also tried to minimize symmetrical gestures that can cause misrecognition. In the pocket experiment,
a pair of symmetrical gestures (i.e., swipe (right/left)) was selected since the distance between the elements
was too close to perform a swipe back. We collected the audio data for each site from the five participants. All
participants were 20 to 26 years-old and were right-handed. In the button experiment, shirt A was used. In the
pocket experiment, we used off-the-shelf pants (86% cotton, 9% polyester, 5% polyurethane, non-conductive fibers,
thickness: 0.53mm). We then evaluated the recognition accuracy in the same manner as in Section 5.3.
Fig. 23 shows the average recognition accuracy for the five participants and the overall accuracy. The figure

shows that the overall accuracies were 89.2% for the button sites and 92.6% for the pocket sites. Fig. 24 shows
the confusion matrix for each site with five participants. In the button experiment, three of the five participants
had a recognition accuracy of 90% or higher, and one of them had a recognition accuracy of 95% or higher. The
recognition accuracy for touch and circle gestures was higher than 90%. In the pocket experiment, three of the
five participants had a recognition accuracy of 90% or higher, and two of them had a recognition accuracy of 95%
or higher. The recognition accuracy for all gestures was higher than 90%.
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Fig. 22. a: Gesture surface and state of the hand when performing a gesture. b: Gestures used in this section.

Fig. 23. Recognition accuracy of each participant and overall accuracy for each site. Error bars show the standard f-score
deviation for each participant.

Push Up-

Touch-

Swipe Right-

Swipe Left-

Circle-

Push Up-

Touch-

Swipe Down-

Circle

Swipe Back-

Prediction

Tr
u

th

f-score [%]

85.3

95.9 

87.4

91.4

86.2

Prediction

Tr
u

th

f-score [%]

92.4

93.3

90.5

90.8

95.9

a b

Fig. 24. Confusion matrix for five gestures with five participants. a: Button, b: Pocket.

The recognition accuracy of these experiments was lower than that in the forearm ones. This is because we
could only select gestures such as tracing and touching the surface due to gesture conditions. To improve the
recognition accuracy, it is necessary to select gestures with high recognition accuracy, such as twist, although
it is necessary to use both hands. These results showed that the recognition accuracy of several participants
exceeded 90%, suggesting that our method can be applied to other sites besides the forearm.
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6 DISCUSSION AND LIMITATIONS

6.1 Recognition Accuracy of Each Gesture
There was a considerable difference in recognition accuracy between gestures. The gesture with the highest
accuracy was touch (average f-score: 95.9%) for all garments because the sound generated by the touch was like a
pulse, and the spectrogram obtained was very different from other gestures. The gesture with the lowest accuracy
was pinch out (average f-score: 77.7%) for all garments. As shown in Fig. 14, symmetrical gestures tended to be
mistaken for each other; that is, swipe (right/left), pinch in/out, and circle (clockwise/anticlockwise) were easily
misrecognized. We considered that these gestures would cause a symmetrical change in the volume obtained at
the microphone because the finger movements of these gestures were symmetrical; however, in several of these
gestures, the volume increased even when the finger moved away from the microphone owing to changes in the
force applied to the garments, which may have caused the misrecognition. There were also mistakes between
swipe (right/left) and pinch in/out. We concluded that the spectrograms were similar because the trajectory
and speed of the finger movements were similar for swipe (right/left) and pinch in/out. In addition, there were
a number of misrecognitions between pick up and twist. These gestures have the common action of holding
the garment with the index finger and thumb; thus, the obtained characteristics are similar, and misrecognition
occurs.

In this study, we found that avoiding combinations of these gestures can reduce the difference in recognition
accuracy for each garment (Fig. 16). To recognize these easily mistaken gestures or gestures that move symmetri-
cally to the device (e.g., swipe upward/downward), the system could use multiple piezoelectric elements in a
single device and measure the time difference of arrival to trace finger trajectories. Moreover, for the gestures
that move symmetrically to the device, the recognition is still possible with the current system by using only one
of these gestures. Re-examining these gestures and improving the devices are future works.

6.2 Recognition Accuracy of Each Garment
We investigated the effect of each garment on the recognition accuracy and noise in the experiments described in
Section 5.4. In the experiment without noise, the results of the experiments showed that misrecognition between
symmetrical gestures occurs depending on the attenuation properties of the garment. To obtain a clearer change
in the spectrogram of symmetrical gestures, a longer distance between the microphone and the sound source is
necessary because the attenuation of sound increases with the distance it propagates through a garment. Fig. 25
shows the spectrogram of the swipe (right/left) for shirt B when the device distance is varied. As shown in this
figure, the longer the device distance, the clearer the change in the spectrogram of audible range (0 kHz–18 kHz)
the larger the attenuation of the ultrasonic range (18 kHz–48 kHz). The attenuation in audible range is likely
to be clearer, reducing the misrecognition of symmetrical gestures; however, the lack of information in the
ultrasonic range may make the system less robust to noise. In the future, we plan to study the optimal device
distance for each garment, considering the trade-off between recognition accuracy and robustness to noise. In
contrast, although the thickness of the garment is close to that of shirt A and jacket, the obtained characteristics
are different, and the recognition accuracy is higher for shirt A and lower for jacket. Thus, the difference in
recognition accuracy and acoustic characteristics of the garments is not only due to the thickness of the garment
but also to other factors. To further understand the gesture recognition performance of our method, a more
extensive investigation of the relationship between clothing components and acoustic properties is needed.

In the experiment with noise, we found that the active acoustic sensing prevents the degradation of recognition
accuracy due to noise. By contrast, Mitake et al. [28] proposed a method to prevent the degradation of recognition
accuracy in noisy environments by changing the importance ratio of features obtained from acceleration and
audio in accordance with the noise level. We consider that it is possible to prevent the degradation of recognition
accuracy in noisy environments by changing the importance ratio of the ultrasonic range to audible range of
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Fig. 25. Spectrograms for each distance of shirt B (swipe (right) and swipe (left)).

the audio data. In addition to enhancing the recognition algorithm, we plan to incorporate noise suppression
methods, such as noise reduction algorithms and the soundproofing of devices.

6.3 Study of Mobile Performance
In this study, we measured the audio under sitting conditions and investigated the basic performance of our
method in terms of recognition accuracy and effect of noise. Future investigations in a more practical environment
are needed. We conducted a supplementary experiment with two participants for future reference. We use the data
acquired in a sitting condition as training data and while walking indoors as test data. The recognition accuracy
decreased from 97.8% and 95.6% to 90.2% and 64.3%, respectively, compared with the data in the sitting condition.
We then manually extracted the gestures from the latter data, which had a particularly large drop in accuracy. As
a result of resurveying with manual extraction data, the accuracy was improved to 77.4%. This indicates that the
decrease in accuracy was caused by the gesture extraction not working well due to noise. However, the accuracy
is still not sufficient. This is thought to be mainly due to motion noise and the difference in movement while
walking and sitting. To address this issue, it may be necessary to use the data from walking for training. It is also
necessary to investigate the recognition accuracy using audio data while standing or running, and the usability
in actual applications (e.g., music player or comic reader) on a larger scale. In this study, piezoelectric devices
were wired into the audio interface to conduct experiments in a stable measurement environment. We consider
that it is possible to make the device mobile because our method did not require time synchronization between
the speaker and microphone. We plan to make the device mobile to investigate the performance of our system in
actual use.

6.4 Command Mode Detection
The system needs to switch from a non-command mode to command mode because a user will touch the garment
even when there is no intention to input commands. Since our system uses a speaker and microphone, our system
can use a wake word like a smart speaker or a unique sound obtained by direct touch to the microphone to
switch to command mode. In addition, our system could distinguish between the non-command and command
mode using sound in the ultrasonic range because our system requires a user to pull their sleeve to propagate
the ultrasonic signal. With the command mode switch, the problem is misrecognizing the non-command mode
as the command mode because an unintended command execution occurs. For this reason, it is desirable that
the precision of the command mode be approximately 100%. Although the precision of the non-command mode
requires high accuracy, it is less important than that of the command mode because it does not cause the system
to enter the command mode.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 41. Publication date: June 2022.



Gesture Recognition Method Using Acoustic Sensing on Usual Garment • 41:23

Fig. 26. Changes in f-score for the dimensionality deletion based on feature importance.

To test the aforementioned idea, we conducted a command/non-command mode identification experiment.
We collected audio data for 75 s (5 s × 15 rounds) in each state, with and without pulling sleeves, for the same
participants who took part in the forearm experiment. We investigated the recognition accuracy of these states
for two categories: non-command mode and command mode. We extracted the data for every 32,768 samples
(approximately 341ms) and calculated the LFCCs for 19 dimensions by removing the DC component. We used
an SVM in the same manner as in the previous experiment. As a result, the precision of the non-command
mode was 90.2%, and that of the command mode was 72.2%. We concluded that the accuracy was not sufficient
for distinguishing between the non-command mode and command mode yet. To improve the precision of the
non-command mode, it is necessary to tighten up the conditions for predicting the command mode (e.g., changing
the probability criterion for prediction). In future work, it is necessary to develop a more optimal method of
transitioning to command mode from those methods described above.

6.5 System Limitations and Improvements
One of the limitations of our system was that it required users to execute gestures with their garments stretched;
however, executing gestures at the forearm causes the problem of having both hands occupied. In the future,
it is necessary to investigate the feasibility and issues of a recognition system that does not require stretching
garments. In addition, there is also a possibility that the current system can be used without stretching garments
by using tight-fitting garments such as sportswear. Since many users enjoy listening to music or watching videos
during exercise, we believe that our system will be a good match for them. We need to carry out experiments
with more types of garments to find out what kind of garments are available in our system.

We performed dimensionality deletion based on the importance of the features used in this study. As a result,
the recognition accuracy was not improved by reducing the number of features and remained almost constant up
to 900 deletions (Fig. 26). However, dimensionality deletion has the advantage of reducing the computational
cost. In the future, the number of dimensions and features that can be deleted should be investigated in detail to
reduce the computational cost.

6.6 Utility of Ultrasound
Using active acoustic sensing with ultrasonic signals, our system achieves a 0.5% accuracy improvement in noise-
less environments and a 4.3% accuracy improvement in the noisy environment compared with the recognition
method using only passive acoustic sensing for the five selected gestures. However, the use of active acoustic
sensing requires the use of a speaker, which requires extra hardware costs. In addition, it requires a higher
sampling rate than passive acoustic sensing, which increases the computational time and power consumption.
One means to reduce power consumption in the current system is to change the use of active acoustic sensing in
accordance with the noise level, thereby reducing the time spent using the high sampling rate. In the future, it is
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necessary to evaluate the utility of using ultrasound in this system after a detailed study of the cost and power
consumption of such hardware.

7 CONCLUSION
We presented a gesture recognition method for usual garments using active and passive acoustic sensing. Our
system recognizes a variety of gestures on a usual garment using a pair of detachable devices. We comprehensively
studied the effect of differences in garments, noise type, the amount of training data on recognition accuracy,
and the reusability of the classification model. The evaluation results of a per-user classifier confirmed that the
f-score was 83.9% for 11 gestures with four different types of garments, and assuming actual use, the f-score was
95.9% for five selected gestures that were selected. In addition, we confirmed that the system recognizes five
gestures, which can be performed with one hand, with 89.2% and 92.6% accuracy in the button and pocket sites,
respectively.

ACKNOWLEDGMENTS
This work is supported by JSPS, KAKENHI Grant Number 21J10706/18H04104 and JST, PRESTO Grant Number
JPMJPR2138.

REFERENCES
[1] Roland Aigner, Andreas Pointner, Thomas Preindl, Rainer Danner, and Michael Haller. 2021. TexYZ: Embroidering Enameled Wires for

Three Degree-of-Freedom Mutual Capacitive Sensing. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(CHI ’21). Association for Computing Machinery, Article 499, 12 pages. https://doi.org/10.1145/3411764.3445479

[2] Brian Amento, Will Hill, and Loren Terveen. 2002. The Sound of One Hand: A Wrist-Mounted Bio-Acoustic Fingertip Gesture Interface.
In Proceedings of the CHI ’02 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’02). Association for Computing
Machinery, 724–725. https://doi.org/10.1145/506443.506566

[3] Leah Buechley, Mike Eisenberg, Jaime Catchen, and Ali Crockett. 2008. The LilyPad Arduino: Using Computational Textiles to Investigate
Engagement, Aesthetics, and Diversity in Computer Science Education. In Proceedings of the 2008 CHI Conference on Human Factors in
Computing Systems (CHI ’08). Association for Computing Machinery, 423–432. https://doi.org/10.1145/1357054.1357123

[4] Mingshi Chen, Panlong Yang, Jie Xiong, Maotian Zhang, Youngki Lee, Chaocan Xiang, and Chang Tian. 2019. Your Table Can Be an
Input Panel: Acoustic-Based Device-Free Interaction Recognition. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 3, 1 (2019), 21 pages. https://doi.org/10.1145/3314390

[5] Tim Collins. 2009. Active acoustic touch interface. Electronics Letters 45, 20 (2009), 2 pages. https://doi.org/10.1049/el.2009.2054
[6] Artem Dementyev, Tomás Vega Gálvez, and Alex Olwal. 2019. SensorSnaps: Integrating Wireless Sensor Nodes into Fabric Snap

Fasteners for Textile Interfaces. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (UIST ’19).
Association for Computing Machinery, 17–28.

[7] Guido Gioberto. 2014. Garment-Integrated Wearable Sensing for Knee Joint Monitoring. In Proceedings of the 2014 ACM International
Symposium on Wearable Computers: Adjunct Program (ISWC ’14 Adjunct). Association for Computing Machinery, 113–118. https:
//doi.org/10.1145/2641248.2642736

[8] Guido Gioberto, James Coughlin, Kaila Bibeau, and Lucy E. Dunne. 2013. Detecting Bends and Fabric Folds Using Stitched Sensors.
In Proceedings of the 2013 International Symposium on Wearable Computers (ISWC ’13). Association for Computing Machinery, 53–56.
https://doi.org/10.1145/2493988.2494355

[9] Nur Al-huda Hamdan, Simon Voelker, and Jan Borchers. 2018. Sketch&Stitch: Interactive Embroidery for E-Textiles. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18). Association for Computing Machinery, 1–13. https:
//doi.org/10.1145/3173574.3173656

[10] Alex Hanuska, Bharath Chandramohan, Laura Bellamy, Pauline Burke, Rajiv Ramanathan, and Vijay Balakrishnan. 2016. Smart clothing
market analysis. Technical Report. University of California, Berkeley.

[11] Chris Harrison and Scott E. Hudson. 2008. Scratch Input: Creating Large, Inexpensive, Unpowered and Mobile Finger Input Surfaces.
In Proceedings of the 21st Annual ACM Symposium on User Interface Software and Technology (UIST ’08). Association for Computing
Machinery, 205–208. https://doi.org/10.1145/1449715.1449747

[12] Chris Harrison, Desney Tan, and Dan Morris. 2010. Skinput: Appropriating the Body as an Input Surface. In Proceedings of the
2010 CHI Conference on Human Factors in Computing Systems (CHI ’10). Association for Computing Machinery, 453–462. https:
//doi.org/10.1145/1753326.1753394

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 41. Publication date: June 2022.

https://doi.org/10.1145/3411764.3445479
https://doi.org/10.1145/506443.506566
https://doi.org/10.1145/1357054.1357123
https://doi.org/10.1145/3314390
https://doi.org/10.1049/el.2009.2054
https://doi.org/10.1145/2641248.2642736
https://doi.org/10.1145/2641248.2642736
https://doi.org/10.1145/2493988.2494355
https://doi.org/10.1145/3173574.3173656
https://doi.org/10.1145/3173574.3173656
https://doi.org/10.1145/1449715.1449747
https://doi.org/10.1145/1753326.1753394
https://doi.org/10.1145/1753326.1753394


Gesture Recognition Method Using Acoustic Sensing on Usual Garment • 41:25

[13] Florian Heller, Stefan Ivanov, Chat Wacharamanotham, and Jan Borchers. 2014. FabriTouch: Exploring Flexible Touch Input on Textiles.
In Proceedings of the 2014 ACM International Symposium on Wearable Computers (ISWC ’14). Association for Computing Machinery,
59–62. https://doi.org/10.1145/2634317.2634345

[14] Donny Huang, Xiaoyi Zhang, T. Scott Saponas, James Fogarty, and Shyamnath Gollakota. 2015. Leveraging Dual-Observable Input for
Fine-Grained Thumb Interaction Using Forearm EMG. In Proceedings of the 28th Annual ACM Symposium on User Interface Software and
Technology (UIST ’15). Association for Computing Machinery, 523–528. https://doi.org/10.1145/2807442.2807506

[15] Scott E. Hudson, Chris Harrison, Beverly L. Harrison, and Anthony LaMarca. 2010. Whack Gestures: Inexact and Inattentive Interaction
with Mobile Devices. In Proceedings of the Fourth International Conference on Tangible, Embedded, and Embodied Interaction (TEI ’10).
Association for Computing Machinery, 109–112. https://doi.org/10.1145/1709886.1709906

[16] Daiki Iwase, Yuichi Itoh, Hidehiko Shin, and Takao Onoyoe. 2019. SenseSurface: Using Active Acoustic Sensing to Detect What is
Where. Journal of Information Processing 60, 10 (2019), 12 pages. https://ci.nii.ac.jp/naid/170000180546/

[17] Ji Jia, Chengtian Xu, Shijia Pan, Stephen Xia, Peter Wei, Hae Noh, Pei Zhang, and Xiaofan Jiang. 2018. Conductive Thread-Based Textile
Sensor for Continuous Perspiration Level Monitoring. Sensors 18, 11 (2018), 19 pages. https://doi.org/10.3390/s18113775

[18] Thorsten Karrer, Moritz Wittenhagen, Leonhard Lichtschlag, Florian Heller, and Jan Borchers. 2011. Pinstripe: Eyes-Free Continuous
Input on Interactive Clothing. In Proceedings of the 2011 CHI Conference on Human Factors in Computing Systems (CHI ’11). Association
for Computing Machinery, 1313–1322. https://doi.org/10.1145/1978942.1979137

[19] Ali Kiaghadi, Morgan Baima, Jeremy Gummeson, Trisha Andrew, and Deepak Ganesan. 2018. Fabric as a Sensor: Towards Unobtrusive
Sensing of Human Behavior with Triboelectric Textiles (SenSys ’18). Association for Computing Machinery, 199–210. https://doi.org/10.
1145/3274783.3274845

[20] Ali Kiaghadi, Seyedeh Zohreh Homayounfar, Jeremy Gummeson, Trisha Andrew, and Deepak Ganesan. 2019. Phyjama: Physiological
Sensing via Fiber-Enhanced Pyjamas. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3, 3, Article 89
(2019), 29 pages. https://doi.org/10.1145/3351247

[21] James Knight and Chris Baber. 2005. A Tool to Assess the Comfort of Wearable Computers. Human Factors: The Journal of the Human
Factors and Ergonomics Society 47, 1 (2005), 15 pages. https://doi.org/10.1518/0018720053653875

[22] Pin-Sung Ku, Jun Gong, Te-Yen Wu, Yixin Wei, Yiwen Tang, Barrett Ens, and Xing-Dong Yang. 2020. Zippro: The Design and
Implementation of An Interactive Zipper. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI ’20).
Association for Computing Machinery, 1–13. https://doi.org/10.1145/3313831.3376756

[23] Yuki Kubo, Yuto Koguchi, Buntarou Shizuki, Shin Takahashi, and Otmar Hilliges. 2019. AudioTouch: Minimally Invasive Sensing of
Micro-Gestures via Active Bio-Acoustic Sensing. In Proceedings of the 21st International Conference on Human-Computer Interaction with
Mobile Devices and Services (MobileHCI ’19). Association for Computing Machinery, 1–13. https://doi.org/10.1145/3338286.3340147

[24] Ruibo Liu, Qijia Shao, Siqi Wang, Christina Ru, Devin Balkcom, and Xia Zhou. 2019. Reconstructing Human Joint Motion with
Computational Fabrics. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3, 1, Article 19 (2019),
26 pages. https://doi.org/10.1145/3314406

[25] Federico Lorussi, Walter Rocchia, Enzo Scilingo, Alessandro Tognetti, and Danilo de rossi. 2004. Wearable, Redundant Fabric-Based Sensor
Arrays for Reconstruction of Body Segment Posture. IEEE Sensors Journal 4, 6 (2004), 12 pages. https://doi.org/10.1109/JSEN.2004.837498

[26] Yiyue Luo, Kui Wu, Tomás Palacios, and Wojciech Matusik. 2021. KnitUI: Fabricating Interactive and Sensing Textiles with Machine
Knitting. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI ’21). Association for Computing
Machinery, Article 668, 12 pages. https://doi.org/10.1145/3411764.3445780

[27] Corninne Mattmann, Oliver Amft, Holger Harms, Gerhard Troster, and Frank Clemens. 2007. Recognizing Upper Body Postures using
Textile Strain Sensors. In Proceedings of the 2007 11th IEEE International Symposium on Wearable Computers (ISWC ’07). Institute of
Electrical and Electronics Engineers, 29–36. https://doi.org/10.1109/ISWC.2007.4373773

[28] Hiroto Mitake, Hiroki Watanabe, and Sugimoto Masanori. 2020. A Method for Recognizing Road Surface Condition based on Footsteps
and Inertial Data. Journal of Information Processing 61, 10 (2020), 12 pages. https://doi.org/10.20729/00207250

[29] Md. Tahmidul Islam Molla, Crystal Compton, and Lucy E. Dunne. 2018. Launderability of Surface-Insulated Cut and Sew E-Textiles.
In Proceedings of the 2018 ACM International Symposium on Wearable Computers (ISWC ’18). Association for Computing Machinery,
104–111. https://doi.org/10.1145/3267242.3267255

[30] Adiyan Mujibiya, Xiang Cao, Disney S. Tan, Dan Morris, Shwetak Naran Patel, and Jun Rekimoto. 2013. The Sound of Touch: On-body
Touch and Gesture Sensing Based on Transdermal Ultrasound Propagation. In Proceedings of the 2013 ACM International Conference on
Interactive Tabletops and Surfaces (ITS ’13). Association for Computing Machinery, 189–198. https://doi.org/10.1145/2512349.2512821

[31] Roderick Murray-Smith, John Williamson, Stephen Hughes, and Torben Quaade. 2008. Stane: Synthesized Surfaces for Tactile Input.
In Proceedings of the 2008 CHI Conference on Human Factors in Computing Systems (CHI ’08). Association for Computing Machinery,
1299–1302. https://doi.org/10.1145/1357054.1357257

[32] Alex Olwal, Jon Moeller, Greg Priest-Dorman, Thad Starner, and Ben Carroll. 2018. I/O Braid: Scalable Touch-Sensitive Lighted Cords
Using Spiraling, Repeating Sensing Textiles and Fiber Optics. In The 31st Annual ACM Symposium on User Interface Software and Technology
Adjunct Proceedings (UIST ’18 Adjunct). Association for Computing Machinery, 203–207. https://doi.org/10.1145/3266037.3271651

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 41. Publication date: June 2022.

https://doi.org/10.1145/2634317.2634345
https://doi.org/10.1145/2807442.2807506
https://doi.org/10.1145/1709886.1709906
https://ci.nii.ac.jp/naid/170000180546/
https://doi.org/10.3390/s18113775
https://doi.org/10.1145/1978942.1979137
https://doi.org/10.1145/3274783.3274845
https://doi.org/10.1145/3274783.3274845
https://doi.org/10.1145/3351247
https://doi.org/10.1518/0018720053653875
https://doi.org/10.1145/3313831.3376756
https://doi.org/10.1145/3338286.3340147
https://doi.org/10.1145/3314406
https://doi.org/10.1109/JSEN.2004.837498
https://doi.org/10.1145/3411764.3445780
https://doi.org/10.1109/ISWC.2007.4373773
https://doi.org/10.20729/00207250
https://doi.org/10.1145/3267242.3267255
https://doi.org/10.1145/2512349.2512821
https://doi.org/10.1145/1357054.1357257
https://doi.org/10.1145/3266037.3271651


41:26 • Amesaka et al.

[33] Makoto Ono, Buntarou Shizuki, and Jiro Tanaka. 2013. Touch&Activate: Adding Interactivity to Existing Objects Using Active Acoustic
Sensing. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (UIST ’13). Association for
Computing Machinery, 31–40. https://doi.org/10.1145/2501988.2501989

[34] Maggie Orth, Rehmi Post, and Emily Cooper. 1998. Fabric Computing Interfaces. In Proceedings of the 1998 CHI Conference on Human
Factors in Computing Systems (CHI ’98). Association for Computing Machinery, 331–332. https://doi.org/10.1145/286498.286800

[35] Simon Ozbek, Md. Tahmidul Islam Molla, Crystal Compton, and Brad Holschuh. 2018. Novel Manufacturing of Advanced Smart
Garments: Knitting with Spatially-Varying, Multi-Material Monofilament. In Proceedings of the 2018 ACM International Symposium on
Wearable Computers (ISWC ’18). Association for Computing Machinery, 120–127. https://doi.org/10.1145/3267242.3267278

[36] Patrick Parzer, Florian Perteneder, Kathrin Probst, Christian Rendl, Joanne Leong, Sarah Schuetz, Anita Vogl, Reinhard Schwoediauer,
Martin Kaltenbrunner, Siegfried Bauer, and Michael Haller. 2018. RESi: A Highly Flexible, Pressure-Sensitive, Imperceptible Textile
Interface Based on Resistive Yarns. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (UIST
’18). Association for Computing Machinery, 745–756. https://doi.org/10.1145/3242587.3242664

[37] Patrick Parzer, Adwait Sharma, Anita Vogl, Jürgen Steimle, Alex Olwal, and Michael Haller. 2017. SmartSleeve: Real-time Sensing of
Surface and Deformation Gestures on Flexible, Interactive Textiles, Using a Hybrid Gesture Detection Pipeline. In Proceedings of the 30th
Annual ACM Symposium on User Interface Software and Technology (UIST ’17). 565–577. https://doi.org/10.1145/3126594.3126652

[38] Ernest Rehmi Post, Maggie Orth, Peter R Russo, and Neil A Gershenfeld. 2000. E-broidery: Design and fabrication of textile-based
computing. IBM Systems Journal 39, 3&4 (2000), 21 pages. https://doi.org/10.1147/sj.393.0840

[39] Ivan Poupyrev, Nan-Wei Gong, Shiho Fukuhara, Mustafa Emre Karagozler, Carsten Schwesig, and Karen E Robinson. 2016. Project
Jacquard: Interactive Digital Textiles at Scale. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI
’16). Association for Computing Machinery, 4216–4227. https://doi.org/10.1145/2858036.2858176

[40] Emilio Sardini, Mauro Serpelloni, and Viviane Pasqui. 2015. Wireless Wearable T-Shirt for Posture Monitoring During Rehabilitation
Exercises. IEEE Transactions on Instrumentation and Measurement 64, 2 (2015), 10 pages. https://doi.org/10.1109/TIM.2014.2343411

[41] Stefan Schneegass and Alexandra Voit. 2016. GestureSleeve: using touch sensitive fabrics for gestural input on the forearm for controlling
smartwatches. In Proceedings of the 2016 ACM International Symposium on Wearable Computers (ISWC ’16). Association for Computing
Machinery, 108–115. https://doi.org/10.1145/2971763.2971797

[42] Karsten Seipp and Kate Devlin. 2014. BackPat: One-Handed off-Screen Patting Gestures. In Proceedings of the 16th International
Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI ’14). Association for Computing Machinery,
77–80. https://doi.org/10.1145/2628363.2628396

[43] John Lammey Stewart and E. C. Westerfield. 1959. A Theory of Active Sonar Detection. Proceedings of the Institute of Radio Engineers 47,
5 (1959), 10 pages. https://doi.org/10.1109/JRPROC.1959.287283

[44] Kentaro Takemura, Akihiro Ito, Jun Takamatsu, and Tsukasa Ogasawara. 2011. Active Bone-conducted Sound Sensing for Wearable
Interfaces. In Proceedings of the 24th Annual ACM Symposium Adjunct on User Interface Software and Technology (UIST ’11 Adjunct).
Association for Computing Machinery, 53–54. https://doi.org/10.1145/2046396.2046419

[45] Kentaro Ueda, Tsutomu Terada, and Masahiko Tsukamoto. 2018. Evaluation of Input/Output Interface Using Wrinkles on Clothes.
Journal of Data Intelligence 1, 1 (2018), 19 pages. https://doi.org/10.1145/3282353.3282365

[46] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using t-SNE. Journal of Machine Learning Research 9, 86 (2008),
27 pages. http://jmlr.org/papers/v9/vandermaaten08a.html

[47] Hiroki Watanabe, Tsutomu Terada, and Masahiko Tsukamoto. 2017. Gesture Recognition Method Utilizing Ultrasonic Active Acoustic
Sensing. Journal of Information Processing 25 (2017), 10 pages. https://doi.org/10.2197/ipsjjip.25.331

[48] Tony Wu, Shiho Fukuhara, Nicholas Gillian, Kishore Sundara-Rajan, and Ivan Poupyrev. 2020. ZebraSense: A Double-Sided Textile
Touch Sensor for Smart Clothing. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (UIST
’20). Association for Computing Machinery, 662–674. https://doi.org/10.1145/3379337.3415886

[49] Te-Yen Wu, Shutong Qi, Junchi Chen, MuJie Shang, Jun Gong, Teddy Seyed, and Xing-Dong Yang. 2020. Fabriccio: Touchless Gestural
Input on Interactive Fabrics. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI ’20). Association for
Computing Machinery, 1–14. https://doi.org/10.1145/3313831.3376681

[50] Te-Yen Wu, Zheer Xu, Xing-Dong Yang, Steve Hodges, and Teddy Seyed. 2021. Project Tasca: Enabling Touch and Contextual
Interactions with a Pocket-Based Textile Sensor. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI
’21). Association for Computing Machinery, New York, NY, USA, Article 4, 13 pages. https://doi.org/10.1145/3411764.3445712

[51] Robert Xiao, Greg Lew, James Marsanico, Divya Hariharan, Scott Hudson, and Chris Harrison. 2014. Toffee: Enabling Ad Hoc, around-
Device Interaction with Acoustic Time-of-Arrival Correlation. In Proceedings of the 16th International Conference on Human-Computer
Interaction with Mobile Devices and Services (MobileHCI ’14). Association for Computing Machinery, 67–76. https://doi.org/10.1145/
2628363.2628383

[52] Xuhai Xu, Haitian Shi, Xin Yi, WenJia Liu, Yukang Yan, Yuanchun Shi, Alex Mariakakis, Jennifer Mankoff, and Anind K. Dey. 2020.
EarBuddy: Enabling On-Face Interaction via Wireless Earbuds. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems (CHI ’20). Association for Computing Machinery, 1–14. https://doi.org/10.1145/3313831.3376836

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 41. Publication date: June 2022.

https://doi.org/10.1145/2501988.2501989
https://doi.org/10.1145/286498.286800
https://doi.org/10.1145/3267242.3267278
https://doi.org/10.1145/3242587.3242664
https://doi.org/10.1145/3126594.3126652
https://doi.org/10.1147/sj.393.0840
https://doi.org/10.1145/2858036.2858176
https://doi.org/10.1109/TIM.2014.2343411
https://doi.org/10.1145/2971763.2971797
https://doi.org/10.1145/2628363.2628396
https://doi.org/10.1109/JRPROC.1959.287283
https://doi.org/10.1145/2046396.2046419
https://doi.org/10.1145/3282353.3282365
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.2197/ipsjjip.25.331
https://doi.org/10.1145/3379337.3415886
https://doi.org/10.1145/3313831.3376681
https://doi.org/10.1145/3411764.3445712
https://doi.org/10.1145/2628363.2628383
https://doi.org/10.1145/2628363.2628383
https://doi.org/10.1145/3313831.3376836


Gesture Recognition Method Using Acoustic Sensing on Usual Garment • 41:27

[53] Xinhui Zhou, Daniel Garcia-Romero, Ramani Duraiswami, Carol Espy-Wilson, and Shihab Shamma. 2011. Linear versus mel frequency
cepstral coefficients for speaker recognition. In Proceedings of the 2011 IEEE Workshop on Automatic Speech Recognition and Understanding.
Institute of Electrical and Electronics Engineers, 559–564. https://doi.org/10.1109/ASRU.2011.6163888

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 41. Publication date: June 2022.

https://doi.org/10.1109/ASRU.2011.6163888

	Abstract
	1 Introduction
	2 Related work
	2.1 Smart Clothing
	2.2 Garment-Mounted Device
	2.3 Acoustic Sensing

	3 OUR GESTURE RECOGNITION METHOD
	3.1 Active and Passive Acoustic Sensing on the Cloth
	3.2 Gesture Part Extraction
	3.3 Feature Extraction and Classification

	4 Implementation
	4.1 Hardware
	4.2 Software

	5 Evaluation
	5.1 Experimental Setup
	5.2 Gesture Extraction Accuracy
	5.3 Selection of Frequency Pattern
	5.4 Evaluation for Different Garments
	5.5 Recognition Accuracy with Number of Data
	5.6 Reusability of Classification Models
	5.7 Recognition Accuracy for General Classifiers
	5.8 Recognition Accuracy in Different Parts of Garments

	6 Discussion and Limitations
	6.1 Recognition Accuracy of Each Gesture
	6.2 Recognition Accuracy of Each Garment
	6.3 Study of Mobile Performance
	6.4 Command Mode Detection
	6.5 System Limitations and Improvements
	6.6 Utility of Ultrasound

	7 Conclusion
	Acknowledgments
	References

