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Abstract
Thumb-to-finger gestures, such as 12 phalange taps, provide diverse
input. This gesture enables eyes-free, rich, and one-handed smart-
watch controls. Previous research on recognizing thumb-to-finger
gestures has typically relied on additional sensors, making it diffi-
cult to achieve recognition using only a commercial off-the-shelf
(COTS) smartwatch. In this paper, we developed a thumb-to-finger
gesture recognition system that only uses the accelerometers built
into a COTS smartwatch. Our recognition system achieved 80.1%
accuracy for 17 gestures. Additionally, we developed optimal ges-
ture sets for different numbers of gestures based on the recogni-
tion performance of the accelerometer. Consequently, we achieved
94.7% accuracy for 4 gestures in leave-one-participant-out cross-
validation and 90.2% accuracy for 11 gestures in participant-specific
leave-one-session-out cross-validation.

CCS Concepts
• Human-centered computing→ Gestural input; Interactive
systems and tools; Mobile computing.
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1 Introduction
Smartwatches have become increasingly popular for monitoring
health, receiving notifications, making phone calls, and controlling
music players. However, due to their small size, the “fat finger
problem” [47] is often encountered whereby unintended inputs
occur because the user’s finger obscures the target on the touch
screen. Moreover, touch input can be impractical when one hand
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is occupied, such as when the user is carrying items [50]. It is also
unsuitable for users with limited use of one hand. Although voice
input does not have these limitations, it cannot be used in socially
inappropriate places, such as quiet environments (e.g., libraries),
and causes privacy concerns.

Gesture-based input using the smartwatch-wearing hand can
overcome these challenges, as it does not require touching the
screen and can be performed with one hand. Wrist gestures [12,
14, 26, 50] and hand gestures [6, 19, 41, 58, 63] are such methods.
These features are available in AssistiveTouch1 on the Apple Watch.
However, these methods generally do not support eyes-free interac-
tion, have a limited input vocabulary, or require additional sensors
beyond the smartwatch.

Thumb-to-finger gestures represent a promising gesture-based
input method using the smartwatch-wearing hand. These gestures
involve interactions between the thumb and other fingers, provid-
ing a rich input vocabulary. For example, tapping different pha-
langes of each finger yields up to 12 gestures, enabling clear tac-
tile feedback and a direct, fast, and discreet type of input [17, 48].
Thumb-to-finger gestures have several additional benefits. First,
they do not require mode switching and can coexist with other
touch gestures. Second, they are compatible with smartwatches or
sports wristbands that lack a touchscreen, such as the Polar Pacer2
and the Suunto 5 Peak3. Third, their subtle, hardly noticeable na-
ture allows them to be performed naturally in public contexts in
which conspicuous gestures may be perceived as socially awkward
[1, 42]. Finally, the tactile feedback allows these gestures to be per-
formed without looking at the smartwatch, enabling unobtrusive,
“eyes-free” interactions [48]. Eyes-free gestures can also be effec-
tively used to control devices in extended reality (XR) environments
[15, 22, 43, 57].

However, recognizing thumb-to-finger gestures is challenging
because they are small movements performed by body parts that
are difficult to instrument [48]. Previous studies have explored var-
ious methods, such as attaching pressure sensors to fingers [56],
using cameras on the wrist [40], shoulder [48], or chest [34], placing
microphones and speakers on the back of the hand [25], attach-
ing inertial measurement units (IMUs) to the fingers or the back
of the hand [30, 52], attaching proximity sensors to the thumb
[51], and using a microphone and gyroscope on the thumb [64].
However, these methods require additional sensors or devices, mak-
ing it impossible to recognize gestures using only the smartwatch.
Some studies have attempted to achieve thumb-to-finger gesture

1https://support.apple.com/en-gb/guide/watch/apdec70bfd2d/watchos
2https://www.polar.com/en/pacer
3https://www.suunto.com/Products/sports-watches/suunto-5/suunto-5-burgundy-
copper/
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recognition using commercial off-the-shelf (COTS) smartwatch ac-
celerometers [6, 23, 27, 55, 61] to eliminate the need for additional
hardware. However, these studies have not specifically focused on
thumb-to-finger gestures and have been limited to the recognition
of only a subset of such gestures.

To fill these gaps, we aimed to achieve the recognition of a
broader range of thumb-to-finger gestures using only COTS smart-
watch’s accelerometers. During a thumb-to-finger gesture, micro-
vibrations, whose wave pattern is unique to each gesture, propagate
from the hand to the smartwatch. Thus, gestures can be recog-
nized by identifying their unique wave patterns. In a user study,
we achieved 80.1% accuracy for 17 gestures. Moreover, by basing
the optimal gesture set for different numbers of gestures on the
accelerometer’s recognition performance, we achieved 90.2% ac-
curacy for 11 gestures and 98.2% accuracy for 5 gestures. We also
investigated recognition performance under practical constraints,
specifically limited training data, small window size, and low sam-
pling rate. As a result, optimal gesture recognition is attained with
a sampling rate between 400 Hz and 800 Hz and a window size of
1600 data points.

The studymakes four contributions. First, we developed amethod
of thumb-to-finger gesture recognition using COTS smartwatch
accelerometers and investigated its recognition performance. Sec-
ond, we developed optimal gesture sets for each number of gestures
based on the accelerometer’s recognition performance. Third, we
evaluated its recognition performance under practical constraints.
Fourth, we demonstrated a potential application that enables eyes-
free, one-handed, and rich input with no need for an additional
sensor.

2 Related Work
Thumb-to-finger gestures have gained increasing attention in re-
cent years, and accelerometer sensing, along with one-handed
smartwatch control, has been widely explored in the HCI field.
This section presents a review of the research on thumb-to-finger
gestures, accelerometer sensing, and one-handed smartwatch input.

2.1 Thumb-to-finger Gestures
Researchers have explored design spaces, recognition methods, and
applications for thumb-to-finger gestures.

2.1.1 Design Space. The design space of thumb-to-finger gestures
has been comprehensively studied. FingerInput [48] identifies ges-
tural primitives and consolidates them into a four-dimensional
design space: (1) which finger touches, (2) which part of another
finger is touched, (3) what touch action is performed, and (4) how
fingers are flexed. Other studies have explored drawing various
shapes, such as numbers [64], and have introduced tap force as an
additional dimension of interaction [29]. Several studies have also
focused on thumb-to-index-finger gestures, including interactions
on the radial side of the index finger [3, 24, 53], pressure and hover
distance [9], lateral thumb-index pinching [45], fingertip use [2, 13],
and 2D fingertip input [21]. Moreover, some studies have exam-
ined the usability of gestures considering human factors [17, 20].
Research on user elicitation of single-hand micro-gestures has also
been conducted [1].

2.1.2 Recognition Methods. Table 1 presents a comparison of our
method with previously developed methods. Various devices and
techniques for thumb-to-finger gesture recognition have been em-
ployed, including electrical impedance tomography [65], pressure
sensors [7, 56], infrared transmission and reflection [36], and acous-
tic sensors [19, 25, 64]. Ring-based approaches [30, 51, 52, 54] and
vision-based methods using wrist cameras [40], chest-mounted
camera [34], and shoulder-mounted depth camera [48] have also
been explored. Moreover, methods that track hand poses [8, 16, 28,
33, 58, 63] have been investigated.

Some studies have performed hand and thumb-to-finger gesture
recognition using only the sensors built into smartwatches [6, 23,
27, 55, 61], but the range of thumb-to-finger gestures explored has
been limited.

In contrast, our approach, which also requires no additional
sensors, enables the recognition of 17 thumb-to-finger gestures. We
also designed a gesture set taking into account the accelerometer’s
recognition performance.

2.1.3 Applications. Thumb-to-finger gestures have been success-
fully integrated into various applications, demonstrating their ver-
satility and effectiveness in enhancing user interaction. For text
entry, several keyboard layouts have been mapped onto finger seg-
ments, including the T9 layout on one hand [56], the QWERTY
layout across both hands [40], an alphabetical layout on one hand
[40], and the QWERTY layout precisely mapped onto the finger-
tips [62]. For computer manipulation, thumb-to-finger gestures
have been used in multiple contexts. Thumb-to-finger tap gestures
have been used for shortcut input in XR environments [40] and
on wearable devices [34]. In XR, gestures such as thumb-to-radial-
side-of-index-finger taps and swipes have also been used [24]. The
commercially available Apple Watch incorporates AssistiveTouch,
which enables smartwatch control using gestures such as pinch,
double pinch, clench, and double clench.

2.2 Accelerometer Sensing
Research on gesture recognition using accelerometers has been
conducted in various contexts.

2.2.1 Smartwatch Accelerometer. Several studies have explored
gesture recognition using IMUs built into COTS smartwatches. For
example, Serendipity [55] recognizes five finger gestures, such as
pinching, tapping, and rubbing. ViBand [27] overclocks the ac-
celerometer sampling rate of a COTS smartwatch to 4000 Hz, en-
abling the recognition of gestures such as flicking, clapping, scratch-
ing, and tapping. Taprint [4] recognizes tap locations on the back of
the hand wearing a smartwatch by overclocking the IMU sampling
rate. Xu et al. [61] developed a method for gesture customization
based on a small amount of data without compromising the perfor-
mance of existing gesture sets. Kimura [23] utilized self-supervised
learning for hand gesture recognition using a small amount of
labeled data. Chen et al. [6] improved the robustness of gesture
recognition against variations in hand shape, finger strength, and
smartwatch positioning by applying unsupervised Siamese adap-
tation. Other studies have used the IMUs to recognize screen tilts
for interaction purposes, enabling target selection [14] and cursor
control [26, 50] (available on AssistiveTouch). Accelerometers have
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Table 1: Thumb-to-finger gesture recognition methods. The asterisk (∗) column indicates whether additional sensors are
required (×) or not (✓). “Tap” indicates a tapping action. “Touch” refers to maintaining contact. “Slide” denotes a sliding motion
between the thumb and the index finger. The dagger (†) denotes that thumb-to-finger gestures can alternatively be recognized
using hand pose tracking.

Method Sensor/technique (body part) ∗ Gestures
FingerT9 [56] Pressure sensor (finger segments) × 11 phalange taps
WristFlex [7] Pressure sensor (wrist) × 4 pinches
Tomo [65] Impedance tomography (wrist) × 4 pinches and clench
SensIR [36] Infrared transmission and reflection (wrist) × 5 pinches and clench
FingerInput [48] Camera (head or shoulder) × Various gestures (e.g., taps, slides, circle)
PinchWatch [34] Camera (chest) × 4 pinches, slides, and circle
DigiTap [40] Camera (wrist) × 12 phalange taps
AudioTouch [25] Speaker and microphone (back of the hand) × 12 phalange touches

FingerSound [64] Microphone and gyroscope (thumb) ×
4 directional swipes,
10 unistroke digits writing,
and 28 graffiti letters writing

DualRing [30] IMUs (thumb and index finger) × 4 pinches and 12 phalange taps
ThumbRing [52] Two IMUs (thumb and back of the hand) × 10 phalange taps
OptiRing [54] Camera (index finger) × Right swipe, left swipe, and long tap
ThumbTrak [51] Proximity sensor (thumb) × 12 phalange touches
Interferi [19] Acoustic interferometry (wrist) × 4 pinches and clench
[8, 16, 28, 33, 58, 63] Camera, acoustic sensing or EMG (wrist) × Hand pose †
Serendipity [55] COTS smartwatch accelerometer (wrist) ✓ 1 pinch and finger rubbing
ViBand [27] COTS smartwatch accelerometer (wrist) ✓ 1 pinch, 1 flick, 1 snap, and finger rubbing
[6] COTS smartwatch accelerometer (wrist) ✓ 1 four-finger pinch, 1 slide, and clench

[23, 61] COTS smartwatch accelerometer (wrist) ✓
index pinch, double index pinch,
pinky pinch, double pinky pinch,
slide, clench, and double clench

Our method COTS smartwatch accelerometer (wrist) ✓ 12 phalange taps, 4 pinches, and clench

also been employed to recognize characters drawn in the air or
on a surface [5, 10, 32, 59]. Our approach focuses on recognizing
more fine-grained thumb-to-finger gestures using only smartwatch
accelerometers.

2.2.2 Non-Smartwatch Accelerometers. Research has also been con-
ducted using external accelerometers. TapID and TapType [38, 49]
identify which finger taps on a surface using accelerometers worn
on both arms, with sampling rates of 1344 Hz and 1600 Hz, respec-
tively. SparseIMU [46] recognizes fine-grained finger movements by
fixing multiple IMUs to the arm and fingers. Smartphone accelerom-
eters have also been used for such purposes. Studies [31, 37] have
classified tap locations using neural networks, and TapNet [18]
effectively recognizes one-handed interactions with smartphones.

2.3 One-handed Smartwatch Input
Several methods have been developed for one-handed smartwatch
operation, including hand gestures [41, 58], elbow gestures [39],
screen tilting for cursor control [26, 50] (available on Assistive-
Touch), screen tilting for target selection [14], and wrist gestures
[11, 12, 44]. Text input methods that recognize characters drawn
with the hand wearing a smartwatch with no additional sensors
have also been developed [5, 10, 32, 59]. However, these methods of-
ten have limitations, such as a limited input vocabulary, the need for
additional sensors, or the inability to provide eyes-free interaction.

Thumb-to-finger gestures provide a richer input vocabulary and
clear tactile feedback, whichmakes them suitable for fast, direct, and
discreet eyes-free input with a single hand [17, 48]. These gestures
can also extend the functionality of screen tilt-based cursor control
methods. For instance, two different thumb-to-finger gestures can
be used to select a target and open context menus. Several methods
use thumb-to-finger gestures for one-handed smartwatch opera-
tion [17, 34, 56, 61]. PinchWatch [34] uses thumb-to-finger gestures
recognized by a chest-mounted camera to control a smartwatch.
DigitSpace [17] designs thumb-to-finger gestures for smartwatch
operation, recognized through camera or magnetic sensing. Fin-
gerT9 [56] employs pressure sensors attached to finger segments
to recognize thumb-to-finger gestures for T9 text input. The Ap-
ple Watch’s AssistiveTouch feature uses accelerometer-recognized
pinch and clench gestures for target selection.

Our approach aims to recognize a wider range of thumb-to-
finger gestures using only COTS smartwatch accelerometers and to
evaluate its recognition performance. We also propose a gesture set
designed to align with the accelerometer’s recognition performance.

3 Implementation
We used the built-in accelerometers on COTS smartwatches for
thumb-to-finger gesture recognition without additional sensors.
When a gesture is made, minute compressive waves propagate
from the hand to the smartwatch. These waves vary depending on
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Figure 1: Example of accelerometer-obtained x-axis gesture
data.

the specific gesture (Figure 1). Leveraging this phenomenon, we
developed a system that recognizes thumb-to-finger gestures using
COTS smartwatch accelerometers. The system collects accelerome-
ter data, detects gestures, extracts their time segments, and then
classifies them using machine learning algorithms to distinguish
the unique wave pattern associated with each gesture.

3.1 Apparatus
We used an LG G W100 smartwatch. For thumb-to-finger gesture
recognition, we adopted an approach similar to that of ViBand
[27], which increases the sampling rate to 4000 Hz, enabling the
smartwatch to capture coarse motions and rich bio-acoustic sig-
nals. Thus, we collected accelerometer data at a sampling rate of
4000 Hz by modifying its Linux kernel. To account for real-time
processing, we obtained accelerometer data from the smartwatch
via a Bluetooth-paired smartphone and transferred them to a PC
for signal processing and machine learning. To enhance perfor-
mance, sensor data collection and subsequent signal processing
were performed for every 50 samples (0.0125 seconds).

3.2 Gesture Detection and Time Segment
Extraction

To classify thumb-to-finger gestures using machine learning, we
detected them and extracted the corresponding segments from the
accelerometer’s time-series data. Gesture detection was based on
identifying impacts in the data by calculating the rate of change
in the signal. We employed the rate-of-change score 𝑅𝑥 used in
TapType [49] to analyze impacts across the three-axis accelerometer
data. The 𝑅𝑥 accumulates the absolute changes in magnitude across
the three axes and combines them into a single dimension. To focus
on gesture-specific changes and exclude low-frequency movements,
such as armmotions, we applied a 15 Hz high-pass filter to each axis
prior to calculating the 𝑅𝑥 . To effectively capture subtle movements,
we calculated the 𝑅𝑥 over the previous 40 data points (0.01 seconds).

An overview of the gesture detection and time segment extrac-
tion is shown in Figure 2. Gestures were treated as discrete events
within a fixed window. Detection was triggered when the maximum
𝑅𝑥 value within the most recent window exceeded a threshold 𝜏 ,
and the gesture time segment was extracted when this maximum
value was near the center of the window. Since the accelerometer
data were processed in batches of 50 data points, we used a window
size of 100 points to determine the window s center. This method
enabled the extraction of gesture time segments from the start to
the end of a gesture centered around its peak (the point with the
highest 𝑅𝑥 ), preventing segment extraction in the middle of a ges-
ture. To avoid multiple detections of the same gesture waveform,

τ

Center of window

100 points time

Center of window

100 points

Max value

Max value

τ

time

(b)gesture detected and its segment extracted

(a)not detected

FuturePast

FuturePast

Figure 2: Overview of gesture detection and its time segment
extraction. Detection is performedwhen themaximum value
of 𝑅𝑥 exceeds the threshold 𝜏 , and extraction is performed
when it is located at the center of the window. (a) No gesture
is detected. (b) A gesture is detected, and its time segment is
extracted.
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Figure 3: Overview of our classification system, inspired by
[23].

the detection was paused for the duration of the window size after
each gesture was detected.

3.3 Gesture Classification Methodology
We classified gestures based on the detected and extracted segments
using machine learning. An overview of our classification system
is shown in Figure 3. This system is based on Kimura’s method
[23], which uses self-supervised learning to enable few-shot hand
gesture recognition, minimizing the need for labeled data for each
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user. The system comprises three stages: pre-training, fine-tuning,
and classification.

3.3.1 Pre-Training (Unsupervised Representation Learning). The
first stage involves pre-training through unsupervised represen-
tation learning. In this stage, we train a representation learning
model to transform time-series data into feature vectors (i.e., repre-
sentations). To collect training data, one of the authors performed
daily activities while wearing a smartwatch for approximately two
hours. Data were collected only when movement was detected
based on an 𝑅𝑥 threshold, resulting in 5106 data points, each with
a 3000-long (0.75 seconds) window. We then divided the data into
three frequency bands (0.22 Hz to 8 Hz, 8 Hz to 32 Hz, and above
32 Hz) following the previously developed procedure [23, 61]. The
processed data were then used to train the representation learning
model.

3.3.2 Fine-Tuning (Supervised Learning). The second stage is fine-
tuning through supervised learning. In this stage, we train the
classification model using a small amount of labeled user gesture
data. For this purpose, we used a linear support vector machine for
the classification model. We divided accelerometer data into the
same three frequency bands as in the pre-training stage. Using the
pre-trained representation learningmodel, we transformed the time-
series data into 1280-dimensional feature vectors. Unlike a previous
study [23] that used 360 dimensions, we used 1280 dimensions to
accommodate a larger volume of time-series data (3000 data points).
We then used transformed data to train the gesture classification
model.

3.3.3 Classification. The third stage is the classification of gestures.
Here, we classified the unlabeled gesture data performed by the
user. First, we divided the user-performed gesture data into the
same three frequency bands as in the previous stages. We then
used the pre-trained representation learning model to transform
the time-series data into 1280-dimensional feature vectors. Finally,
we used the fine-tuned classification model (linear support vector
machine) to classify the gestures.

4 User Study
We conducted a user study to evaluate the thumb-to-finger gesture
recognition performance using COTS smartwatch accelerometers.
For this purpose, we recruited 12 participants (10 males, 2 females)
aged 22-25 years (average: 23.2 years) who volunteered from our
laboratory. All participants were right-handed. The study took
approximately 30 minutes on average.

4.1 Design
We designed the gesture set and user study.

4.1.1 Gesture Set. We designed a set of 17 gestures (Figure 4) based
on two considerations, same as [60]. To ensure that the gestures
would be easy and natural to remember for most users, we avoided
gestures involving more than two fingers. Moreover, we selected
subtle and fine-grained gestures [1] that required minimal effort.
Specifically, we adopted three types of gestures: tap [48], flick [60]
and clench. Since each gesture consisted of a sequence of finger
movements, we clearly defined the start and end positions of the

middle-1

ring-1

little-1
little-3

ring-2ring-3
middle-2middle-3

index-1

index-flick

Clench (1/17)

e.g. index-1 e.g. index-flick

Tap (12/17) Flick (4/17)

middle-flick

ring-flick

little-flick

index-2index-3

little-2

Figure 4: The designed gestures.

fingers for data labeling, as described in [60]. These definitions were
essential for ensuring consistent gesture labeling across participants
and sessions. The tap gestures began with the thumb near the target
area, followed by a tap on the target area, and ended by returning
to the initial position. The flick gestures began with the fingers
positioned close to the thumb, followed by a quick flicking motion
by extending the fingers, and ended with the fingers extended. The
clench gestures started in a relaxed (neutral) state, followed by
clenching, and ended by returning to the initial position. For the
tap gestures, we divided each finger into three sections at the joints,
resulting in 12 tap targets (Figure 4): index-1, index-2, index-3,
middle-1, middle-2, middle-3, ring-1, ring-2, ring-3, little-1, little-2,
and little-3. For the flick gestures, we defined four targets (Figure 4):
index-flick, middle-flick, ring-flick, and little-flick. Thus, we defined
a total of 17 gestures.

4.1.2 Gesture Recognition Performance Assessment. We performed
gesture detection and time segmentation as described in the previ-
ous section. Since each gesture lasted approximately 0.75 seconds,
we set the window size to 3000 data points (4000 points per second
× 0.75 seconds).

We performed leave-one-participant-out cross-validation to as-
sess inter-participant recognition performance and leave-one-session-
out cross-validation to assess participant-specific recognition per-
formance when the participants put the smartwatch back on for a
new session. To account for the challenges of recognizing a wide
variety of gestures with high accuracy, we also evaluated recogni-
tion performance specifically when focusing on a subset of gestures
selected based on the recognition performance of the accelerometer.
Moreover, we assessed recognition performance with reduced train-
ing data to minimize calibration efforts in practical use. We also
evaluated how truncating the latter part of the gesture waveform
for quicker recognition affected performance. Finally, we assessed
recognition performance at lower sampling rates to address power
consumption concerns.

4.2 Task and Instructions
The participants wore the smartwatch on the wrist on which they
usually wore a watch (the left wrist in all cases). To reduce fatigue
during the experiment, the participants sat in a chair with their left
elbow resting on a desk, ensuring the smartwatch did not touch
the desk. They then performed gestures with their left hand while
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Figure 5: Gesture comfortableness scores. Scores without
labels pertain to tap gestures. A score of 5 indicates “very
comfortable,” while a score of 1 indicates “very uncomfort-
able.”

looking at the smartwatch screen, which displayed the name of the
gesture to be performed. We instructed the participants to perform
consistent fingermovements for the same gesture, maintain a steady
body and arm posture, and execute the gestures quickly (within
0.75 seconds) to ensure the gesture waveform was fully captured
within the window.

4.3 Procedure
The participants performed one practice session and six main ses-
sions. The aim of the practice session was to help the participants
familiarize themselves with the gestures. In each session, they per-
formed each gesture five times consecutively, with the order of
gestures remaining the same across sessions. The participants had
a break of at least 1 minute between sessions, during which they
removed the smartwatch. After completing the sessions, they com-
pleted a questionnaire in which they rated the comfortableness of
each gesture on a five-point Likert scale (1: very uncomfortable, 5:
very comfortable). The total duration of the experiment for each
participant was approximately 30 minutes.

5 Results and Analysis
We collected 510 samples per participant, calculated as 17 types
of gestures × 5 repetitions × 6 sessions. This section presents the
results of the user study and provides an analysis.

5.1 Comfortableness
We treated the five-point Likert scale as an interval scale where
“very comfortable" was rated as 5, and “very uncomfortable" was
rated as 1. The average comfortableness score for each gesture
is shown in Figure 5. Gestures involving fingers farther from the
thumb or inner finger segments were rated less comfortable, likely
due to the thumb’s anatomy. This is consistent with previous studies
on tap gesture comfortableness [17, 20].
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Figure 6: Confusion matrix of participant-specific leave-one-
session-out cross-validation averaged across all participants.
The values are in parentages.

5.2 Recognition of All Gestures
We first investigated recognition performance across all gestures.
We conducted leave-one-participant-out cross-validation to eval-
uate how well a model trained on other participants’ data recog-
nizes the gestures of a new participant. Moreover, we performed
participant-specific leave-one-session-out cross-validation to evalu-
ate the need for recalibration after putting the device back on when
participant-specific calibration was applied.

5.2.1 Leave-One-Participant-Out Cross-Validation. The overall ges-
ture classification accuracy was 38.8%. We observed frequent mis-
classification of gestures performed with the same finger and those
targeting the same part of a finger (tip, middle, or base).

5.2.2 Participant-Specific Leave-One-Session-Out Cross-Validation.
The overall classification accuracy was 80.1% (SD: 9.32%). A con-
fusion matrix is shown in Figure 6. We observed frequent misclas-
sification of gestures performed with the same finger and those
targeting the same part of a finger (tip, middle, or base). Moreover,
recognition performance varied among participants, which may
be due to differences in how consistently they repeated the same
gestures with similar finger movements.

5.3 Exploration of the Optimal Gesture Set for
Each Number of Gestures

Given the difficulty of recognizing all gestures with high accuracy
in both cross-validation types, we explored the optimal gesture set
for each number of gestures. We selected gestures based on the
recognition performance of accelerometer sensing. Following previ-
ous research [17, 20], we excluded four gestures (index-3, middle-3,
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Table 2: Optimal gesture set for each number of gestures in leave-one-participant-out cross-validation. The leftmost column
represents the number of gestures, and the rightmost column represents the accuracy in %.

# Target gesture ACC
13 index-1 middle-1 ring-1 little-1 index-2 middle-2 ring-2 little-2 index-flick middle-flick ring-flick little-flick clench 47.3
12 index-1 middle-1 little-1 index-2 middle-2 ring-2 little-2 index-flick middle-flick ring-flick little-flick clench 50.9
11 index-1 middle-1 little-1 index-2 middle-2 ring-2 little-2 index-flick ring-flick little-flick clench 55.4
10 index-1 middle-1 little-1 index-2 ring-2 little-2 index-flick ring-flick little-flick clench 60.1
9 middle-1 little-1 index-2 ring-2 little-2 index-flick ring-flick little-flick clench 65.0
8 middle-1 index-2 ring-2 little-2 index-flick ring-flick little-flick clench 70.0
7 middle-1 index-2 little-2 index-flick ring-flick little-flick clench 76.5
6 middle-1 little-2 index-flick ring-flick little-flick clench 83.9
5 middle-1 little-2 index-flick little-flick clench 89.0
4 middle-1 index-flick little-flick clench 94.7
3 index-flick little-flick clench 98.1
2 index-flick clench 99.6

Table 3: Optimal gesture set for each number of gestures in participant-specific leave-one-session-out cross-validation. The
leftmost column represents the number of gestures, and the rightmost column represents the accuracy in %.

# Target gesture ACC
13 index-1 middle-1 ring-1 little-1 index-2 middle-2 ring-2 little-2 index-flick middle-flick ring-flick little-flick clench 86.7
12 index-1 middle-1 little-1 index-2 middle-2 ring-2 little-2 index-flick middle-flick ring-flick little-flick clench 88.8
11 index-1 middle-1 little-1 index-2 middle-2 ring-2 index-flick middle-flick ring-flick little-flick clench 90.2
10 index-1 middle-1 little-1 index-2 ring-2 index-flick middle-flick ring-flick little-flick clench 92.1
9 index-1 middle-1 index-2 ring-2 index-flick middle-flick ring-flick little-flick clench 93.2
8 index-1 middle-1 ring-2 index-flick middle-flick ring-flick little-flick clench 94.9
7 index-1 ring-2 index-flick middle-flick ring-flick little-flick clench 96.6
6 index-1 ring-2 index-flick middle-flick little-flick clench 97.6
5 index-1 index-flick middle-flick little-flick clench 98.2
4 index-flick middle-flick little-flick clench 98.8
3 index-flick little-flick clench 99.4
2 little-flick clench 99.7

ring-3, and little-3) that had an average comfortableness rating
of less than 3 to create a gesture set that considers user comfort.
To identify the optimal gesture set for each number of gestures
while considering the recognition performance of the accelerome-
ter, we repeatedly performed the following steps on the remaining
gestures:

(1) Performing cross-validation on the remaining gestures and
computing the F1 score for each gesture.

(2) Excluding the gesture with the lowest F1 score.
We used the F1 score because it balances both precision and recall.
This approach results in the exclusion of one gesture from each set
of similar gestures. The number of gestures, their corresponding
gesture sets, and the accuracy obtained are shown in Table 2 and
Table 3. Accuracy exceeded 90% for 4 or fewer gestures in leave-
one-participant-out cross-validation and for 11 or fewer gestures
in participant-specific leave-one-session-out cross-validation.

5.4 Evaluation of Performance Under Practical
Constraints

Since participant-specific leave-one-session-out cross-validation
yielded higher accuracy, we further investigated recognition per-
formance under practical constraints by reducing the training data,
window size, and sampling rate. For these evaluations, we used sets
of 5, 11, and 17 gestures, as determined by the gesture elimination
process; the specific gesture types are detailed in Table 3.
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Figure 7: Accuracy when the training data size in participant-
specific leave-one-session-out cross-validation was reduced
from 1.0 to 0.1.

5.4.1 Reducing the Training Data. To reduce calibration times for
practical use, we examined the effect of reducing the size of training
data while maintaining acceptable accuracy. We randomly sampled
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Figure 8: Accuracy when the window size in participant-
specific leave-one-session-out cross-validation was reduced
from 3000 to 1000.
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Figure 9: Accuracy when the sampling rate in participant-
specific leave-one-session-out cross-validation was reduced
from 4000 Hz to 50 Hz.

a specified proportion of the training data, ensuring an even rep-
resentation of gesture types to avoid bias. To account for random-
ness, we repeated this process 10 times and averaged the results.
As shown in Figure 7, accuracy decreased monotonically as the
training data were reduced. Moreover, the rate of improvement
diminished with increased data, indicating a limit to the benefit of
adding more data.

5.4.2 Reducing the Window Size. To improve recognition speed,
we explored using only the initial portion of the gesture waveform
by truncating the latter part of each data windowwhile maintaining
accuracy, as we had also done during pre-training. As shown in
Figure 8, larger window sizes generally led to higher accuracy, with
minimal differences, until the window size was reduced to 1600.

5.4.3 Reducing the Sampling Rate. To reduce power consumption,
we examined the effect of lowering the sampling rate while main-
taining acceptable accuracy. We retained only every second, third,
or nth data point from the original sequence, as we had also done
during pre-training. As shown in Figure 9, higher sampling rates
generally resulted in higher accuracy, with accuracy decreasing
gradually as the rate decreased to 200 Hz and then sharply beyond
that point.

6 Discussion
In the results section, we presented the overall recognition accuracy,
the exploration of the optimal gesture set for each number of ges-
tures, and evaluation of performance under practical constraints.
In this section, we discuss the gesture recognition performance
results, potential applications, and limitations.

6.1 Gesture Recognition
The leave-one-participant-out cross-validation results suggest that
recognizing a large number of gestures with high accuracy is chal-
lenging. This difficulty is likely due to variations in the way in
which individuals perform gestures, which are influenced by per-
sonal habits and differences in movement. We observed frequent
misclassification of gestures performed with the same finger or tar-
geting the same part of a finger. To address this issue, we explored
the optimal gesture set for each number of gestures, considering the
recognition performance of accelerometer sensing. This approach
led to recognition accuracies of 94.7% for four gestures, 98.1% for
three gestures, and 99.6% for two gestures. This method allows
gesture recognition without user-specific calibration using a model
trained on data from other users.

In the participant-specific leave-one-session-out cross-validation,
we achieved an overall recognition accuracy of 80.1%. As in the pre-
vious validation, we observed frequent misclassification of gestures
involving the same finger or targeting the same part of a finger. By
optimizing the gesture set while considering the accelerometer’s
recognition performance, we achieved recognition accuracies of
90.2% for 11 gestures and 98.2% for 5 gestures. Achieving these
accuracies required collecting 25 data samples per gesture for each
user. However, even with just 10 samples per gesture, we achieved
recognition accuracies of 85.7% for 11 gestures and 95.8% for 5
gestures.

Prior studies on single-handed (not necessarily thumb-to-finger)
gesture recognition using smartwatch accelerometers have achieved
accuracies of 94.4% for 6 types of hand gestures [6], 87.0% for 5 types
of hand gestures [55], approximately 94.3% (details not specified) for
6 types of hand gestures [27], 95.7% for 4 types of thumb-to-finger
gestures and 87.2% for 16 types of hand gestures [61], and 95.0%
for 10 types of hand gestures [23]. Although a direct comparison
cannot be made due to differences in the amount of data collected,
target gestures, participants, and recognition models, we achieved
performance comparable to or better than that achieved in these
studies.

When reducing the window size, we observed minimal changes
in accuracy until the window size decreased to 1600. With the
gesture detection and segmentation system used in this study, a
window size of 1600 enables gesture recognition 0.35 seconds faster
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Figure 10: Example application.

than achieved with a window size of 3000. While a window size
of 1600 appears to be more advantageous, the trade-off between
recognition speed and accuracy should be evaluated based on user
preferences.

Commercial smartwatches typically offer sampling rates be-
tween 50 Hz and 200 Hz through their APIs4, with the Apple Watch
providing a sampling rate of up to 800 Hz5. While higher sam-
pling rates are generally preferable, a rate between 400 Hz and 800
Hz is ideal for thumb-to-finger gesture recognition that balances
accuracy and power consumption.

6.2 Applications
Thumb-to-finger gestures require only one hand, which makes
them particularly useful when the other hand is occupied (e.g.,
carrying items, cooking, or holding an umbrella) or for users with
limited use of one hand. They are also suitable for smartwatches
without a touchscreen, such as sports wristbands, and for cases in
which the screen is already in use, such as when a video is being
played, leaving no space for on-screen controls. Moreover, such
gestures provide flexibility in various tasks. For instance, with a
small set of two to five gestures, users can perform functions such
as adjusting the volume, navigating (“back”, “forward”, “confirm”),
entering text using the H4-Writer algorithm [35] and executing
D-pad operations (“up”, “down”, “left”, “right”, “confirm”).

A larger set of gestures enables more complex operations and a
richer input vocabulary. For example, our set of 11 thumb-to-finger
gestures, which were recognized with 90.2% accuracy, can provide
sufficient versatility for a range of commands. For shortcut opera-
tions, our set of seven gestures could be used for common functions
such as playing/resuming, increasing/decreasing the volume, start-
ing/stopping a stopwatch, showing notifications, returning (e.g.,
answering calls), and canceling (e.g., declining calls). This flexibility
can also enable the integration of D-pad controls with shortcut
operations (see Figure 10). For text input, a more extensive set of

4https://source.android.com/docs/compatibility/14/android-14-cdd#731_
accelerometer
5https://developer.apple.com/videos/play/wwdc2023/10179/

gestures can increase the number of available keys and reduce word
prediction conflicts when using word prediction.

Because thumb-to-finger gestures can be performed without
looking (“eyes-free”), they are also well-suited for controlling other
devices, such as smartphones, tablets, laptops, and XR (i.e., where
users are wearing a head-mounted display (HMD)). Users are not
required to keep their hands within the HMD camera’s field of view,
allowing them to keep their arms in a relaxed, lowered position
[17, 48]. For example, users can quickly pause a video, navigate
using the D-pad, or control music playback while keeping their
arms lowered. Moreover, they can use gestures to control smart
home devices, such as lights or air conditioners.

6.3 Limitations
Our study has several limitations. First, the tilt of the arm and the
way in which gestures are performed may vary due to individ-
ual habits in practical use. This variability could be addressed via
Siamese adaptation [6]. Moreover, the user study was conducted
with the participants in a sitting position. Because disturbances
caused by walking may interfere with accelerometer signals, fur-
ther research is needed to assess recognition performance while the
user is walking. False gesture detections from everyday movements,
such as walking, could be mitigated by checking if the screen is
facing upward, as it is unlikely to be in this orientation during
walking.

Second, we focused on three types of gestures: tap, flick, and
clench. FingerInput [48] defines a broader range of thumb-to-finger
gestures, such as sliding the thumb across a finger or drawing a cir-
cle on the fingers with the thumb. Incorporating these gestures may
enable more diverse operations. Thus, future research could explore
the accelerometer’s recognition performance of these gestures.

Third, while we developed the gesture set by considering the
accelerometer’s recognition performance, this approach may result
in inconsistent gesture sets. For example, gestures such as index-
1, middle-1, and little-1 are included, whereas ring-1 is omitted.
Therefore, it is necessary to evaluate the usability of the selected
gesture set and design gesture sets with usability in mind.

Fourth, the user study involved only 12 participants, all of whom
belonged to the same age group. To examine variations in recogni-
tion performance due to differences in theways inwhich individuals
perform gestures according to personal habits, it is necessary to con-
duct a larger experiment involving a greater number of participants
from more age groups.

Finally, we implemented the recognition system on a PC. For
practical use, the system should be executable on a smartwatch itself
or a connected smartphone. However, we did not examine whether
the developed system can operate on these devices within accept-
able computational costs. Future work should focus on developing
a recognition system by taking into account the computational
capabilities of such devices.

7 Conclusion
In this paper, we examined thumb-to-finger gesture recognition
using a COTS smartwatch accelerometer. Our recognition system
had an overall accuracy of 80.1% accuracy for 17 gestures. By con-
sidering the performance of accelerometer-based recognition, we

https://source.android.com/docs/compatibility/14/android-14-cdd#731_accelerometer
https://source.android.com/docs/compatibility/14/android-14-cdd#731_accelerometer
https://developer.apple.com/videos/play/wwdc2023/10179/


MUM ’24, December 01–04, 2024, Stockholm, Sweden Riku Tsunoda, Myungguen Choi, and Buntarou Shizuki

achieved 94.7% accuracy for 4 gestures in leave-one-participant-out
cross-validation and 90.2% accuracy for 11 gestures in participant-
specific leave-one-session-out cross-validation. Our analysis indi-
cates that optimal gesture recognition is attained with a sampling
rate between 400 Hz and 800 Hz and a window size of 1600 data
points (0.4 seconds). This approach enables one-handed smartwatch
control without additional sensors, providing eyes-free and rich
input.
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