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Abstract
This paper presents a system that authenticates users solely based
on the action of grasping a door handle. The system authenticates
users by utilizing the differences in frequency characteristics be-
tween a hand and a door handle when grasped. The frequency
characteristics of a hand vary from person to person depending
on anatomical differences such as skeletal structure and muscle
composition. This system is beneficial because it is not vulnerable
to shoulder surfing and allows authentication solely by grasping
the door handle. Data were collected from 25 users, and the system
achieved an F1 score of 93.0% in the 25-class classification. In the
One-vs-Rest classification using unknown users as test data, the
average equal error rate was 4.76%.

CCS Concepts
• Security and privacy→ Biometrics.
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1 Introduction
Smart locks are becoming increasingly popular because they do
not require a physical key. Current smart locks use authentication
technologies based on knowledge (PIN and password) [1, 35], pos-
session (smartphones and card keys) [13, 14, 32], or biometrics (fin-
gerprint [39, 43], voiceprint [7, 15, 21], iris [45], and faceprint [48]).
However, these technologies faced numerous issues, as follows.
Knowledge-based authentication technologies are susceptible to
attacks [1, 54], such as dictionary attacks and shoulder surfing, and
they become inconvenient for users if the number of passcode digits
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is too large [2, 11]. Meanwhile, possession-based authentication
technologies carry the risk of unauthorized use if the smartphone
or card key is lost, biometric-based authentication technologies are
vulnerable to presentation attacks using photos, voice recordings,
and fingerprint films.

To address these issues, several authentication methods using a
door handle have been proposed [12, 41]. SmartHandle [12] focuses
on the individual differences in hand movements when opening
a door and performs authentication based on the natural action
of lowering the door handle. Sekiguchi et al. [41] asked users to
design their preferred door handle-lowering gestures, which were
then used for authentication. These studies perform authentication
based on the act of lowering a door handle, realizing methods that
avoid the risk of loss and are robust against presentation attacks.
While SmartHandle [12] poses a risk of shoulder surfing, Sekiguchi
et al. [41] conducted experiments to assess resistance to shoulder
surfing. However, users are required to perform a particular gesture
to unlock the door, which also raises concerns about the memora-
bility of the gestures.

To avoid shoulder surfing and eliminate the need for additional
actions to unlock the door, we developed a system that authenti-
cates users solely based on how they grasp the door handle. This
system does not require any particular actions to unlock the door,
and thus, there is no risk of shoulder surfing. The system uses active
acoustic sensing [37] in the inaudible frequency range to authen-
ticate users by detecting differences in frequency characteristics
when they grasp the door handle. Active acoustic sensing is a tech-
nique that involves transmitting acoustic signals to a target object
and analyzing its vibration response to recognize changes in the
shape, material, and boundary conditions of the object [37]. In this
study, the acoustic signals obtained through active acoustic sensing
vary depending on the hand itself and the door handle’s boundary
condition, i.e., how users grasp it, making imitation by third parties
difficult. Therefore, we hypothesize that active acoustic sensing
applied to the door handle could authenticate a user’s grasp.

The contributions of this study are as follows. 1) We implement
an authentication system using active acoustic sensing, which veri-
fies users based on how they grasp the door handle. 2) We demon-
strate that our system can classify 25 participants with an F1 score
of 93.0% based on how they grasp the door handle. 3) Finally, we
demonstrate that this system can reject imposters with an average
equal error rate (EER) of 4.76%.

2 Related Work
In this study, we aim to authenticate users based on how they grasp
the door handle using active acoustic sensing. In this section, we
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provide an overview of related work on active acoustic sensing and
authentication systems using door handles.

2.1 Active Acoustic Sensing
Active acoustic sensing is a technique that involves transmitting
acoustic signals to a target object and analyzing its vibration re-
sponse to recognize changes in the shape, state, material, and
boundary conditions of the object [37]. Researchers developed sys-
tems utilizing active acoustic sensing for various purposes, includ-
ing gesture recognition [3, 16, 22, 26, 33, 36, 44, 51, 53, 55], force
estimation [34, 38], internal structure identification of 3D printed
objects [24, 25], and silent speech recognition [56]. These studies
use active acoustic sensing for object recognition and user activity
recognition, while in this study, we use active acoustic sensing for
user authentication.

The acoustic signals obtained through active acoustic sensing
vary depending on the object’s shape, state, and material, mak-
ing imitation by third parties difficult; hence, it is widely used in
user authentication research. Authentication systems using active
acoustic sensing have often been studied in the context of wearable
devices, particularly earphones [4, 5, 9, 10, 17, 31, 49, 52].

Research has also been conducted on devices other than ear-
phones. Watanabe et al. [50] used a microphone and speaker at-
tached to a device imitating a smartwatch to identify users, resulting
in 91.2% accuracy among nine participants. Liu et al. [29] used a mi-
crophone attached to the throat to capture the resonance of voices
transmitted through the body and identified users, resulting in
91.4% accuracy among 29 participants. Isobe et al. [18, 19] attached
a microphone and speaker to the nose pads of smart glasses to
identify wearers with 9% EER among 12 participants. SkullID [42]
attached a speaker to the right mastoid process and a microphone
at various skull locations to authenticate smart glass users with
2.35% EER among 25 participants. Iwakiri et al. [20] used a micro-
phone and speaker connected to a device imitating a smart ring to
identify users, resulting in an EER of of 2.7% among seven partici-
pants. Finally, LipPass [30] used a smartphone’s microphone and
speaker to identify users based on differences in lip movements
while speaking, resulting in 90.2% accuracy with 48 participants.

We implement a system that applies active acoustic sensing
to door handles to authenticate users based on differences in the
frequency characteristics of a hand and a door handle.

2.2 Authentication System using Door Handle
Several authentication systems use door handles, some of which
also use such actions as turning the door handle, opening and
closing the door, and images of the hand grasping the door han-
dle [6, 8, 12, 40, 41, 47]. SmartHandle [12] uses an inertial measure-
ment unit (IMU), gyroscope, and magnetometer to capture hand
movements during door opening to authenticate users. SenseHan-
dle [40] authenticates users based on door opening and closing
actions using an IMU, swept frequency capacitive sensing, and
active acoustic sensing. Vegas et al. [47] identifies users based on
door opening actions using an IMU and gyroscope. Tietz et al. [46]
identifies users based on touch interactions using pressure sensors.
Futami et al. [8] identify users using an angular velocity sensor on
the door handle based on room entry and exit actions. Kusanagi

et al. [6] authenticates users using images of the metacarpopha-
langeal joints obtained from a camera mounted above the door
handle. Sekiguchi et al. [41] authenticates users by recognizing
their designed method of turning the door handle using capacitive
sensors, pressure sensors, and an IMU attached to the door handle.

We authenticate users solely based on the action of grasping the
door handle. To achieve this, we utilize the frequency character-
istics of a hand and a door handle when the user grasps the door
handle, which differ between users. This method does not require
actions, such as opening the door or turning the door handle, dur-
ing authentication, and it does not involve any particular gestures,
thereby eliminating the risk of shoulder surfing.

3 Principle of Authentication
Our system uses active acoustic sensing [37] for authentication, as
shown in Figure 1. Specifically, the system uses the frequency char-
acteristics of a hand and a door handle for authentication when a
user grasps the door handle. To observe these frequency character-
istics, we attach a pair of piezoelectric elements to the door handle.
One is used to transmit ultrasonic chirp sine signals through the
door handle to the hand, and the other is used as a microphone to
record acoustic signals from the door handle.

Note that the frequency characteristics of a hand vary from
person to person depending on anatomical differences, such as
skeletal structure and muscle composition. For example, a hand
has 27 bones, and its shape and size differ from person to person,
making their replication virtually impossible. In addition, due to the
anatomical differences, how to grasp a door handle differs from per-
son to person, meaning that the boundary condition differs. These
differences make the frequency characteristics of the hand and door
handle unique, allowing them to be used for authentication.

4 Implementation
In this study, we implemented the system shown in Figures 1 and 2
to test the principle described in Section 3. The system transmits
a chirp signal from a speaker attached to the door handle, and
it obtains the frequency characteristics by using the Fast Fourier
Transform (FFT) on the acoustic signal received by a microphone.
The obtained frequency characteristics are then input into a ma-
chine learning model to estimate the user. This section details the
implementation of the system.

4.1 Hardware
The door handle used in this study is a lever-handle type (Figure
2a). A piezoelectric element (THRIVE, K2512BP1, 25 × 12 × 0.23
mm) was used as the microphone and speaker. To avoid interfering
with the grasping action, the microphone and speaker were fixed
with vinyl tape on the side surfaces at both ends of the door handle.
The piezoelectric elements were connected through a two-core
shielded cable (Mogami, Superflexible Shielded 2-core AWG36) to a
line plug (Pro Audition, AS-106) and then connected to a computer
(OS: Windows 11, CPU: Intel Core i7-1065G7 1.50 GHz, RAM: 32
GB ) via an audio interface (Steinberg, UR24C).
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Figure 2: Setup in the experiment. (a) The door handle. (b) The act of grasping the door handle. (c) The side view.

4.2 Software
The software, similar to prior research on active acoustic sens-
ing [26, 37], consists of four components: the chirp signal gener-
ation part, the FFT part, the preprocessing and feature extraction
part, and the machine learning part.

4.2.1 Chirp signal. In the chirp signal generation part, a sinusoidal
linear chirp signal whose frequency ranges between 20 kHz and
48 kHz is generated. The chirp signal increases monotonically for
approximately 43ms. The sampling rate used for signal playback
was 96 kHz.

4.2.2 FFT. FFT is performed to convert the acoustic signals ob-
tained from the microphone into frequency data. The FFT is con-
ducted on the acoustic signals sampled at 96 kHz, with 8,192 points
(i.e., two cycles of the chirp signal) per transformation. The FFT win-
dow has a 50% overlap, resulting in frequency data being obtained
approximately every 43ms.
4.2.3 Preprocessing and feature extraction. Because the frequency
data contain noise, so we performed preprocessing on the data. First,
the data in the frequency band from 20 kHz to 48 kHz are extracted.
The extracted data are then smoothed in the time domain using
an exponential moving average with a smoothing factor of 1/3.
At this stage, the data have 4,779 dimensions, and consists of 35
frames along the time axis. Next, feature extraction is performed to
reduce the dimension of the frequency data. Using cepstral analysis,

we applied liftering to the first 224 dimensions and extracted 224-
dimensional features using a 224-point filter bank.

Finally, the first frame’s frequency values, which correspond to
the frequency values of the ungrasped state, are saved as a baseline;
they are used to take the difference from the frequency values of
all frames before preprocessing. Next, we perform temporal seg-
mentation to extract only the portions of the collected data where
the grasping action occurs. As shown in Figure 3, the frequency
characteristic values decrease (i.e., darker in this figure) at the mo-
ment of grasping and remain constant during the stationary state.
Therefore, we define the frame at which the absolute value of the
temporal difference in the mean frequency characteristic values
exceeds a threshold, and the temporal difference is negative, as the
moment when grasping begins. The threshold is set to the standard
deviation of the temporal differences. From the frame identified as
when the moment of grasping, we extract 20 frames (approximately
1.76 s) starting from 5 frames before this moment. The features ob-
tained through the above processing were converted into 224 × 224
spectrograms using Matplotlib (Figure 3). The colors in the spectro-
gram correspond to the values of the frequency characteristics. We
used the standard Matplotlib colormap, Viridis, to convert values
to colors. These generated images were then used as inputs for the
machine learning model.

4.2.4 Machine learning. Like several prior studies on acoustic sens-
ing [23, 27, 28, 52, 56], we utilized a convolutional neural network
(CNN) for machine learning. Various CNN models can be applied in
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Figure 3: Example spectrograms when the door handle is grasped (P1, P5, P10, and P24 from left to right). The horizontal axis
represents time, and the vertical axis represents frequency. The color indicates the magnitude of the values.

image recognition by converting frequency data into spectrogram
images. The machine learning tasks included performing N-class
classification and One-vs-Rest classification for N classes to inves-
tigate the performance of user authentication. We implemented
CNN models used in our evaluation using Keras.

5 Evaluation
We conducted an experiment to evaluate the system’s identifica-
tion accuracy. The participants were 25 students (23 males, two
females, P1–P25) aged 21–24 years (average age 22.6 years) from
our laboratory. Among the participants, one was left-handed, while
the rest were right-handed.

5.1 Procedure
Each participant stood in front of a door (Figure 2c) and grasped and
released the door handle 100 times. Before the experiment began,
participants were informed that the experiment was intended to
collect data for an authentication system. Participants were then
instructed to grasp the door handle with a consistent grip and
strength. At the start of the experiment, participants stood at a fixed
distance from the door, marked by tape on the floor, and held a
mouse in their right hand. They were instructed to click the mouse,
grasp the door handle with their left hand (Figure 2b), hold still,
and release it 3 s after the mouse clicked upon verbal instruction.
Each trial, consisting of grasping and releasing the door handle, was
repeated 20 times per session for five sessions. Participants took at
least 1-min break between session. Data collection was conducted
for three seconds from the mouse click, obtaining 35 frames for each
grasp-and-release action. Throughout the experiment, we collected
2,500 data points (20 trials × 5 sessions × 25 participants).

5.2 Evaluation Metrics
We conducted two evaluations: a 25-class classification to evalu-
ate the system’s identification accuracy and a One-vs-Rest binary
classification to evaluate the accuracy against unknown users. In
the 25-class classification, the system identifies known users, to
manage room access. In this evaluation, the F1 score is used as the
metric. In the One-vs-Rest classification, the system authenticates
known users and rejects unknown users, a step intended for secu-
rity applications. The EER is used as the metric in this evaluation,
which is the error rate when the model’s threshold is adjusted so
the false acceptance rate (FAR), which is the rate at which imposters
are misclassified as genuine users, equals the false rejection rate

(FRR), which is the rate at which genuine users are misclassified as
imposters.

5.3 Results
Identification Accuracy. First, we evaluated the performance of a
25-class classification for user identification. From the collected
data, the first four sessions (80 samples) for each user were used as
training data, and the last session (20 samples) was used as test data.
Multiple models were used for 25-class classification to determine
the best model by comparison.

The models we tested are shown in Table 1. We customized the
output layer for use in the 25-class classification. A fully connected
layer with 25 nodes was added to all models. The SoftMax function
was used as the activation function, and categorical cross-entropy
was used as the loss function. For all models, the learning rate was
set to 0.0001, the batch size to 16, and the number of epochs to 50.
As a result, the model with the highest F1 score was VGG16. The
F1 score of VGG16 was 93.0%, and the accuracy was 93.1%.

Authentication Accuracy. Next, we evaluated the authentication ac-
curacy for unknown users. Among the 25 participants, one was
treated as a genuine user, and the remaining 24 were treated as
imposters. The genuine user’s first four sessions were used as train-
ing data, and the last session was used as test data. From all 16
imposters, six samples of each imposter were randomly selected ,
resulting in 96 data points for the training data. The data from the
remaining eight imposters were used as test data. Thereafter, the
test and training data were split among different imposters across
10 trials for each user, and the average EER was calculated. The
model was based on VGG16, which achieved the highest accuracy
in the 25-class classification. The model was added with a fully
connected layer with two nodes. The sigmoid function was used as
the activation function, and binary cross-entropy was used as the
loss function. The learning rate was set to 0.0001, the batch size to
16, and the number of epochs to 50. As a result, the average EER
of the 250 binary classification models was 4.76% (SD=28.53). The
EER for each user is shown in Table 2.

6 Discussion
In this paper, we explored the potential of an authentication system
using active acoustic sensing with a door handle. This paper is the
first to investigate the potential of authentication using only the
user’s grasp on a door handle. Utilizing a microphone and speaker
attached to the door handle, we achieved an F1 score of 93.0% and



Active Acoustic Sensing Based Authentication System Using a Door Handle MUM ’24, December 01–04, 2024, Stockholm, Sweden

Table 1: Model comparison results of 25-class classification.

Model F1 (%) Model F1 (%) Model F1 (%)

DenseNet121 91.9 MobileNet 90.1 VGG16 93.0
InceptionResnetv2 90.0 MobileNetv2 92.4 VGG19 91.4
Inceptionv3 84.7 NasNet 87.6 Xception 86.7
ResNet50 45.8 ResNetV2 88.7

Table 2: EER for each user in binary classification.

Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

EER (%) 1.00 5.79 0.00 9.50 4.50 9.50 2.00 0.50 6.00 0.00 0.53 8.00 2.50

Participant P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25

EER (%) 3.50 2.50 1.00 7.50 6.00 5.50 10.50 0.50 11.67 9.50 3.00 8.00

an accuracy of 93.1% in a 25-class classification task involving 25
participants. This result supports the hypothesis that active acoustic
sensing applied to a door handle could authenticate the user’s grasp
of it. The 93.1% accuracy in the 25-class classification is comparable
to the user identification accuracy (93–98%) reported in a previ-
ous study with the same number of participants of authentication
systems using active acoustic sensing [42].

In addition, the EER was 4.76% in a binary classification task
using test data that included unknown users assumed to be im-
posters. While direct comparisons are difficult, our method appears
to achieve an accuracy comparable to previous studies on door
handle-based authentication, such as Sekiguchi et al. [41] (11 partic-
ipants, 81.6% precision rate, and 1.5% FAR) and SmartHandle [12]
(11 participants, 87.27% true acceptance rate, and 1.39% FAR). This
result indicates that user identification would be possible only by
grasping the door handle. However, some participants, such as P20
and P22, exhibited lower accuracy (Table. 2). This is likely due to
similarity in data among users. To improve accuracy, there is poten-
tial to enhance robustness against unknown users by using CNN for
feature extraction and employing cosine distance for classification.
Moreover, improving the 4.76% EER of using this method as a prac-
tical security technology is considered necessary. In SkullID [42],
a study on an authentication method using active acoustic sens-
ing with smart glasses, accuracy was improved by combining data
from multiple microphones placed at different locations. Similarly,
attaching multiple microphones to other parts of the door handle
could improve accuracy.

While this study conducted security experiments using data from
unknown imposters, the robustness against presentation attacks,
assuming the leakage of spectrogram data, has not been evaluated.
In addition, although data collection for the same participants was
conducted on the same day, the composition of the human body
changes over time, which could potentially lead to a decline in the
performance of this method. Hence, conducting additional security
evaluation experiments for this system is considered necessary.
Moreover, it is expected that the accuracy will decrease as the
number of participants increases.

7 Conclusion
We developed an authentication system using active acoustic sens-
ing based solely on how users grasp a door handle, and we con-
ducted accuracy evaluations. This system’s accuracy achieved an
F1 score of 93.0% in the 25-class classification, demonstrating suf-
ficient accuracy for user identification. Further, an average EER
of 4.76% was achieved in the One-vs-Rest classification using un-
known users as test data. This paper demonstrates the feasibility
of authentication based solely on how users grasp a door handle. It
contributes to the advancement of smart locks that do not require
any particular actions for unlocking.
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