筑波大学 情報学群 情報メディア創成学類

卒業研究論文

ARによる集団最適化広告表示

菅野 恭平
指導教員 田中 二郎 志築 文太郎 三末 和男

2014年1月
概要

我々が生活している空間にはあらゆる種類の広告があふれている。たとえば、町並みを歩いていく際には、道路沿いに看板が立てられており、ビルの壁面にも広告が掲載されている。車道には広告でラッピングされたバスやトラックが行き来し、電車に乗れば中刷り広告を目にすることとなるだろう。しかし、それらの広告は実際どれくらいの人に見られ、商品販売にどのような影響を与えているのかを定量的に測定する方式が存在しておらず、表示している広告が広告閲覧者に対して効果的に興味関心を惹きつけるものでない場合が多々みられる。そこで現実世界の広告を閲覧者の興味関心に基づいた広告に置き換えることで効果的且つ、広告効果の測定が可能となると考える。広告を見ている人々それぞれに適した広告の置き換えを行うためにAR技術を用いる。本研究ではヘッドマウントディスプレイを装着することによって仮想の広告を現実世界に重畳表示する広告システムを検討し、実現する。なお、システムの開発に於いてヘッドマウントディスプレイが現在より小型化し、一般的に普及している近未来を想定する。
目次

第 1 章 はじめに 1
 1.1 背景 ... 1
 1.2 インターネット広告 1
 1.3 本研究の目的 2
 1.4 本研究のアプローチ 2
 1.5 本論文の構成 2

第 2 章 AR を用いた集団最適化広告表示システム 3
 2.1 システムの要件 3
 2.2 システム概要 4
 2.3 想定する未来環境 4
 2.4 システムの特徴・利点 5
 2.4.1 ユーザの利点 5
 2.4.2 広告媒介主の利点 5
 2.4.3 広告製作会社の利点 5
 2.4.4 広告主の利点 6
 2.5 利用シナリオ 6
 2.5.1 ユーザの利用シナリオ 6
 ユーザが単独行動をしている場合 6
 ユーザが集団行動をしている場合 6
 2.5.2 広告媒介主の利用シナリオ 7
 2.5.3 広告製作会社の利用シナリオ 7
 2.5.4 広告主の利用シナリオ 7

第 3 章 AR を用いた集団最適化広告表示システムのプロトタイプ 8
 3.1 仮想広告の表示 8
 3.2 集団の認識 8
 3.3 集団の表示広告の同期 8

第 4 章 システムの実装 10
 4.1 開発環境とシステム構成 10
 4.2 三次元位置情報の認識 10
4.3 広告画像の表示 .. 11
4.4 集団の検出 .. 11
 4.4.1 Twitter 認証 .. 12
 4.4.2 Twitterでの友好関係の取得 12
 4.4.3 GPS による測位 ... 12
 4.4.4 近接している友人の検出 12
 4.4.5 集団の更新 .. 13
4.5 集団に表示する仮想広告の同期 13

第 5 章 関連研究 .. 14
 5.1 広告の効率化 .. 14
 5.2 AR による情報の提示 .. 14

第 6 章 本システムの課題と発展 15
 6.1 本システムの課題 .. 15
 6.1.1 カメラと実際の視野に対する差異 15
 6.1.2 複雑な交友関係処理 15
 6.1.3 GPS の精度 ... 15
 6.2 本システムの発展 .. 16
 6.2.1 広告最適化アルゴリズムの導入 16
 6.2.2 ライブログシステムとの連携 16
 6.2.3 三次元ポリゴンや動画を用いた広告 16

第 7 章 結論 .. 17

謝辞 ... 18

参考文献 .. 19
図 目 次

3.1 AR 広告スペース 9

4.1 使用端末と HMD. どのようにマウントする 10
4.2 AR マーカ 11
4.3 ユーザの半径100m以内にいる他のユーザを検出する 12
4.4 その中で交友のあるユーザを集団として認識し、登録する 13
第1章 はじめに

1.1 背景

我々が生活している空間には、様々な広告があふれている。たとえば、町並みを歩いている際には、道路沿いに看板が立てられており、ビルの壁面にも広告が掲載されている。車道には広告でラッピングされたバスやトラックが行き来し、電車に乗れば中刷り広告を目にすることとなるだろう。しかしそれらの広告は以下のような特徴を持つ。

広告が実際にどの程度見られ、広告効果につながっているかを示すことができない

広告効果の目安を示す統計値は存在するものの、リアルタイムに広告閲覧者数を記録することはできず、また、広告閲覧者が実際に広告の商品を購入するに至ったというデータを得ることはできない。

広告を効果的に表示しているわけではない

実世界における広告でも、その広告の前にどのような人が多く通るかを予測し、その人物が興味を持ちやすいものを表示しているが、多数の人々興味を持ちやすい広告を掲示できたとしても、残りの少数派を取りこぼしてしまうことになる。これはより多様な人々が行き来する商業街等では顕著なものになっている。

1.2 インターネット広告

近年、インターネットの普及に伴い、インターネット広告の広告費が増加傾向にある。これはインターネット上の広告に以下のような特徴を持つ事が原因といわれている。

広告効果の可視化

インターネット上の広告は、その広告が何人に見られているか、そして見られたうち何人が広告をクリックしたか、広告をクリックしたものの商品購入や資料請求、契約成立などの利益につながったかを記録、閲覧することができる。
広告表示の最適化

インターネット上の広告には、閲覧者の Web 閲覧履歴や検索ワードを基に、その閲覧者が興味を持ちやすい広告を表示することを可能にしている。これにより、一人ひとりに効果的な広告表示が可能になっている。

これらの特徴は現実世界の広告には存在しないものである。広告費におけるインターネット広告の割合が増加していることは、企業もこういった現実世界の広告には存在しない利点を求めていることがうかがえる。

1.3 本研究の目的

本研究では、現実世界の広告における、実際にどれくらいの人に関覧され、利益につながっているかの情報を得られない・決して少なくない少数の取りこぼしという致命的な広告関連機会の喪失という問題点を解決する広告表示システムを検討し、実現することを目的とする。

1.4 本研究のアプローチ

本研究では、仮想的な広告を現実世界の広告に重複表示するシステムを提案する。仮想的な広告は、インターネット上の広告同様に閲覧者の情報からその人物が興味を持ちやすい広告を選択して表示し、広告の閲覧状況の測定を可能にする。仮想的な広告を現実世界に重複表示するためには拡張現実感技術を用いる。

拡張現実感とは、現実の環境から知覚に与えられる情報に、コンピュータで作り出した情報を重複表示する技術である。近年、拡張現実感を用いた様々な研究がなされ、実際に用いることのできるサービスも増加傾向にある。本研究では、現実の環境情報である広告掲載スペースに、コンピュータを用い閲覧者に最適化された広告画像を重複表示するために用いる。

1.5 本論文の構成

本章では現実世界における広告の問題を挙げ、それを解決できるような広告表示システムを作成するアプローチについて述べた。第 2 章では広告表示システムの要件を挙げ、その要件を満たすアプローチについて述べる。その後、システムの利用シナリオについて述べる。第 3 章では作成したプロトタイプシステムの使用法について述べ、第 4 章では実装について詳細に述べる。第 5 章では関連研究について述べ、第 6 章ではシステムの使用から得られた知見やそこから得られる改善案、発展について議論する。最後に第 7 章で結論を述べる。
第2章 ARを用いた集団最適化広告表示システム

2.1 システムの要件

本研究では仮想的な広告を現実世界に重畳表示するシステムを提案する。まずこのシステムを作成する際の要件を述べる。

重畳表示する広告画像は利用者の情報を基に最適化されたものとする

利用者の現実世界での行動や、個人を特定しない属性情報等を用いて最適化された広告を表示することが望ましい。

利用者が友人等集団で行動している場合は集団に対して最適化を行い、同じ集団には同じ広告画像を表示する

インターネット上の広告の利点を現実世界で実現するのが本研究であるが、インターネット閲覧行動と現実世界での行動に於いて決定的に異なる点が存在する。それはインターネット閲覧行動が大抵の場合一人で行われる場合が多いものに対し、現実世界での行動は時として複数人で一緒に行われる場合があるという点である。そのため、インターネットと同様の方法を用いて一人ひとりに最適化された広告を表示した場合、複数人で行動を共にしている閲覧者がそれぞれ別々の広告画像を見ることになり、コミュニケーションを阻害してしまう恐れがある。そこで、本システムでは、利用者の集団を認識し、集団行動をとっている場合はその集団に対し最適化を行った広告を表示する必要がある。

広告への操作を可能とし、重畳表示された仮想広告から電話番号やHPアドレス等の情報を得ることができる

広告効果を測定するためには、広告を閲覧した際に閲覧者がその広告に興味を持ったか否かを記録する必要がある。そのため、広告閲覧者がその広告に興味を持った場合、操作を加えることでより詳細な情報を得られるようなシステムを組み込み、呼び出された回数を記録する必要がある。
広告表示回数、広告への操作回数、その後の商品購入などを記録し、広告効果を計測する

上記回数を記録し、式2.1に当てはめて広告効果測定基準となる値を算出する

\[CTR = \text{広告操作数/広告表示回数} \] (2.1)

目の前の実世界を見ながら利用できる

本研究では日常生活における広告を仮想広告に置き換えるものである。そのため、実世界をみながらシステムを利用できる必要がある。

2.2 システム概要

システムの要件を満たすようなARを用いた集団最適化広告表示システムは以下のようになる。

システムのユーザはヘッドマウントディスプレイを装着し、日常生活を送る。何かしらの広告を見た場合、その広告を、ARによってユーザの好みに合った仮想広告に置き換える。ユーザが友人等の集団行動を行っている場合、その集団に対し最適化を行いそれぞれに同じ仮想広告を表示する。また、その広告に対しユーザが興味を持ち更なる情報が必要となった場合は仮想広告に操作を行うことで更なる情報を得られるようになっている。ユーザが仮想広告に操作を起こした場合、その情報が記録され、広告効果の測定に利用される。ARを表示するデバイスはユーザの動きに追従する物を利用する。これにより、目の前の実世界を見ながらシステムを利用できるという要件を満たす。

2.3 想定する未来環境

ユーザの動きに追従するAR表示が可能なデバイスの一つにヘッドマウントディスプレイが存在する。現在AR表示が可能なヘッドマウントディスプレイには大きく分けてビデオシースルーや光学シースルーものが存在する。前者は小型化が進み、実世界を見る際の遅延もないため日常生活に問題が少ないと思われが、表示する画像が遅くなってしまうため広告を表示するには適していないと考えられる。後者はカメラで取り込んだビデオ画像を処理し、表示する画像を合成するため、画像が遅くなく視認しやすいが、遅延が大きいため日常生活で用いるには適さない。また本体もいまだに大きく携行に難がある。本研究では、両者の欠点が克服され、さらにCPUが内蔵されたヘッドマウントディスプレイが広く普及し、使用することが一般的になっている近未来環境を想定し、システムに使用する。
2.4 システムの特徴・利点

本システムでは、日常に存在する広告をユーザの好みに合わせた仮想広告に置き換え効率的な広告活動と広告効果の視覚化を可能にするものである。広告システムには、広告を閲覧するユーザ、広告を掲載する媒体を有する媒体主、広告を制作する広告製作会社、広告を掲示しプロモーションを行う広告主、という利用者が想定される。本システムはそれぞれにどのような利点をもたらす。

2.4.1 ユーザの利点

本システムで広告を閲覧するユーザは、仮想広告に対する操作を行うことで詳しい情報などを得ることができる。従来の実世界広告では、ユーザは広告のQRコードやHPアドレス、キーワードを手元の端末に入力することで同様の情報を得ることが可能であった。しかし、そのためには端末を取り出し、QRコードリーダやWebブラウザ等のアプリケーションを起動し、そこに入力を行うという3つの操作が必要となる。本システムでは、氣になる広告に対して手をかざすなどの1動作が可能にしており、より気軽に情報を得ることが可能になると考えられる。

また本システムは、広告費を基に運営されるものであるため、ユーザには全くコストのかからないものである。場合によってはポイントの付与、クーポンの配布などによって利益還元を行うことも可能であり、これもユーザにとっての利点となり得る。

2.4.2 広告媒体主の利点

本システムの運用に際して、既存の広告掲載箇スペースを所有している広告媒体主にも利益をもたらすものとして運用することが可能であると考えられる。本システムでは、どの広告媒体がどれだけの人の視野に入っているか（言い換えれば、どれだけのヘッドマウントディスポレイに広告画像を表示するか至っているか）を実データとして保存することが可能である。そのため、媒体主が所有している広告スペースがどれだけの価値を持つのかを明確な指標を基にリアルタイムに算出し、それを基にした適正価格で媒体利用費を媒体主に支払うことが可能となる。また、運営方式として、広告主が依頼した広告画像を本システムがまとめて管理し、各媒体に仮想広告の置き換えという形で表示するようになる。そのため、広告主が存在しない空白期間が生まれることがなく、安定した収入を得ることが可能となる。

2.4.3 広告製作会社の利点

本システムでは、ユーザの属性データ、および、広告に対する行動のデータを保存することが可能になる。そのため、クライアントターゲットにする世代、性別などのような広告に対し興味を持ちやすいかを本システムから得られるデータを基に読み解くことが可能となる。そのため、より明確な指標を基にした成果の出やすい広告製作が可能となる。
2.4.4 広告主の利点

本システムでは実世界の広告を仮想広告に置き換える。そのため広告掲載費も従来の実世界広告によく見積られた掲載期間に応じた費用ではなく、インターネット上の広告によく見られる、一回の表示、一回の操作に対しての広告費が発生するものとなる。そして、置き換えられる仮想広告は最適化を用い商品購入や契約に至りやすい人に対し表示されることとなる。そのため、より少ない対価で効果的な広告活動を行うことが可能となる。

2.5 利用シナリオ

本システムの利用者は大きく分けて広告を閲覧するユーザ、広告媒体主、広告製作会社、広告主という4つの利用者と考えられる。それぞれについて想定される利用シナリオを以下に記述する。

2.5.1 ユーザの利用シナリオ

ユーザの利用シナリオに関してはさらに利用者が単独行動をしている場合と、集団行動をしている場合とに分けられる。それぞれについて以下に示す。

ユーザが単独行動をしている場合

Aは読書が趣味な女性である。ある日、彼女が街を歩いていると彼女が愛読している小説の作者の新刊情報の広告が目に留まった。これは本システムがAの行動から彼女の興味関心が読書に傾いていることを把握し、最近読んでいる小説のタイトルから作者名を剖り出した結果、仮想広告として置き換えられたものである。その小説に興味を持った彼女はどんな内容なのか気になったため、仮想広告を操作し、試し読みのデータを取得し帰りの電車の中で読むことにした。試し読みをし、その本を気に入った彼女は本の購入を決め、発売日に書店へと足を運ぶのであった。

ユーザが集団行動をしている場合

Aは友人である女性Bと街中で一緒にショッピングをしている。お昼頃となり二人が「そろそろお昼の時間だ」と会話をしていると、本システムがそれを察知、二人の近くにある飲食店の広告を仮想広告として置き換えようになる。無論これはただ単に近くにある飲食店の広告を無差別に表示したものではなく、彼女ら二人の会話、過去の飲食店訪問履歴などや、彼女たちと同年代のユーザがよく利用店舗情報などから割り出されたものである。システムは二人が交友関係にあることを認識しているため、彼女たちが互いに近くにある間はそれぞれ同じ広告を表示するようになっている。二人は広告を操作し、各店舗のおすすめメニューとそのカロリー、価額等を一緒に眺めどの飲食店に行くかを決定した。仮想広告操作により位置情報を
取得、ナビゲーションを起動することで迷うことなく店舗へと歩を進めると。仮想広告には割引クーポンが付属していたためこれを取得、お手頃価格でお昼を満喫することができた。

2.5.2 広告媒体主の利用シナリオ

Cは街頭広告の媒体を所有している人物である。最近広告主が決まらない媒体が目立ってきたため本システムに加入、安定した広収収入を得ようと考えた。本システムに加入するにあたり必要な準備は広告位置情報を本システムに通達、加入申請をし、広告媒体を識別できるユニークなマークを取得、掲示するだけである。

本システムによって自らの所有している広告媒体に対し仮想広告が表示された場合、1回につき5円の収入が入るようになった。人通りの多い街頭に設置されている広告は1日に5000人ほどの目に留まるため1日25万円、ひと月で750万円の収入となった。人の目に触れる機会が少ないため買い手がつかなかった広告媒体も1日200人ほどの目に触れると考えると月では3万円の利益になった。

2.5.3 広告製作会社の利用シナリオ

広告製作会社であるD社は自動車会社であるE社の新製品のプロモーションを受けることで、新製品のコンセプトは若者向けのスポーツカー、スタイリッシュなフォルムで自動車離れしている若者を呼び戻そうという考え方である。D社は若者向けのプロモーションの一環として本システムを用いたAR広告を行うこととする。

本システムでは、ユーザの属性データ、ユーザが注目した広告、利用した仮想広告操作情報等を記録しておくことが可能である。よって、そのデータから今回のようなターゲットとなる20代後半の男性がどのような広告に対して興味を持ち、どのような情報に対して広告読者意欲をかき立てられるのかを読み取り、より効率的で効果的な広告制作を行うことが可能となった。

2.5.4 広告主の利用シナリオ

F社は若者向けの衣服を販売する店舗を経営している。広告の効率化を目指し最適化広告を利用したいと考えている。しかし、インターネットの広告ではECが主流であるため、実店舗への来客を見込むことが難しい。

本システムによって、位置情報を用い実店舗周辺1 kmにいる10代後半の男女に対し広告表示を行うため効率的に広告活動を行うことができる。また、会話でファッションの話題等をよくしているグループに対して広告を表示するようにしているため、広告を閲覧したユーザが高確率で店舗へ足を運び、商品購入に至るようになった。
第3章 ARを用いた集団最適化広告表示システムのプロトタイプ

ARを用いた集団最適化広告表示システムのプロトタイプとして、集団を検出し、ARによって仮想広告を表示するシステムを作成した。ユーザはヘッドマウントディスプレイを装着する。ユーザに目の前実世界を提示できるよう、ヘッドマウントディスプレイにはカメラを取り付ける必要がある。また、ユーザが集団行動をしている場合を検出するためにGPSを利用するためにこれを取り付ける。さらに屋外での利用を想定しているため携行可能なCPUが必要である。以上の点を踏まえた結果、カメラ、GPS、CPUが内蔵されているAndroid端末をヘッドマウントディスプレイに取り付けることにする。

表示する仮想広告は二次元画像を用いた。

3.1 仮想広告の表示

実世界に仮想広告を表示するために本プロトタイプではARマークとARToolKitを用いる。広告掲載位置に図3.1のようなARマークを持つ広告スペースを掲示し、ヘッドマウントディスプレイを装着したユーザがその広告スペースを眺めた場合その平面に仮想広告を表示する。

3.2 集団の認識

集団行動をしているユーザを認識するにはGPSとSNSであるTwitter[1]を用いる。本プロトタイプを利用するユーザにはあらかじめTwitterのアカウントを登録してもらいその交友関係を保存する。そしてGPSで近くにいる友人同士がいる場合集団として認定する。集団情報はデータベースに保存され、随時更新される。行動を始めた場合集団から削除され、行動から合流した場合はその集団に新たに登録される。

3.3 集団の表示広告の同期

広告スペースを見ているユーザが集団に属している場合そのユーザが所属しているグループのユーザすべてに同じ仮想広告を表示するようにする。
図 3.1: AR 広告スペース
第4章 システムの実装

4.1 開発環境とシステム構成

開発言語はJava、開発環境にはEclipseを用いた。動作環境はSONYのAndroid端末XPERIA A、Android OSバージョンは4.1.2である。利用するヘッドマウントディスプレイはSONYのHMZ-T3を用いた。なお、ヘッドマウントディスプレイとアンドロイド端末はMHLケーブルでつながっており、これによりAndroid端末の画面をヘッドマウントディスプレイ上に表示する。実装には4つのライブラリを利用した。実世界への対応付けのためにARToolWORKS[2]のARToolKit for Androidを用いた。カメラから得られた画像に仮想広告を重畳表示するためにOpenGLを用いた。またTwitterの交友関係を取得するためにTwitter apiを用い、データ保存にはKii株式会社[3]のKiiCloudを用いた。

![使用端末とHMD](image)

図4.1: 使用端末とHMD、このようにマウントする

4.2 三次元位置情報の認識

ヘッドマウントディスプレイに装着されたAndroid端末のカメラはユーザの頭の動きに追従している。そのためそのまま仮想広告を表示した場合ユーザの動きに追従して仮想広告も移動してしまう。そこでARToolKitを用いることで実世界への対応付けを行うことで仮想広告が実世界に存在するAR広告スペース上に固定されるようにした。

ARToolKitは黒枠で囲まれた矩形(以下ARマーク)図4.2を認識し、カメラを原点とする座標系(以下、カメラ座標系)におけるARマークの位置・姿勢といった情報を得ることができる。あらかじめ設定を行っておけばARマークの矩形の中に書くものには制限がない。カメラ座標系における座標をARマークを原点とした座標系(以下マーカー座標系)における座標に変換
することで3次元座標である実世界への対応付けを行う。ARToolKitを用いることで、マーカの中心座標をカメラ座標系における座標に変換する座標変換行列を得ることができる。式4.1の座標変換行列における\(r_1 \sim r_9 \)は回転成分を示しており、\(t_x \sim t_z \)はそれぞれの並進成分を示している。式4.1を式4.2に簡略化するとカメラ座標系における座標をマーカ座標系に変換する数式は、式4.3のようになる。これによりカメラ座標系で作成した仮想広告をマーカ座標系に配置することができる。

![Hiro](image)

図4.2: ARマーカ

\[
\begin{bmatrix}
X_c \\
Y_c \\
Z_c \\
1
\end{bmatrix} = \begin{bmatrix}
r_1 & r_2 & r_3 & t_x \\
r_4 & r_5 & r_6 & t_y \\
r_7 & t_8 & r_9 & t_z \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
X_m \\
Y_m \\
Z_m \\
1
\end{bmatrix}
\] (4.1)

\[A = T \cdot B\] (4.2)

\[T^{-1} \cdot A = B\] (4.3)

4.3 広告画像の表示

仮想広告は先ほど求めたマーカ座標系上に矩形のポリゴンを描画することで行われる。その矩形ポリゴン上にテクスチャとして広告画像を張り付けることで広告を表示する。

4.4 集団の検出

集団の検出は以下の手順をもって行われる。
4.4.1 Twitter認証

まず、システムに於いてユーザの交友関係をあらかじめ取得する必要がある。本プロトタイプではTwitter apiを用いてユーザの交友関係を割り出す。アプリ起動時にTwitterアカウントを用いた認証をかけることで認証したユーザの情報を取得することが可能となる。

4.4.2 Twitterでの友好関係の取得

Twitter apiではユーザがフォローしている他ユーザのIDとユーザをフォローしている他ユーザを取得するメソッドがそれぞれ用意されている。本システムではその両方を取得それぞれを比較し、互いにフォロー関係にあるユーザを交友関係にあるユーザと認識しリストとしてこれを保存する。

4.4.3 GPSによる測位

位置情報の取得には、Androidから提供されているlocationパッケージを用いた。ユーザの位置が変化するたびにその位置情報を取得しTwitterアカウントのIDと繋げて保存する。

4.4.4 近接している友人の検出

ユーザの位置情報が変化するたびに他ユーザの位置情報と比較、半径100mにいる他のユーザを検出する。近接しているユーザが存在する場合、そのユーザのTwitterIDを取得し、先述の交友リストに存在するか検索を掛ける。検索の結果該当するユーザが存在する場合そのユーザを共に行動する集団と認識し登録する。その友人がすでに他のグループに登録されていた場合にはその集団のメンバーを取得、メンバー全員と友好関係にあり、且つそれらメンバーが自身の半径100m以内にいる場合にその集団に登録される。

図4.3：ユーザの半径100m以内にいる他のユーザを検出する。
図 4.4: その中で交友のあるユーザを集団として認識し、登録する。

4.4.5 集団の更新

集団として登録されているユーザの位置情報が変更された場合、その集団に所属しているすべてのユーザの位置情報を取得、それぞれとの距離を求める。その距離が 100m 以上離れている場合はその集団から外れており認識し集団から削除する。

4.5 集団に表示する仮想広告の同期

登録している集団には表示する仮想広告の id を保持するようになっている。集団として登録されているユーザが AR 広告表示スペースを見た際には、集団に提示されている id の仮想広告を表示するようになっているため、その集団に所属しているユーザは同じ仮想広告を見ることになる。
第5章 関連研究

5.1 広告の効率化

広告の効率化を目指したものの一例として広告にディスプレイを用いたデジタルサイネージというものが存在する。

井上らによるGAS[4]では、デジタルサイネージの周囲にいる人物がどのような関係性であるかを人物間の距離を測ることで判定し、その関係性に対し効果的な広告を表示するシステムを提案している。

南竹らによるSignageTracerおよびSignageGazer[5]ではデジタルサイネージの付近を通る人物の歩行軌跡や顔の向きから広告への注目度を測定し、あまり注目されていない広告を差し替えることで広告の効率化を目指すシステムを提案している。

これらデジタルサイネージを用いた屋外広告の効率化システムは確かに既存の街頭広告に比べ効率化ができていると思われる。しかし、その規模が街頭広告等の一度に大勢の集団や人物が見るような広告になった場合、既存の屋外広告と同様に広告効率化の取りこぼしが起きるものと考えられる。本研究で提案システムでは理論上複数のグループが同一の広告スペースを見ているとしてもそれぞれに適した広告を表示できる点で異なる。

5.2 ARによる情報の提示

ARを用いるユーザに様々な情報を提示する研究が行われている。

その中でも屋外にいる対してユーザに情報を提供するものとして、竹内らによるClayVision[6]が挙げられる。これはカメラ付き端末をかざして撮影した街並に存在する建物等の形状を変更することでユーザに情報を提供するシステムであること。研究では、提供する情報は店舗などのようなものを販売しているのか、や目的の建物がどの建物か等をユーザに示すが、本研究で提示する情報は広告である点に於いて異なる。

第6章 本システムの課題と発展

今回作成したプロトタイプシステムの試用を行った。以下に試用から得られた課題点、考え得るシステムの発展をここで述べる。

6.1 本システムの課題

6.1.1 カメラと実際の視野に対する差異

本研究では日常的にHMDを用いることになった未来環境を想定して行われている。しかし本プロトタイプではAndroid端末付属のカメラを用いているため、実際に目にすることができ視野より狭い範囲の画面しか表示できない。また、カメラ画像と実際の位置合わせがなされており、およそ5〜10cmの誤差が生じている。そのため本プロトタイプを使用したままでは日常生活を送ることが非常に困難であると考えられる。ヘッドマウントディスプレイの視野は将来的に改善されることが予測される。位置合わせについては、今後解決するよう努めたい。

6.1.2 複雑な交友関係処理

本プロトタイプでは単純に近隣に存在する交友関係にあるユーザを共に行動する友人として定義した。しかし実際には、AによってBは友人の友人だが友達ではない等の複雑な交友関係で集団行動を行うことも少なくない。今後本システムを作成する場合これらの処理を適切に行えるようにしていく必要があると考える。

6.1.3 GPSの精度

本システムではユーザ同士の位置情報をGPSを用いることで推定しているが、GPSの精度差が大きい場合十m単位で誤差が生じる。そのためユーザ同士の位置関係把握もこの誤差に大きく左右されることとなる。今回のプロトタイプでは単に近いユーザを割り出すことに用いたが、今後その距離感から関係性を推定したりする際はより高精度な位置把握システムが必要になると考えられ、Bluetooth接続等を利用することも視野に入れている。
6.2 本システムの発展

6.2.1 広告最適化アルゴリズムの導入

今回のプロトタイプ製作では表示する広告の最適化を行うアルゴリズムは導入していない。そのため、集団に対し最適化広告表示を行った際にどのような影響をもたらすか等の実験を実施できなかった。今後としては、広告最適化アルゴリズムを導入し、最適化広告表示が集団へどのような影響を与えるかを試験する必要がある。

6.2.2 ライフガシステムとの連携

本システムのプロトタイプでは SNS を用いてユーザの交友関係を割り出したが、将来的には日常生活のあらゆる要素を記録する様々なライフログシステムと連携し共に行動する集団の割り出しやその集団への最適化に用いることを視野に入れている。これが実現した場合、日常のさらけ出された会話や実店舗での商品購入などからその人物やグループに適した広告を表示できるものと考えられる。勿論、これらライフログとの連携はユーザの同意に基づくものであり、ユーザのプライバシーを侵害しないものとする必要がある。

6.2.3 三次元ポリゴンや動画を用いた広告

本システムではコンピュータグラフィックスを用いて既存の広告を仮想の広告に置き換えている。今回のプロトタイプでは、二次元の静止画を掲示するにとどまったが、3次元のポリゴンを描画したり、ムービーを再生したり等、より広告閲覧意欲を高める広告を表示することも可能であると考えられる。その際には利用者の安全等更なる配慮をする必要がある。
第7章 結論

本研究では，AR を用いて現実世界に存在する広告を，それを見る人物に最適化された仮想広告に置き換えることにより効率化するシステムを提案し，プロトタイプの実装を行った。現実世界での行動は単独で行われる場合以外にも集団で行われる場合がある。その場合，それぞれが別々の広告を見ていると集団でのコミュニケーションを阻害してしまうため，ユーザーが集団行動をしている時はその集団のそれぞれに対し仮想広告を提示するようにした。集団の検出には Twitter と GPS を用いた。

今後は表示する仮想広告をユーザの属性データ，SNS の投稿，ライフログシステム等から最適化するためのアルゴリズムを導入し，実際に広告を置き換えた際どのような影響をもたらすか等，システムの評価をし，それに伴う改善を行いたい。
謝辞

本論文を執筆するにあたり、指導教員である田中二郞先生をはじめ、三末和男先生、高橋伸先生および志築文太郎先生にはご見解を通して、丁寧なご指導とご助言を頂きました。心より感謝申し上げます。また、インクラクティブ・プログラミング研究室の皆様には、実験への協力や研究に対するアドバイスを頂き大変お世話になりました。この場を借りてご協力を頂いた関係者の皆様に深く感謝の意を申し上げます。
参考文献

