カメラ画像に写る対象の実世界位置を利用した
AR注釈表示位置決定法

三田 裕策
指導教員 志築 文太郎 三末 和男 田中 二郎
2012年2月
概要

本論文では、拡張現実（AR）技術を用いて表示される注釈表示の位置を、カメラからの取得画像（以下カメラ画像とする）を利用して決定する手法を示す。本手法ではカメラ画像に写る物体までの距離を取得し、その距離を利用してカメラ画像内に写る物体を認識することにより、カメラ画像内へのより正確な位置への注釈の重複表示を行う。

本手法を実装し、カメラ画像を利用しない従来の手法との比較を行い、本手法の有用性の検証を行った。検証の結果、半数の場面において注釈を注釈対象上に表示させることができた。
目次

第1章 序論 1
 1.1 AR を用いた注釈表示 1
 1.2 注釈表示の理想と現状の問題 2
 1.3 本研究の目的とアプローチ 3
 1.4 本論文の構成 3

第2章 関連研究 5
 2.1 マーカレス AR の研究 5
 2.2 注釈の表示方法に関する研究 5
 2.3 現実空間と仮想空間のマッキングを行う研究 6
 2.4 画像のトラッキングを行う研究 6

第3章 注釈表示位置の決定方法 7
 3.1 注釈表示位置決定方法の方針 7
 3.2 特徴点の利用 8
 3.2.1 特徴点の概要と使用理由 8
 3.2.2 PTAM の概要と利用方法 8
 3.3 物体認識手法 9
 3.3.1 カメラから注釈対象までの距離及び角度の算出 9
 3.3.2 カメラから特徴点までの距離及び角度の取得 10
 3.3.3 取得した距離及び角度の比較 14
 3.3.4 変数の設定 15

第4章 システムの概要 16
 4.1 システム構成 16
 4.2 アルゴリズム 17

第5章 実験 18
 5.1 実験目的 18
 5.2 実験環境 18
 5.3 実験内容 19
 5.4 結果 19
 5.4.1 注釈が注釈対象に重畳表示された場合 20
5.4.2 注釈対象が隠れている場合 24
5.4.3 注釈対象の特徴点が取得できなかった場合 25
5.4.4 注釈が注釈対象に重複表示されたが難がある場合 29

第6章 考察 30
 6.1 意図しない注釈表示の原因の考察 30
 6.1.1 画像の明暗 .. 30
 6.1.2 注釈対象までの距離 30
 6.1.3 防倉 .. 31
 6.2 本システムの内部処理の考察 32
 6.2.1 距離の入力 .. 32
 6.2.2 特徴点のマッピング精度 32

第7章 今後の展望 34

第8章 結論 .. 35

謝辞 .. 36

参考文献 37
図目次

1.1 精度の問題により表示位置がずれた注釈表示 3
1.2 注釈対象が隠れた画像への注釈表示 3
3.1 カメラから注釈対象までの距離 d_1 と方角 θ_1 9
3.2 カメラから特徴点までの距離 d_2 と角度 θ_2 11
3.3 特徴点空間の x,y,z 軸 .. 12
3.4 カメラの x,y,z 軸 .. 12
3.5 カメラの向いている方角 θ_r 及びカメラ座標に対する特徴点の角度から算出した θ_p ... 13
3.6 距離及び方角の比較 .. 14
4.1 使用デバイスの全体像 ... 16
4.2 システムフローチャート .. 17
5.1 実験時の様子 ... 18
5.2 場面 1 における注釈対象の位置 20
5.3 場面 1 における従来の手法による注釈表示 20
5.4 場面 1 における本手法による注釈表示 20
5.5 場面 2 における注釈対象の位置 21
5.6 場面 2 における注釈対象の拡大画像 21
5.7 場面 2 における従来の手法による注釈表示 21
5.8 場面 2 における本手法による注釈表示 21
5.9 場面 3 における注釈対象の位置 22
5.10 場面 3 における従来の手法による注釈表示 22
5.11 場面 3 における本手法による注釈表示 22
5.12 場面 4 における注釈対象の位置 23
5.13 場面 4 における従来の手法による注釈表示 23
5.14 場面 4 における本手法による注釈表示 23
5.15 場面 5 における注釈対象の位置 24
5.16 場面 5 における従来の手法による注釈表示 24
5.17 場面 5 における本手法による注釈表示 24
5.18 場面 6 における注釈対象の位置 25
5.19 場面6における注釈対象の拡大画像 25
5.20 場面6における従来の手法による注釈表現 25
5.21 場面6における本手法による注釈表現 25
5.22 場面7における注釈対象の位置 26
5.23 場面7における注釈対象の拡大画像 26
5.24 場面7における従来の手法による注釈表現 26
5.25 場面7における本手法による注釈表現 26
5.26 場面8における注釈対象の位置 27
5.27 場面8における従来の手法による注釈表現 27
5.28 場面8における本手法による注釈表現 27
5.29 場面9における注釈対象の位置 28
5.30 場面9における従来の手法による注釈表現 28
5.31 場面9における本手法による注釈表現 28
5.32 場面10における注釈対象の位置 29
5.33 場面10における注釈対象の拡大画像 29
5.34 場面10における従来の手法による注釈表現 29
5.35 場面10における本手法による注釈表現 29
6.1 $v_d=30$の場合の注釈表現 32
6.2 $v_d=40$の場合の注釈表現 32
6.3 少量の特徴点しか抽出されなかった場合 33
6.4 多くの特徴点が抽出された場合 33
第1章 序論

本章では、本研究において扱う拡張現実（AR）を用いた注釈提示方法とそのライブラリやアプリケーション例を述べ、注釈表示の理想と現状の問題を述べる。また、その問題を解決するための目的とアプローチを述べる。

1.1 AR を用いた注釈表示

拡張現実の一手法として、カメラから取得した画像（以下カメラ画像とする）に注釈を重複表示させる手法（以下 AR 注釈表示手法とする）がある。この手法の特徴として、注釈対象に注釈を重複表示させることにより互いを関係付けることが可能である。AR 注釈表示には、表示する注釈の種類と注釈の表示位置を決定する方法として以下の二種類が存在する。

・ カメラ画像に写る特定の物体を用いる方法

カメラ画像内のマークと呼ばれる特定の物体を目印として注釈表示を行う。この手法ではマークの種類や位置に応じて表示する注釈の種類や位置を変えることができる。また、マークを用いないでカメラから取得した方角の位置を注釈の表示位置を決定するマーカレス AR 手法も存在する。例として、加速センサを用いる手法 [唐津 10] や、物体の頂点を目印とする手法 [高瀬 05] 等があり、どちらも目印となるものを操作することにより注釈の内容や表示位置を変化させることができる。

・ GPS や電子コンパス等のデバイスを用いる方法

GPS と電子コンパスによりユーザの現在地と向きを取得及び利用して注釈表示を行う。この手法ではまず、GPS を用いて端末の現在位置を取得し、電子コンパスを用いて端末の向き方角を取得する。現在位置から注釈対象の位置までの方角を電子コンパスから取得した方角を比較し、その差により画面に表示する左右の位置が決定される。方角の差が大きければ画面の端に、方角の差が小さければ画面の中心付近に注釈が表示される。

カメラ画像に写る特定の物体を用いる方法によるライブラリとして ARToolKit[KB99] が、GPS や電子コンパス等のデバイスを用いる方法によるアプリケーションとしてセカイカメラ1や Layar2が存在する。

1 Sekai Camera. http://sekaicamera.com/
• **ARToolKit**

マーカを用いるARライブラリとしてARToolKitが存在する。ARToolKitとは、加藤らによりARの研究を目的として開発されたソフトウェアライブラリである。ARToolKitの特徴として、正方形の特定のマーカを用いることにより、リアルタイムにそのマーカとカメラの対相位置及び距離を求めることができる。画面には、その位置及び距離に応じたCGが表示される。

• **セカイカメラ (Sekai Camera)**

GPSと電子コンパスを用いるARアプリケーションとして、セカイカメラが存在する。セカイカメラは頚智ドット株式会社3が開発し、提供しているiPhone、Androidを利用するARソフトウェアである。セカイカメラでは、端末に内蔵されたカメラから取得した映像に、エアタグと呼ばれる付加情報が重畳表示される。ユーザはエアタグに文字や画像、音声を付加して登録することが可能であり、登録されたエアタグは全てのユーザが閲覧することができる。

• **Layar**

先述したセカイカメラと同じくGPSと電子コンパスを用いるARアプリケーションとして、Layarが存在する。Layarは株式会社システム・ケイ4が開発した、iPhone、Androidを利用するARソフトウェアである。ユーザは使用目的に応じて、付加情報の異なる様々なコンテンツを利用可能である。

以降、本論文ではAR注釈表示を述べる場合、GPSや電子コンパス等のデバイスを用いる方法による注釈表示を述べる。

1.2 注釈表示の理想と現状の問題

本節ではAR注釈表示の理想と現状の問題を述べる。

AR注釈表示において、表示させる注釈は注釈対象に関連した情報であり、注釈は注釈対象と一意に関連付けられて表示されることが望ましい。

しかし、注釈表示において以下の問題が発生する。

精度の問題

注釈表示を行う際に、GPSや電子コンパスの情報の精度が悪いか、注釈表示位置を1点に定めるための情報が足りない等の理由により、注釈の表示位置が注釈対象の表示位置とずれた位置に表示されることがある。図1.1では表示位置の上手がずれているために、本来画像の赤色の体育館の部分に重畳表示されるべきである注釈が別の建物に重畳表示されている。ユーザ

4株式会社システム・ケイ. http://www.systemk.co.jp/
は注釈が表示されている奥の建物が体育館であるという誤った情報を受け取るという問題が発生する。

注釈対象が隠れる問題
注釈対象の手前に別の物体が存在する場合、奥の注釈対象である物体に対して注釈を重畳表示させるためにその重なりを考慮して注釈を表示することが求められる。
図 1.2 では、注釈対象である画像の緑色の部分の G 棟の手前に B 棟が存在しているため、G 棟の部分に重畳表示されるべきである注釈が B 棟に重畳表示されている。このため、ユーザは手前にある B 棟が G 棟であるという誤った情報を受信取るという問題が発生する。
また、手前の物体が注釈対象を遮り、カメラ画像に注釈対象が全く写らない場合がある。この場合もまた、ユーザが誤った情報を受け取るという問題が発生する。

図 1.1: 精度の問題により表示位置がずれた注釈表示
図 1.2: 注釈対象が隠れた画像への注釈表示

1.3 本研究の目的とアプローチ
本研究では、1.2 節において述べた問題を解決するために、画面内の注釈対象が写る部分に対してのみ注釈を表示させることを目的とする。注釈対象に注釈を重畳表示させることにより、注釈対象と注釈を結びつけて表示させることができ容易になる。
この目的を達成するために、カメラ画像に写る物体が注釈対象であるか否かを認識するとこのアプローチを取る。画面内の注釈対象の表示位置を認識することにより、注釈を注釈対象の位置に表示させる。

1.4 本論文の構成
第 1 章では本研究の対象とする AR 注釈表示の問題点と、本研究の目的とアプローチを述べた。第 2 章では本研究に関連した研究を挙げ、本研究の位置づけを行う。第 3 章では注釈
表示位置の決定法を述べ、第4章では本システムの実装を述べる。第5章において本手法の有用性を検証するための実験を述べ、第6章において実験結果の考察を行う。第7章では本システムの今後の展望を述べる。最後に、第8章において本研究の結論を述べる。
第2章 関連研究

本研究は、既存のAR注釈表示を行うことができる端末において、他の機器や情報源の追加無しに注釈の表示位置の決定を行う。本研究の関連研究として、マーカレスARの研究と注釈の表示方法の研究をそれぞれ述べる。また、注釈を表示する際に現実空間と仮想空間のマッッチング及び画像のトラッキングを行うため、これらに対しても関連研究を述べる。

2.1 マーカレスARの研究

Leeらは手のひらと指先を基準としてCGの描画を行う手法であるHandy AR[LH07]を提案した。この研究では特定のマーカを用いること無く、5本の指の先の位置から手のひらの1点を原点として、手のひらの向きを軸の方向とする座標系を作成する。この座標系の位置と向きに対応して変化するCGの描画を行うことができる。本研究では特定のマーカを使用しない点が同じであるが、CGの描画の基準となる座標をマッピングされた特徴点の位置から取得する点が異なる。

Honkamaaらは、屋外においてカメラ付きの携帯情報端末を特定の位置に向けてかざすこと、その位置に対応したオブジェクトが画面に表示されるシステム[HSJ+07]を開発した。この研究では、GPSとコンパス、Google Earthから取得した建物の3次元形状を用いてカメラから取得した画像に建物のCGを重畳表示させる。本研究ではGoogle Earth等の地理情報システムを用いない点が異なる。

2.2 注釈の表示方法に関する研究

小谷らは、注釈対象の形状を考慮して注釈の表示位置を決定する手法[小谷07]を提案した。この手法では、ユーザが現実の注釈対象と照らし合わせて、データベース上の注釈対象の位置及び領域を比較、修正し、注釈対象の形状を取得する。取得した注釈対象の形状を利用して、注釈が画面外に見られてしまう問題や注釈同士が重なる問題等を発生させずに注釈の表示を行う。本研究ではこの研究と同じく注釈表示位置の問題の解決を目的とするが、事前に注釈対象の形状を入力する必要が無い点が異なる。

浦谷らは、AR環境における奥行き暖昧性と視認性を考慮した注釈提示手法[浦谷04]を提案した。この研究は注釈表示における注釈の奥行き関係の暖昧性を低減する手法として、絶対距離を提示する方法、注釈同士の相対距離を視覚化する方法、隠蔽関係として破線を用いて注釈を提示する方法の3種法を提案した。この研究では表示される注釈同士の位置関係を
2.3 現実空間と仮想空間のマッチングを行う研究

石川らは屋外 AR システムにおける現実環境と仮想環境における幾何学的な位置の解消を目的とした高精度定位法 [石川 05] を提案した。この研究では、位置検出に GPS を、姿勢検出にジャイロセンサーを用いる。また、画像から得られる情報として建物と空の境界線を取得し、建物の 3 次元形状から得た境界線とマッチングを行うことにより現実環境と仮想環境のずれを解消する。本研究では現実空間と仮想空間のマッチングに建物と空の境界線を用いるのではなく特徴点を用いる点と、対象地域の 3 次元情報を事前に用意する必要が無い点が異なる。

山本らは複数の特性の異なるカメラを用いることにより、屋外において広範囲に利用できる複合現実型視覚情報提示システム [山本 06] を開発した。この研究では、ユーザーが持用する GPS、慣性センサ、カメラから得た情報に加えて複数の定点カメラから取得した画像を利用することにより、現実空間と仮想空間の位置を精度よくマッチングさせる。本研究では現実空間と仮想空間をマッチングさせるために、特徴点の位置を使用する点、また、使用するカメラは一つである点が異なる。

2.4 画像のトラッキングを行う研究

Klein らは 3 次元空間のマッピングを行い、その空間内に 3 次元 CG を合成させる Parallel Tracking and Mapping (PTAM) [KM07] を開発した。PTAM の特徴として、初めて写す場所でも実行可能である点や、初期位置から多少移動しても画像のトラッキングを行うことができる点が挙げられる。本研究では、PTAM のトラッキング方法を利用してシステムの設計を行う。
第3章 注釈表示位置の決定方法

本章では、1.3 節において述べた目的とアプローチを基として、本手法の注釈表示位置決定法の方針を定める。また、本手法において用いる特徴点と、物体認識手法の処理の内容をそれぞれ述べる。

3.1 注釈表示位置決定法の方針

1.3 節の目的とアプローチより、本システムでは以下の2つの条件を満たすシステムを作成する。

条件1 画面内の注釈対象に重ねて注釈を重畳表示する

条件2 カメラ画像内の物体が注釈対象であるか否かを認識する

本システムではこの2つの条件を満たす方法として、カメラ画像内に写る物体までの距離を利用し、その物体が注釈対象であるか否かを認識する方法を提案する。画像に写る物体までの距離を導出する方法として、以下に示す方法がある。

(a) 3次元距離カメラを用いる

(b) 大きさが既知である物体を画像内に写す

(c) 複数の画像を用いて視差を利用する

この内、(a) の方法は3次元距離カメラを使用する必要がある。

(b) の方法は、距離を導出する対象の付近に大きさが既知である物体を設置する必要がある。画像内に写るすべての物体に対して距離を導出するには、全ての物体の付近に大きさが既知である物体を設置する必要があるため、本システムにおいて用いる方法として不向きである。

(c) の方法は、ステレオカメラのように複数の画像を用いることにより、その画像に写る物体の位置と角度の差から画像に写る物体までの距離を導出することができる。必要な機器はカメラのみであり、他に特別な機器や道具を用いる必要はない。

以上から、既存の AR 注釈注釈表示を行うことができる端末において、他の機器や情報源を追加無しに行うことができるため、本システムでは画像内に写る物体の距離を認識するために (c) の方法を用いる。
3.2 特徴点の利用

3.1 節において、本システムではカメラ画像を用い AR 注釈表示位置の決定を行うことを述べた。本システムでは、カメラからの物体までの距離を導出する対象として、画像内の特徴点を用いる。本節では、特徴点を使用した理由と、特徴点までの距離を取得するために利用した PTAM とその利用方法を述べる。

3.2.1 特徴点の概要と使用理由

特徴点とは、画像の領域や角、輪郭等の色彩や濃淡が大きく変わるという特徴の大きな部分を点画したものです。特徴点は画像内のフリーエクサイトな点であり、特徴点のトラッキングを行うことにより、画像内の同一点の追跡を行うことが可能である。

画像全体に対して距離を導出する処理を行う場合、画像の画素毎に処理を行うためその処理は膨大な量になる。AR 注釈表示システムはカメラ画像を連続的にユーザに提示するため、1 枚の画像に対して処理する内容が多い場合処理速度が追いつかず、ユーザに処理落ちした映像を提示してしまう。その対処法として画像から抽出した特徴点に対して処理を行うことにより、画像全体の処理と比べて処理を減らすことができる。

システムの処理落ちを抑えるために、本システムでは画像から抽出した特徴点に対して距離を導出する処理を行う。

3.2.2 PTAM の概要と利用方法

画像から距離を取得する方法として、本システムでは Parallel Tracking and Mapping (PTAM) [KM07] において作成される 3 次元空間上の特徴点の座標を利用する。PTAM では、カメラを水平に動かしてその空間から複数画像を抜き出し、複数の視点の視差を利用することによりカメラ画像から特徴点の座標を取得する。さらに、その位置を 3 次元空間上にマッピングする。

以下、本論文ではこの PTAM により作成された 3 次元空間を特徴点空間と述べる。

この特徴点空間上の特徴点のマッピングは逐次更新され、その情報を基に CG のレンダリングを行なっている。特徴点空間は PTAM を起動するたびに新たに作成されるため、特徴点空間と実空間の距離をシステムを起動するたびに変化する。本システムでは特徴点空間の x,y,z 座標系における以下的位置と向きを取得し、利用する。

- 特徴点の位置
- カメラの位置
- カメラの向き

この内、特徴点の位置とカメラの位置を比較し、2 点間の相対距離を算出することによりカメラから特徴点までの距離を取得することができる。
3.3 物体認識手法

本節では、本手法の物体認識のために行う以下の3つの処理について述べる。

- カメラから注釈対象までの距離及び方角の算出
- カメラから画像内に写る物体までの距離及び方角の算出
- 算出した距離及び方角の比較

また、本システムにおいて使用する変数の設定についても述べる。

3.3.1 カメラから注釈対象までの距離及び方角の算出

カメラから注釈対象までの距離 d_1 及び方角 θ_1 を算出する。d_1 と θ_1 を図3.1に示す。この算出のためにまず、GPSを用いてカメラの存在する緯度 N_t 及び経度 E_t を取得する。また、注釈対象の緯度 N_n 及び経度 E_n を注釈の情報から取得する。

![図3.1: カメラから注釈対象までの距離 d_1 及び方角 θ_1](image)

次に、以下の2つの値を算出する。

(1.a) カメラから注釈対象までの距離
(1.b) カメラから注釈対象までの方角

この2つの値の算出方法についてそれぞれ述べる。
(1.a) カメラから注釈対象までの距離

2地点の緯度と経度から距離 \(d_1 \) を求める方法として、ヒューベニの公式を用いる。
まず、地球の長半径 \(a \) と短半径 \(b \) を用いて第一離心率 \(e \) を算出する。

\[
e = \sqrt{\frac{a^2 - b^2}{a^2}} \quad \ldots \text{第一離心率}
\]
\[
a = 6378137 \quad \ldots \text{長半径}
\]
\[
b = 6356752 \quad \ldots \text{短半径}
\]

長半径と短半径は旧日本測地系、世界測地系、GPS など計測方法により値が異なるが、今回は GPS における値を用いる。
次に、先程求めた \(e \) と緯度の平均値 \(\mu_y \) を用いて、子午線曲率半径 \(M \) と卯酉線曲率半径 \(N \) を求める。

\[
\mu_y = \frac{N_t^2 + N_n^2}{2} \quad \ldots \text{緯度の平均値}
\]
\[
M = \frac{a(1 - e^2)}{W^3} \quad \ldots \text{子午線曲率半径}
\]
\[
N = \frac{a}{W} \quad \ldots \text{卯酉線曲率半径}
\]
\[
W = \sqrt{1 - e^2 \sin^2 \mu_y}
\]

これらの値と 2 点の緯度の差 \(d_y \) と経度の差 \(d_x \) を用いて、ヒューベニの公式により求める距離 \(d_1 \) を計算する。

\[
d_1 = \sqrt{(d_y M)^2 + (d_x N \cos \mu_y)^2} \quad \ldots \text{求める距離} \quad (3.1)
\]
\[
d_y = N_t - N_n \quad \ldots \text{緯度の差}
\]
\[
d_x = E_t - E_n \quad \ldots \text{経度の差}
\]

(1.b) カメラから注釈対象までの方角

2地点の緯度と経度から方角 \(\theta_1 \) を以下に記す計算式にて求める。

\[
\theta_1 = \tan^{-1} \left(\frac{\cos N_n \sin (E_n - E_t)}{\cos N_t \sin N_n - \sin N_t \cos N_n \cos (E_n - E_t)} \right) \quad \ldots \text{求める方角}
\]
3.3.2 カメラから特徴点までの距離及び角度の取得

カメラから特徴点までの距離 d_2 及び角度 θ_2 を算出する。d_2 と θ_2 を図 3.2 に示す。

この算出のためにまず、特徴点空間における次の 3 つの値を用いる。

- 特徴点の位置座標
- カメラの位置座標
- カメラの姿勢

特徴点空間の特徴点の位置座標を (X_m,Y_m,Z_m) とする。特徴点空間のx,y,z 軸をそれぞれ図 3.3 に示す。また、特徴点空間のカメラの位置座標を (X_c,Y_c,Z_c) とし、特徴点空間のx,y,z 軸に対してのカメラのx,y,z軸それぞれの向きを表す行列 D を以下のように設ける。

$$D = \begin{bmatrix}
d_{0,0} & d_{0,1} & d_{0,2} \\
d_{1,0} & d_{1,1} & d_{1,2} \\
d_{2,0} & d_{2,1} & d_{2,2}
\end{bmatrix} = \begin{bmatrix}
a_{x,x} & a_{y,x} & a_{z,x} \\
a_{x,y} & a_{y,y} & a_{z,y} \\
a_{x,z} & a_{y,z} & a_{z,z}
\end{bmatrix}$$

なお、$a_{x,y}$ は特徴点空間のx 軸とカメラのy 軸が対応したものであり、2 つの軸の向きが一致した場合 1 を返し、逆向きの場合 -1 を返す。カメラのx,y,z 軸とはそれぞれカメラの右方向、前方向、上方向である。カメラのx,y,z 軸を図 3.4 に示す。
図 3.3: 特徴点空間の x,y,z 軸
図 3.4: カメラの x,y,z 軸

次に、以下の 2 つの値を算出する。

(2.a) カメラから特徴点までの距離

(2.b) カメラから特徴点までの角度

この 2 つの値の算出方法についてそれぞれ述べる。

(2.a) カメラから特徴点までの距離

特徴点空間におけるカメラから特徴点までの距離 \(d_2 \) を導出する。\(d_2 \) を求めるための計算式を以下に記す。

\[
d_2 = \sqrt{(X_c - X_m)^2 + (Y_c - Y_m)^2 + (Z_c - Z_m)^2}
\] \hspace{1cm} (3.2)

(2.b) カメラから特徴点までの角度

特徴点空間におけるカメラから特徴点までの角度 \(\theta_2 \) を導出する。\(\theta_2 \) を求めるための計算式を記す。

特徴点空間において、カメラに対する特徴点の相対位置 \((X_{rp_g}, Y_{rp_g}, Z_{rp_g})\) は次の式で表せる。

\[
\begin{bmatrix}
X_{rp_g} \\
Y_{rp_g} \\
Z_{rp_g}
\end{bmatrix} = \begin{bmatrix}
X_m - X_c \\
Y_m - Y_c \\
Z_m - Z_c
\end{bmatrix}
\]
カメラの x, y, z 座標系において、カメラに対する特徴点の相対位置 (Xc_g, Yc_g, Zc_g) は、行列 D の要素を用いて次の式により表せる。

$$
\begin{bmatrix}
X_{rp_g} \\
Y_{rp_g} \\
Z_{rp_g}
\end{bmatrix}
= D
\begin{bmatrix}
X_{c_g} \\
Y_{c_g} \\
Z_{c_g}
\end{bmatrix}
$$

行列 D の逆行列を利用し、(Xc_g, Yc_g, Zc_g) を $(X_{rp_g}, Y_{rp_g}, Z_{rp_g})$ を用いて表す。

$$
\begin{bmatrix}
X_{c_g} \\
Y_{c_g} \\
Z_{c_g}
\end{bmatrix}
= D^{-1}
\begin{bmatrix}
X_{rp_g} \\
Y_{rp_g} \\
Z_{rp_g}
\end{bmatrix}
$$

$$
detD = d_{0,0}d_{1,1}d_{2,2} + d_{1,0}d_{2,1}d_{0,2} + d_{2,0}d_{0,1}d_{1,2}
$$

$$
D^{-1} = \frac{1}{detA}
\begin{bmatrix}
 d_{1,1}d_{2,2} - d_{1,2}d_{2,1} & d_{0,2}d_{2,1} - d_{0,1}d_{2,2} & d_{0,1}d_{1,2} - d_{0,2}d_{1,1} \\
 -d_{0,0}d_{2,1}d_{1,2} - d_{2,0}d_{1,1}d_{0,2} - d_{1,0}d_{0,1}d_{2,2} & d_{1,0}d_{2,1} - d_{1,1}d_{2,0} & d_{0,1}d_{0,2} - d_{0,2}d_{0,1} \\
 d_{1,0}d_{2,1} - d_{1,1}d_{2,0} & d_{0,1}d_{2,0} - d_{0,0}d_{2,1} & d_{0,0}d_{1,1} - d_{0,1}d_{1,0}
\end{bmatrix}
$$

以上から、カメラの x, y, z 座標系におけるカメラに対する特徴点の相対位置 (Xc_g, Yc_g, Zc_g) を算出した。次にこの相対位置とカメラの向いている方角 θ_t を用いて、現実空間の座標系におけるカメラから特徴点までの方角 θ_2 を算出する。

本システムにおいては計算の簡略化のため、カメラの z 軸が現実空間上の上方を向いていると仮定して θ_2 の算出を次式を用いて行う。θ_2 と θ_p 及び θ_t の関係を図 3.5 に示す。

$$
\theta_2 = \theta_p + \theta_t
$$

$$
\theta_p = \tan^{-1}\left(\frac{X_{c_g}}{Y_{c_g}}\right)
$$
図 3.5: カメラの向いている方角 θ_t 及びカメラ座標に対する特徴点の角度から算出した θ_p

3.3.3 取得した距離及び方角の比較

注釈対象の位置の付近に特徴点が存在する場合、その特徴点を注釈対象として認識する。

カメラから注釈対象までの方角 θ_c とカメラから特徴点までの方角 θ_p を比較し、その差が閾値 α 以下だった特徴点の内、カメラから特徴点までの距離 d_c とカメラから注釈地点までの距離 d_p の差が最も小さい特徴点を取得する。その距離の差が閾値以下の場合、その特徴点を注釈対象を表す特徴点として扱う。図 3.6 に比較時に用いる各値を図を用いて示す。

注釈 (d_c, θ_c)

カメラから注釈対象までの距離と方角

図 3.6: 距離及び方角の比較
方角の比較
(3.2) 式において記したカメラから注釈対象までの方角と (3.3) 式において記したカメラから特徴点までの方角の差である \(\theta_{\text{dif}} \) を以下の式により求める。

\[
\theta_{\text{dif}} = \begin{cases}
|\theta_2 - \theta_1| & (|\theta_2 - \theta_1| < \pi) \\
2\pi - |\theta_2 - \theta_1| & (|\theta_2 - \theta_1| > \pi)
\end{cases}
\] \hspace{1cm} (3.3)

距離の比較
(3.3) 式において算出した \(\theta_{\text{dif}} \) が閾値以下であった場合、この特徴点は注釈対象と近い方角に存在するため、カメラから特徴点までの距離 \(d_e \) とカメラから注釈地点までの距離 \(d_p \) の差 \(d_{\text{dif}} \) を求める。

距離の比較を行うために、(3.1) 式において記したカメラから注釈対象までの距離 \(d_1 \) と (3.2) 式において記したカメラから特徴点までの距離 \(d_2 \) の縮尺を合わせる必要がある。\(d_{\text{dif}} \) 式は現実空間上の距離 (単位: m) であるのに対して、(3.2) 式は特徴点空間の大きさを基準とした距離である。そのため、縮尺を合わせるための変数 \(v_d \) (3.3.4 小節に定義を述べる) を設定し、\(d_2 \) を現実空間上の距離 (単位: m) に合わせる。

カメラから特徴点までの距離について以下の式が成り立つことを利用して、\(d_2 \) を現実空間の縮尺に合わせた値を求める。

\[
d_2 = \frac{d_{\text{dif}}}{\sqrt{X^2 + Y^2 + Z^2}} v_d
\]

式 (3.4) を用いて、\(d_{\text{dif}} \) の値を以下の式により求める。

\[
d_{\text{dif}} = |\frac{d_2}{\sqrt{X^2 + Y^2 + Z^2}} v_d - d_1|
\]

上記により算出された \(d_{\text{dif}} \) の値が閾値以下であった場合、その特徴点を注釈対象を表す特徴点として扱い、注釈の描画を行う。

3.3.4 変数の設定
本小節では、本システムにおいて物体認識を行う時に使用する変数の設定を述べる。

縮尺の設定
PTAMにおいて、カメラから特徴点までの距離は特徴点空間上の座標を用いて算出される。そのため、現実空間に対する特徴点空間の縮尺によりカメラから特徴点までの距離が変化する。特徴点空間はPTAMを起動するたびに新規に作成されるため、現実空間に対する特徴点空間の縮尺は一定ではない。カメラから特徴点までの距離を現実空間の距離に対応させるためには、現実空間に対する特徴点空間のサイズを定義する必要がある。本システムでは式3.4において用いた変数v_dをキーボード操作を用いて手動により設定する。v_dはカメラから特徴点空間の原点までの現実空間の距離（単位：m）である。

閾値の設定

本システムにおいて、注釈を表示する閾値となる値を、方角を8度、距離を15mにそれぞれ設定した。これはシステムを使用した経験により設定した値である。
第4章 システムの概要

本研究では Visual Studio 2008 を用いて C++環境において実装を行った。本章では、本システムの構成とアルゴリズムを述べる。

4.1 システム構成

本システムでは、電子コンパスと GPS モジュールからの情報を取得するために Arduino を用いた。また、特微点の取得を容易にするため、オートフォーカスのカメラを用いた。以下に使用デバイスの名称を記し、図 4.1 にデバイスの全体像を示す。デバイスを 1 つに纏めることにより、カメラの位置と向きに応じた値を GPS モジュールと電子コンパスからそれぞれ取得できる。

Web カメラ Logicool HD Pro Webcam C910
Arduino Arduino Pro Mini 328 3.3V 8MHz
GPS モジュール RS232C レベルコンバータ内蔵 GPS モジュール GT-723F
電子コンパス HMC6352 搭載デジタルコンパスモジュール

Webカメラ Logicool HD Pro Webcam C910 Arduino Arduino Pro Mini 328 3.3V 8MHz GPSモジュール RS232C レベルコンバータ内蔵 GPSモジュール GT-723F 電子コンパス HMC6352 搭載デジタルコンパスモジュール

図 4.1: 使用デバイスの全体像
4.2 アルゴリズム

本システムのアルゴリズムをフローチャートにしたものを見4.2に示す。

図 4.2: システムフローチャート
第5章 実験

本章では、本手法の有用性を検証するために行った実験の目的と内容、実験結果を述べる。

5.1 実験目的

本実験では、注釈対象が画面内に写る場合と写らない場合において以下の注釈表示を達成し、注釈と注釈対象が関連付けられているかを評価することを本実験の目的とする。

注釈対象が画面内に写る場合 注釈を注釈対象に重畳表示させる
注釈対象が画面内に写らない場合 注釈を表示させない

5.2 実験環境

本実験では、デスクトップ環境を用いて本システムを動作させ、屋外において実験を行う。本システムは端末の処理能力により PTAM による特徴点の取得が困難になる、システムが処理落ちする等の不具合が派生するため、ノート PC 環境ではなくデスクトップ環境を用いた。実験時の様子を図 5.1 に示す。片手に 4.1 節において述べたデバイスを持ち、撮影を行った。また、もう片手の手ではキーボードを用いて特徴点空間の原点までの距離 v_d を入力した。

図 5.1: 実験時の様子
5.3 実験内容

現在位置と注釈対象の位置を同一に設定した条件内において、本手法による注釈表示方法と、従来の手法である GPS と方位センサのみ情報を源として用いた注釈表示を行う。それぞれの方法により、注釈が画像内のどの位置に表示されるかを比較する。従来の注釈表示方法は、本システムから画像処理の部分をコメントアウトしたものを利用。この方法における注釈の表示位置は、ユーザの向きと注釈対象の向きの方向の差により左右の表示位置を決定し、上下の表示位置は固定とする。本実験は筆者 1 名が行った。実験は以下の手順により行った。

1. 本手法により注釈対象の存在する方向にカメラを向け注釈表示を行う
2. 注釈表示のキャプチャ画像を撮る
3. 手順 1 と同様に従来の手法により注釈表示を行う
4. 手順 2 と同様にキャプチャ画像を撮る

屋外の計 10 カ所に対して注釈対象を設定し、実験を行った。実験当日の天気は晴れであり、実験は午前 10 時から午後 3 時の間に行われた。
なお、本システムにおいて 3.3.4 小節において述べた縮尺の計算に用いる変数 がの設定は、現実空間と一致した大きさに設定する。

5.4 結果

それぞれの場面において画像内の注釈対象の位置を黄色に塗りつぶした画像を提示し、合わせて実際に注釈が表示されている画像を提示する。本実験において、注釈は下向きの三角形を用いた。下側の頂点が画像内の注釈対象を表す位置となる。注釈として、本システムは赤色の三角形を、従来の注釈表示方法は青色の三角形を表示させた。注釈が表示されている画像の中の画像内の色のついた点は抽出された特徴点であり、グリッドは特徴点座標の xy 平面を示す。
本節では、次小節以降に実験結果を 4 つの場合に分類して述べる。

- 注釈が注釈対象に重畳表示された場合
- 注釈対象が隠れている場合
- 注釈対象の特徴点が取得できなかった場合
- 注釈が注釈対象に重畳表示されたが難がある場合
5.4.1 注釈が注釈対象に重畳表示された場合

本小節では、本研究の目的通りに注釈が画面内の注釈対象上に表示された場合の結果を、場面 1～4 を挙げて述べる。場面 1～4 はそれぞれ画面内に注釈対象を写る場合であり、それぞれの注釈対象から特徴点が取得可能であった。

場面 1

図 5.2: 場面 1における注釈対象の位置

図 5.3: 場面 1における従来の手法による注釈表示

図 5.4: 場面 1における本手法による注釈表示

図 5.2 に示される 2 つの建物の内、左奥に表示されている建物を注釈対象として注釈表示を行った。

従来の手法においては、図 5.3 に示すように注釈対象の手前の物体である建物に注釈が表示されていたが、本手法においては図 5.4 に示すように注釈対象である奥の建物に対して注釈表示が行われた。
図 5.5: 場面 2 における注釈対象の位置
図 5.6: 場面 2 における注釈対象の拡大画像
図 5.7: 場面 2 における従来の手法による注釈表示
図 5.8: 場面 2 における本手法による注釈表示

図 5.5 の画像の中央付近にある像を注釈対象として注釈表示を行った。
従来の手法と本手法の双方において注釈対象に注釈対象が重畳表示された。双方の結果を図 5.7、図 5.8 に示す。図 5.8 においては注釈対象から特徴点を取得し、注釈が注釈対象に重畳表示されている。
図 5.9: 場面 3 における注釈対象の位置

図 5.10: 場面 3 における従来の手法による注釈表示
図 5.11: 場面 3 における本手法による注釈表示

逆光の条件の下において注釈表示を行った。図 5.9 の中央付近に映る建物を注釈対象とする。従来の手法では図 5.10 に示すように注釈対象の手前の別の建物に対して注釈が表示されていたが、本手法では図 5.11 に示すように注釈対象である奥の建物に対して注釈表示が行われた。
図 5.12: 場面 4 における注釈対象の位置

図 5.13: 場面 4 における従来の手法による注釈表示
図 5.14: 場面 4 における本手法による注釈表示

逆光の条件の下において、図 5.12 に示すように注釈対象の手前に存在するネットを通して注釈対象を写す場面において注釈表示を行った。
図 5.13 と図 5.14 に示すように、従来の手法と本手法の双方において注釈対象に注釈が重畳表示されている。
5.4.2 注釈対象が隠れている場合

本小節では、本研究の目的通りに注釈対象が画面内に映らない時に注釈を表示しない場合の結果を、場面 5 を挙げて述べる。

場面 5

図 5.15: 場面 5 における注釈対象の位置

図 5.16: 場面 5 における従来の手法による注釈表示

図 5.17: 場面 5 における本手法による注釈表示

図 5.15 に示すように注釈対象が画像に写る建物や木より奥側にあり、直接カメラ画像内に捉えることはできない場面において注釈表示を行った。

従来の手法では図 5.16 に示すように注釈対象のある方向に注釈が表示されているが、本手法では図 5.17 に示すように、注釈対象が画像内に写されていないため注釈を表示していない。
5.4.3 注釈対象の特徴点が取得できなかった場合

本小節では、画面内の注釈対象に注釈が表示されなかった場合の結果を、場面 6～9 を挙げて述べる。場面 6～9 はそれぞれ画面内に注釈対象が写る場合であったが、それぞれの注釈対象から特徴点が取得できなかった。

場面 6

図 5.18: 場面 6 における注釈対象の位置

図 5.19: 場面 6 における注釈対象の拡大画像

図 5.20: 場面 6 における従来の手法による注釈表示

図 5.21: 場面 6 における本手法による注釈表示

逆光の条件の下において、図 5.18 の中央付近に写る建物を注釈対象として注釈表示を行った。
従来の手法では、図 5.20 に示すように注釈対象のある方角に注釈が表示された。本手法では、図 5.21 に示すように注釈対象から特徴点を取得することが出来ず、注釈は表示されなかった。
図 5.22: 場面 7 における注釈対象の位置
図 5.23: 場面 7 における注釈対象の拡大画像
図 5.24: 場面 7 における従来の手法による注釈表示
図 5.25: 場面 7 における本手法による注釈表示

図 5.23 に示す電話ボックスの位置を注釈対象として注釈表示を行った。
従来の手法である図 5.25 の注釈表示位置と比較して、本手法である図 5.24 の注釈表示位置は注釈対象に近づいたが、注釈対象への重畳表示はされなかった。
図 5.26: 場面 8 における注釈対象の位置

図 5.27: 場面 8 における従来の手法による注釈表示
図 5.28: 場面 8 における本手法による注釈表示

図 5.26 に示す部分の建物を注釈対象として注釈表示を行った。
従来の手法である図 5.27 では注釈対象よりも奥の建物に注釈が表示された。図 5.28 では注釈対象から特徴点が取得出来なかったために、注釈対象よりも手前の植え込みに注釈が表示されている。
図 5.29: 場面 9 における注釈対象の位置

図 5.30: 場面 9 における従来の手法による注釈表示
図 5.31: 場面 9 における本手法による注釈表示

図 5.29 に示すように、手前のネットを通して注釈対象を写す状況において注釈表示を行った。従来の手法では 5.30 に示すように注釈対象の方向に注釈が表示されたが、本手法では図 5.31 に示すように注釈対象から特徴点が取得できず、注釈表示が行われなかった。
5.4.4 注釈が注釈対象に重畳表示されたが難がある場合

本小節では、画面内の注釈対象に注釈が表示されなかった場合の結果を、場面 10 を挙げて述べる。場面 10 は画面内に注釈対象が写り、特徴点が取得できた場合であったが、注釈対象以外の場所に注釈が表示された。

場面 10

図 5.32: 場面 10 における注釈対象の位置
図 5.33: 場面 10 における注釈対象の拡大画像

図 5.34: 場面 10 における従来の手法による注釈表示
図 5.35: 場面 10 における本手法による注釈表示

図 5.33 に示す注釈対象に対して注釈表示を行った。
図 5.35 に示す本手法により表示された注釈は、図 5.34 に示す従来の手法により表示された注釈よりも注釈対象に近い位置に表示されたが、注釈対象から取得した特徴点の位置ではない特徴点に対して注釈表示が行われた。
第6章 考察

本章では、5.4節において得られた結果から本システムの考察を行う。
本システムにおいて、画像内に注釈対象がある場合は注釈を重畳表示させ、画像内に注釈対象がない場合は注釈を表示しない本実験の目標通りに注釈を表示したのは場面1から5の場面であり、目標通りに注釈が表示されなかったのは場面6から10の場面であった。
本実験では半数の場面において目標とする注釈表示を行うことができた。目標通りに動作しなかった原因とシステムの操作中の問題点の考察を行う。

6.1 意図しない注釈表示の原因の考察

本節では、実験において注釈対象に注釈が重畳表示されなかった原因の考察を行う。

6.1.1 画像の明暗

場面7,8において、注釈対象から特徴点を取得されなかった。この2つの場面の共通点として、画像内の注釈対象若しくはその付近が極めて明るかった事が挙げられる。本システムでは特徴点の抽出にモノクロ画像を使用しているが、実験を行った環境が明るい日の昼間の屋外という条件であったために画像の輝度が高くなり、モノクロ画像内において一様な白色になってしまう部分が存在した。特徴点は周囲の部分との色彩や濃淡の差が大きな点であるため、一様な白色の部分からは特徴点が検出されない。輝度差は逆光となる条件からも生まれるが、逆光である場面3,4においては注釈対象から特徴点が取得できている。しかし、場面3,4において、注釈対象の部分は輝度の低い部分であった。そのため、モノクロ画像の注釈対象の周辺の部分が白色になっている場面7,8のような場面において本システムを使用することは難しいと考える。

6.1.2 注釈対象までの距離

場面6,10において、注釈対象の特徴点を抽出することが出来なかった。この2つの場面の共通点として、カメラから注釈対象までの距離が遠いことが挙げられる。注釈対象までの距離が遠い場合、カメラの位置を動かした時のカメラ画像間の視差が微少になり、特徴点が上手く抽出できないことが考えられる。
以下に各場面におけるカメラから注釈対象までの距離（単位 [m]、小数第一位を四捨五入）の一覧を記す。

<table>
<thead>
<tr>
<th>場面</th>
<th>距離</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td>142</td>
</tr>
<tr>
<td>6</td>
<td>233</td>
</tr>
<tr>
<td>7</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td>33</td>
</tr>
<tr>
<td>9</td>
<td>56</td>
</tr>
<tr>
<td>10</td>
<td>178</td>
</tr>
</tbody>
</table>

距離が 100m 以上である場面は場面 5,6,10 である。この内、場面 5 は注釈が画面内に写らない場面であるため、今回の考察には関係しない。場面 5,6,10 以外の場面の内、最も遠い距離は場面 3 の 85m であるが、場面 3 では注釈対象の特徴点の抽出が行われている。

以上から、距離が 142m を超える注釈対象に対しては、本システムを使用することは難しいと考える。

6.1.3 関値

場面 7,8 の共通点の内、6.1.1 において挙げた注釈対象周辺の明暗の他に、注釈対象までの距離が近く、その近くに他の特徴点が存在したことが挙げられる。本システムでは方角の閾値を 8 度、距離の閾値を 15m に固定して設定していた。そのため、閾値の範囲内に注釈対象の特徴点が存在せず、注釈対象以外の特徴点が存在する場合、注釈対象以外の特徴点に注釈が表示される場合があった。

この問題の発生を抑えるため、方角と距離の閾値をカメラから注釈対象までの距離に応じて変化させる方法を考察する。具体的には、カメラから注釈対象までの距離が短ければ方角の閾値を大きくかつ距離の閾値を短く設定し、カメラから注釈対象までの距離が長ければ方角の閾値を小さくかつ距離の閾値を長く設定する。この処理を行うことにより閾値内に入る注釈対象以外の特徴点の量を減少させることができると考える。
6.2 本システムの内部処理の考察

本節では、実験中に感じた操作中の問題点の考察を行う。

6.2.1 距離の入力

本システムでは特徴点までの距離を求める処理として、3.3.3 小節の 3.4 において挙げた特徴点空間の原点までの距離 v_d を手動により入力する必要があり、この値に応じて注釈を表示する特徴点が決定される。

図 6.1 と図 6.2 は、それぞれ同じ場面において、v_d の値をそれぞれ 30 と 40 に設定したものである。

図 6.1: v_d=30 の場合の注釈表示 図 6.2: v_d=40 の場合の注釈表示

この場面における注釈対象までの距離は 43m であるが、図 6.1 では図 6.2 よりもカメラから離れた地点の特徴点に対して注釈が表示されている。特徴点空間に特徴点が正しくマッピングされ、v_d の値に応じて注釈の表示位置が正しく変化したことが確認できた。

しかし、空間の 1 点である特徴点空間の原点までの距離は把握しづらいため、v_d の値をユーザの入力により決定するのではなく、自動的に行われるシステムを考案する。

6.2.2 特徴点のマッピング精度

本システムにおいて利用する PTAM では、起動時に特徴点を抽出しマッピングを行う。本節ではこのマッピングを述べる。

本システムでは、特徴点のマッピングの精度と抽出された特徴点の量により、注釈表示の結果が左右される。注釈対象から特徴点が取得できない場合、注釈を注釈対象に重畳表示させることが出来ない。図 6.3 と図 6.4 に示すように、特徴点の抽出量に応じて注釈の表示位置は変更される。そのため、カメラ画像からより多くの特徴点を抽出する方法を考案する。
図 6.3: 少量の特徴点しか抽出されなかった場合
図 6.4: 多くの特徴点が抽出された場合
第7章 今後の展望

本章では6章の考察により明らかになった本システムの欠点を補い、より多くの場面において本システムが正しく動作することを目的とし、本研究の今後の展望を述べる。

・画像の明暗調整
注釈対象とその付近が輝度の高い画像から特徴点を取得することが出来なかった。輝度差が大きい場合においても注釈対象の位置の輝度が低い場合は特徴点を取得できなかったから、対応案として、特徴点を抽出する際に注釈対象が写る部分の輝度を低くして特徴点の抽出を行う。注釈対象の写る画像内の位置は本処理を行うまで不明であるため、画像内における注釈対象の存在する方角が写る位置を基準として輝度の自動調整を行う。

・閾値の調整
6.1.3小節において提案した、注釈対象との距離に応じて方角と距離の閾値を変更する手法の検討を行う。

・携帯情報端末への拡張
本研究は処理能力の低いデスクトップ環境にて開発を行ったが、今後の展望として携帯情報端末への拡張を挙げる。近年広まりつつあるスマートフォンにはAR注釈表示に必要なデバイスであるカメラ、電子コンパス、3軸センサなどが組み込まれていることが多いため、他の機器を用いること無くAR注釈表示を行うことができる。携帯情報端末において特徴点の位置を取得する方法として、KleinらのParallel Tracking and Mapping on a Camera Phone[KM09]を利用する。この研究は携帯情報端末においてPTAMと同じ手法を行うものである。Parallel Tracking and Mapping on a Camera Phoneの手法を用いて、本システムを携帯情報端末へ拡張する。
第8章 結論

本研究では、カメラから取得した画像を利用して、拡張現実技術により表示される注釈の位置を決定する手法を提案し、画像内に写る物体までの距離を利用することによりシステムの実装を行った。これにより、画像内に注釈対象が写る場合、その位置に合わせて注釈を表示させ、注釈対象が写らない場合、注釈を表示しない注釈表示システムを実現した。

更に、本システムを使用して実験を行い、10の場面において、その半数の場面において目的とした注釈表示を行うことができた。また、目的となる注釈表示が行われなかった場合を分析し、原因の考察を行った。

今後は考察により明らかになった本システムの欠点を補う方法を検討し、使用場面を問わないシステムとなるよう改善を行う。
謝辞

本研究を行うにあたり、指導教員である志築文太郎先生、三末和男先生、田中二郎先生、高橋伸先生には、研究内容の決定や研究の進行、論文の執筆などに関して大変多くのご指導をいただきました。特に志築文太郎先生には日頃から細かく丁寧なご指導をいただき、研究の進行方針や実験、卒業論文の執筆にあたり、非常に多くのアドバイスをいただきました。心より感謝し、御礼申し上げます。

また、インタラクティブプログラミング研究室の皆さんには、研究活動やそれ以外の部分でも大変お世話になりました。特に WAVE チームの皆様には日頃のチームゼミ等において、研究に関して多くの有用なアドバイスをいただきました。ここに深く感謝致します。

最後に、様々な面から私を支えてくれた家族と友人に感謝致します。本研究を行うことができたこと、また、本論文の執筆ができることを嬉しく思います。本当にありがとうございました。

[参考文献]

