
1

CafePie: A Visual Programming System for CafeOBJ

T. Ogawa ∗ and J. Tanaka a†

aInstitute of Information Sciences and Electronics, University of Tsukuba,
Tsukuba, Ibaraki 305-8573, Japan

CafePie is a visual programming system for CafeOBJ, an algebraic specification lan-
guage based on term rewriting. Program editing and execution in CafePie are performed
in one window. All program editing operations are handled in a uniform manner.
An abstract visualization schema is necessary to understand the program at the pro-

gramming language level. In this paper, we propose visualized term rewriting with more
realistic expressions. With our approach, users can customize the term expression as they
like by using visual transformation rules. These rules can also be edited using drag-and-
drop operations.

1. Introduction

“CafePie” [1–4], or CafeOBJ Pictorial Interactive Editor, is a visual programming sys-
tem (VPS [5]). CafePie is a visual interface for the term rewriting portion of CafeOBJ.
CafePie can be used as an environment for program editing. It visualizes each module of
the CafeOBJ program and allows the user to edit it visually. Combined with the CafeOBJ
interpreter, it can also serve as a visual rewriting environment for CafeOBJ.
Direct manipulation [6] is performed by using a mouse with CafePie. Each visualized

element can be moved in accordance with the mouse movement. The same visualization
schema is used for both program editing and execution. Since the program editing and
execution are performed in one window, it is possible to directly reflect any program
modification onto the program execution.

2. Features of Visual Programming

A visual language manipulates visual information or supports visual interaction, or
allows programming with visual expressions. The latter is taken to be the definition of
a visual programming language (VPL). VPLs may be further classified according to the
type and extent of visual expression used, into icon-based languages, form-based languages
and diagram languages [7]. Naturally visual languages have an visual expression for which
there is no obvious textual equivalent [8]. Two-dimensional displays for programs, such
as flowcharts and a program visualization system Incense [9], have long been known to

∗tohru@softlab.is.tsukuba.ac.jp
†jiro@is.tsukuba.ac.jp

2

be helpful aids in program understanding. In addition, there have been much research on
executable VPS, such as Pict [10], HI-VISUAL [11] and PP [12].
In general, a more visual style of programming could be easier to understand and

generate for humans, especially for non-programmers or novice programmers since visual
programming (VP) can be presented attractively. Moreover, the style is useful in software
specification area, such as component based software [13,14]. A tool qualifies as a visual
programming if it is possible to build some application without textual programming.
However, currently very few practitioners use VP.
CafePie is based on the algebraic specification language (ASL) CafeOBJ, which is a

high-level declarative programming language. A declarative programming language is
suitable for visualization by a VPS because visual programming is also declarative. Vi-
sual expressions using the box-and-line representation have less commitment to the order
of interpreting code than textual expressions. One can regard visual expressions to be
declared spatially. A specification language requires comparatively fewer programming
elements than a procedural programming language, and therefore specification language
can be visualized with fewer kind of icons. Generally speaking, an environment with a
user-friendly graphical interface has the advantage of enabling easy interpretation of the
structures of the terms and rewriting processes.

3. The “CafePie” System

 Module Field New-Field

 Assistant Operation Part

 Text Input Part

 Working Part

Figure 1. A Snapshot of CafePie

We developed CafePie and implemented it in Java. CafePie was developed in Java
Development Kit (JDKTM) version 1.0 at the first implementation, but the version is now
1.2. CafePie is ordinarily implemented as a Java application. In this version, users can
edit and execute programs in the system. CafePie is also implemented as an applet on a
Web browser. The applet version is used only for program editing.

3

Figure 1 shows a snapshot of CafePie. The upper part of the figure consists of buttons
and is the “Assistant Operation Part.” This enables the user to load or save a file (File
button), set the CafeOBJ server (Options button), and view textual guides (Help button).
The “Text Input Part” is used to input the label of each editable icon. The main part

of the figure shows the programming space called the “Working Part.” The user edits
a CafeOBJ program in this part. The “Module Field” in the Working Part shows the
current CafeOBJ module to edit. The left side of the Module Field is the “New-Field,”
which consists of essential icons such as sort, operator, variable, and equation. This field
is used to make a new icon in the Module Field.

module SIMPLE-NAT {

[Zero NzNat < Nat]

signature {

op 0 : -> Zero

op s : Nat -> NzNat

op _+_ : Nat Nat -> Nat { comm, assoc }

}

axioms {

var N : Nat

var M : Nat

eq [0] : 0 + N = N .

eq [1] : N + s(M) = s(N + M) .

}

}

Figure 2. “simple-nat.mod” –CafeOBJ Program File–

The following functions have been implemented in CafePie:

• Input program objects by figures.
Users can input each basic object of an ASL language using an icon. These icons
can be edited by direct manipulation.

• Generate visual icons from the codes automatically.
Users can input a textual expression, and the system will generate icons from the
expression.

• Editing visual objects.
Visual expressions can be edited at any time. Users can program visually using this
function while they edit or revise programs that have already been generated from
the textual programs of CafeOBJ.

4

• Program save/load.
Visually-edited programs can be saved to a file. Users load the file when necessary.
CafePie saves the visual expressions after it converts them to CafeOBJ program
expressions.

• Program execution.
A goal (-term) represented by the visual icons can be executed. In this case, CafePie
is connected to the CafeOBJ interpreter. CafePie behaves like a visual interface in
the program execution.

For example, the file “simple-nat.mod”(Fig.2), which is a specification of natural numbers
(under addition) written in CafeOBJ, is loaded by clicking on the File button. The pro-
gram, visualized with pictorial objects, then appears in the Module Field of the Working
Part (as in Fig. 1). The visualized program can be edited by direct manipulation. If the
edited program is saved, a CafeOBJ program file and another textual file that contains
layout information are created.

3.1. Program Visualization in CafePie
“Visualization of program structure” means expressing the program structure using

pictorial or graphical objects. We visualize the program structures of CafeOBJ by ex-
pressing the program elements with pictorial objects. Each pictorial object is called an
“Icon.” We have chosen the following primitive elements for CafeOBJ: sort, operator,
variable, and equation.
The visualization rules for each element are presented below.

Sort CafePie uses a directed graph to depict the sort orders. The sorts are represented
in Fig.3 by green rectangular nodes (only shaded rectangles are seen in the manuscript)
and the orders are represented by directed edges (Table 1).

Figure 3. Sort Icon and Sort Relation Figure 4. Term Icon

Term A term is formed with operators and variables. The structure of a term is displayed
as a tree. Figure 4 shows the tree structure of the term “OP1 (OP0, V:Sort).” A
component of a term, i.e. an operator or a variable, is represented by a node, and an
arrow is drawn from the term to its superterm to express the super-sub relation between
these components.
Operator and variable An operator is denoted by an operator symbol, its sort “coarity,”
and its attributes “arities.” An operator is represented in Fig.5 by a light blue oval and

5

has a label for the operator symbol (Table 1). The labels of the arities are arranged at
the bottom part of the operator, and the label of the coarity is arranged at the top part
of the operator. Arrows are drawn from arities to operator and from operator to coarity.
A variable, which appears in Fig.6, is represented by an orange oval (Table 1), and the
sort of the variable is represented at its lower part.

Figure 5. Operator Icon Figure 6. Variable Icon Figure 7. Equation Icon

Equation CafePie is mainly concerned with the operational semantics of CafeOBJ, so
equations are always regarded as rewrite rules. A label is arranged in the center top of
the equation, as shown in Fig.7. The left side is arranged on the bottom left side of the
label, and the right side is on the bottom right. Arrows from the left term to the label
and from the label to the right term are drawn to form a balanced shape to represent a
term rewriting rule (Table 1).

Table 1
Icons’ Colors and Shapes in CafePie

Icon Sort Term Operator Variable Equation Module

Color Green Light blue Orange White (label) Gray
Shape Rectangle (Tree) Oval Oval (Balance) Field (Rectangle)

Module Field A CafeOBJ program consists of modules. A module is represented as a
gray rectangle called a “field” (Table 1). The module contains other primitive elements:
sort, operator, variable, and equation. We can edit these primitive elements.

3.2. Drag-and-Drop-based Program Editing
We use direct manipulation to implement program editing. Direct manipulation is easy

to learn, and the user can immediately recognize any mistakes. Complex and obscure
operations can cause unexpected consequences; simple operations enable more smooth
program editing.
All icon-editing operations are handled in a uniform manner, using a drag-and-drop

operation [15]. This drag-and-drop technique is well known for its simplicity. For icon
movement, the user moves the icon using the drag-and-drop technique. If an icon already
exists where the user wants to drop the icon, the two icons will overlap. Overlapping two

6

icons with the drag-and-drop technique is important in the editing process. The process
of the drag-and-drop method consists of
1. Selecting an icon,
2. Moving (or dragging) the selected icon to another icon, and
3. Overlapping (or dropping) the selected icon with another icon.

The target icon moves with the mouse cursor and remains visible throughout the move-
ment. The user moves the icon by dragging it, without losing sight of what he is doing.
We reexamined this technique to realize program editing. Program editing operations in
CafePie involve making/deleting a relation between two sorts, adding/changing an arity
of an operator, and creating/adding a subterm on a variable. Table 2 shows these program
editing operations. An event is invoked when an icon (source) is overlapped onto another
icon (target). After the event is invoked, the action corresponding to the event is carried
out. The program editing process is the repetition of these elementary actions.

Table 2
Drag-and-Drop-based Program Operations in CafePie

Event Name Source Target Action

Make Sort-Relation Sort Sort Relate one sort to another (as supersort)

Delete Sort-Relation Sort Sort Delete the relation between two sorts

Add Arity Sort Operator Add an arity to an operator

Change Arity Sort Arity Change the arity to one that has the sort name

Change Coarity Operator Sort Change the coarity to one that has the sort name

Exchange Arities Arity Arity Exchange one arity for the other

Create Subterm Operator Variable Replace the variable with a new term

Add Subterm Term Variable Replace the variable with the (copied) term

For example, operator “s,” which appears in the sample code SIMPLE-NAT, has an
arity sort called “Nat” (“op s : Nat -> NzNat”). This operator is created from several
steps.

• First, an operator icon that has no arity (constant) is created by default.

• Next, the sort icon “Nat” which has already been defined is moved toward the
operator.

• Finally, these two icons are overlapped, the “Add Arity” event (in Table 2) is carried
out, and the arity sort called “Nat” is added to the operator.

Another example is called “Create Subterm.” The left term of the equation “1,” which
appears in the SIMPLE-NAT, is “N:Nat + s(M:Nat).” Operators “ + ” and “s” are used
to create this term.

• Suppose there is a variable that belongs to the sort “Nat.”

7

• Moving the operator “ + ” onto the variable changes the variable to the term
“V1:Nat + V2:Nat”.

• Similarly, moving the operator “s” onto the variable “V2” (of the term) changes the
variable “V2” to the term “V1:Nat + s(V2:Nat)”.

In this way, the drag-and-drop technique is applied to CafePie. All operations of the
program editing are handled in a uniform manner.

3.3. Program Execution in CafePie
CafePie enables the program execution by combining with CafeOBJ interpreter. In

order to utilize the interpreter, CafePie must communicate with “cafemaster,” which is
a network server for CafeOBJ. CafePie and the interpreter are connected by cafemaster.
(Cafemaster has two modes for combining a client with the interpreter, i.e, the session
mode and the interactive mode. In the current implementation, CafePie accesses the
interpreter in the interactive mode.)

Figure 8. A Goal Term for Program Execution

URL: Users can designate an IP address or URL

as the location of the interpreter.

PORT: Users can input the port number

of the CafeOBJ interpreter.

Figure 9. Options Dialog of CafePie

8

• Edit a goal term:
A user edits a term (goal) in the Module Field. It is called a goal and is used
to test the module SIMPLE-NAT. For example, we create the goal “s(s(0)) +

s(s(s(0)))” (the left side of Fig.8).

• Start the term rewriting:
A program consists of a module displayed in the Module Field. Each module has
a label. The label is drawn at the upper left of Module Field (Fig.1). The user
invokes evaluation (program execution) by moving the term onto the label.

• Connect to the interpreter:
CafePie tries to connect to the interpreter running on a remote host by using socket
communication. If a connection is achieved, CafePie connects to the interpreter in
an interactive mode (CafePie sends a message “interactive” to the interpreter).
Users can specify the interpreter’s network address. They click on the Options
button of the Assistant Operation Part, and an options dialog appears on CafePie
(Fig.9). The IP address and the port of the CafeOBJ interpreter are designated in
the dialog. Thereafter, CafePie knows where the interpreter is.

• Send the module information to the interpreter:
After connecting to the interpreter, CafePie converts the module’s visual expres-
sion into a text-based CafeOBJ program and sends the program to the interpreter.
The information is comprised of a module name, sorts, operations, variables and
equations (Fig.2).

• Send the goal to the interpreter:
After sending the program, CafePie sends the goal term “s(s(0)) + s(s(s(0)))”
to the interpreter. CafePie orders the interpreter to start the program execution
(CafePie sends two messages, “set trace on” and “red s(s(0)) + s(s(s(0)))

.”, Fig.12).

• Receive the result from the interpreter:
The goal is rewritten repeatedly on the interpreter. CafePie receives the term rewrit-
ing trace as a result after execution is completed (Fig. 12). The tracing result
consists of terms that illustrate the process of reductions. The result is processed
by CafePie and is shown in the visualized form.

CafePie shows the terms in succession like an animated cartoon. This is a dynamic
representation and is suitable for checking the rewriting flow at any time. Figure 10
shows the process of term rewriting when the goal term is “s(s(0)) + s(s(s(0)))” of
the module SIMPLE-NAT and the rewritten term is “s(s(s(s(s(0)))))” (the right side
of Fig. 8). This is an effective dynamic representation of the term rewriting process.
After showing the last term, CafePie presents the tracing diagram in the shape of an obi
(an obi is a Japanese broad sash tied over a kimono, Fig. 11). This is a static display
and is suitable for checking one reduction process more closely.

9

Figure 10. Dynamic Representation Figure 11. Static Representation

3.4. Realistic Visualization
The process of term rewriting is visualized as tree structures that consist of icons. For

example, Fig.13 shows the result of visualization of the term “push(E3:Elt, push(

E2:Elt, push(E1:Elt, push(E0:Elt, empty)))),” by CafePie. The specification
that begets this term is expressed as module STACK (Fig.15).

This visualization method is difficult for users to understand in an intuitive manner
because users in general mentally visualize stacks not as trees but as building blocks.
More realistic expressions of higher abstraction levels are desired.

3.4.1. Visual Transformation Rule and Term Visualization Example (1)
We propose a method that visualizes term rewriting with more realistic expressions,

by using figures, pictures, and images. We call these expressions visual objects. The
visual objects should be edited without the program code showing. In the real world,
the essential characteristic of an actual object is its shape. We propose to use visual
transformation rules so that users can change the shapes of visual objects.
Rewriting rules are called “equations” in CafeOBJ. An equation is composed of opera-

tors and variables. CafePie can change the term representation. Specifically, it can change
the system-prepared view to a user-defined view by using visual transformation rules. For
example, the STACK program of CafeOBJ has the operators “empty” and “push.” By
default, the expression of these operators have been prepared by the system (the left part
of Fig.16 and 17). If a user imagines that the STACK is like building blocks, the result of
STACK visualization would be like building blocks. The operator “empty” is represented
by a rectangle (the right part of Fig. 16) to imitate building blocks, instead of the original
visualization (the left part of Fig. 16). The operator “push” is visualized like the right
part of Fig. 17. This figure shows that the rectangle with “Elt” is arranged at the upper
part of “Stack.” After defining these rules, the old terms (Fig. 13) are changed to other
expressions, as in Fig. 14.

10

SIMPLE-NAT> set trace on

SIMPLE-NAT> red s(s(0)) + s(s(s(0))) .

-- reduce in SIMPLE-NAT : s(s(0)) + s(s(s(0)))

1>[1] rule: eq N:Nat + s(M:Nat) = s(N:Nat + M:Nat)

{ N:Nat |-> s(s(0)), M:Nat |-> s(s(0)) }

1<[1] s(s(0)) + s(s(s(0))) --> s(s(s(0)) + s(s(0)))

1>[2] rule: eq N:Nat + s(M:Nat) = s(N:Nat + M:Nat)

{ N:Nat |-> s(s(0)), M:Nat |-> s(0) }

1<[2] s(s(0)) + s(s(0)) --> s(s(s(0)) + s(0))

1>[3] rule: eq N:Nat + s(M:Nat) = s(N:Nat + M:Nat)

{ N:Nat |-> s(s(0)), M:Nat |-> 0 }

1<[3] s(s(0)) + s(0) --> s(s(s(0)) + 0)

1>[4] rule: eq 0 + N:Nat = N:Nat

{ N:Nat |-> s(s(0)) }

1<[4] s(s(0)) + 0 --> s(s(0))

s(s(s(s(s(0))))) : NzNat

(0.010 sec for parse, 4 rewrites(0.070 sec), 10 match attempts)

SIMPLE-NAT>

Figure 12. An Execution Result of the CafeOBJ Interpreter

3.4.2. Defining the Visual Transformation Rule
We have developed an environment in which users can edit the visual transformation

rules in CafePie by using direct manipulation. In our approach, these rules are not
defined by using a drawing action but by using a combination of prepared visual objects.
Therefore, the users can easily define the rules and edit programs in the same paradigm.
Editing the rules requires the two steps below.

1. Preparing the visual objects. The system has some elementary figures such as
rectangles and circles, and images that are loaded from files. If an operator has
arities, users can also use them as visual objects.

2. Defining the geometrical relations. The user creates a repeated relation between two
objects to define the geometrical relations. The users can also treat related objects
as one object.

The relation is provided by the drag-and-drop operation. We use a “plate”-node icon.
When a node is dropped onto the plate, the node is added on the plate, and its position
is arranged automatically. Suppose the user moves a node toward the plate-node. When
the user drops the node onto the plate, dotted lines appear around the plate, as shown
in Fig.18. These lines indicate the expected location of the node. The node’s location

11

Figure 13. Original Stack Visualization Figure 14. New Stack Visualization

module STACK [X::TRIV] {

[NeStack < Stack]

signature {

op empty : -> Stack

op push : Elt Stack -> NeStack

op pop : NeStack -> Stack

op top : NeStack -> Elt

}

axioms {

var S : Stack

var E : Elt

eq pop(push(E, S)) = S .

eq top(push(E, S)) = E .

}

}

Figure 15. “stack.mod” –CafeOBJ Program File–

is selected by default from any of the nine parts of the plate: the upper left, the upper
middle, the upper right, the left side, the center, the right side, the lower left, the lower
middle, or the lower right. The location of the dropped node is determined as follows:

• If the node is dropped on the upper or lower part of the plate, the node is designed
to stick to the plate.

• If the node is dropped on the right or left side of the plate, they are also arranged
to be close together.

• If the node is dropped in the diagonal part of the plate, the node center is arranged
on the vertex of the plate.

The size of the dropped node is determined by the node’s location.

12

Figure 16. Empty Operator Visualization(1) Figure 17. Push Operator Visualization(1)

Figure 18. Make Visual Transformation Rule

• If the user drops the node in the center of the plate, the node’s size becomes smaller
than the plate. The plate contains the node.

• If the node is dropped in the left or right part of the plate, the node’s height is
modified to have the same height as the plate.

• If the node is dropped in the upper or lower part of the plate, the node’s width is
modified to have the same width as the plate.

• If the node is dropped in the diagonal part of the plate, the node’s size is changed
to be the same size of the plate.

3.4.3. Term Visualization Example (2)
Another visualization method can be applied to STACK instead of the example using

building blocks.
The visual transformation rules of the operators “empty” and “push” can be re-defined.

The right hand side of Fig.19 shows the new rule of the operator “empty.” This figure
indicates “No Exit” because the Exit door has broken down. The right hand side of Fig.20
shows the new rule of the operator “push.” This figure indicates that a person who has
a face “Elt” is in the rear of the “Stack.” Figure 21 shows a term according to the new
visualization rules. Each person has a different expression. No person can go forward
because of the broken door. Only the person who is at the end of the line can move. This
mechanism represents the STACK structure. In this visualization, STACK represents a
line of people. Programs can be expressed differently in this way by defining different
visual transformation rules.

13

Figure 19. Empty Operator Visualization(2) Figure 20. Push Operator Visualization(2)

Figure 21. New Stack Visualization (2)

4. Related Works

Various systems have been proposed through which users can watch and analyze the
term-rewriting system (TRS). ReDux [16] is a workbench for TRS realized by a textual
interface. ReDux has various interfaces with completion algorithms. They came up
with various concepts in the text interface. However, users cannot manipulate the terms
intuitively. TERSE [17] is a visual support environment for TRS. The system can visually
show the process of term rewriting. The system supports the environment for program
execution, but does not support program editing. CafePie visually supports not only
program execution but also program editing. Users often understand the program through
the execution and want to subsequently re-edit the program. Our main point is that
CafePie can edit and execute the program visually. CafePie is the first system that shows
TRS execution dynamically. Viry presents some preliminary ideas towards a user interface
for completion and its integration within programming environments [18].
SDL [19], G-LOTOS [20,21] and Petri Nets [22] are graphics-based specification lan-

guages. SDL is a specification language with both graphical and character-based syntaxes
for defining interacting extended finite state machines, and is used to specify discrete in-
teractive systems such as industrial process control, traffic control, and telecommunication
systems. G-LOTOS, which has two-dimensional constructions, enables LOTOS to express
the specification diagrammatically. Petri Nets is applied to the modeling and analysis of
computer architecture problems, and has a graphical and formal syntaxes.

14

In addition, various kinds of VPLs have been proposed. Form/3 [23] is a declarative,
form-based, language that follows the spreadsheet paradigm. ChemTrains [24] is a rule-
based language in which both the condition and action of each rule are specified by
pictures.

5. Summary and Further Research

We have implemented CafePie, a VPS for CafeOBJ. The module structures are visu-
alized with icons and can be edited intuitively using the drag-and-drop technique. The
execution process of the program, which is the term-rewriting process for the initial term,
is also visualized with icons. Program execution is described by using the same iconic
descriptions as in program editing. Term rewriting is visualized with realistic expressions
by using figures, pictures, and images. We map operators to realistic expressions so that
equations are expressed as transformations of realistic expressions. We use visual trans-
formation rules that give the program pictorial expressions so that users can customize
the term expression to their preference.
Our system, CafePie, is useful for ASL beginners. Our goal is to improve the system

and to fascinate advanced users. Shneiderman [25] stated that direct manipulation is not
appropriate when the data structure to be displayed is large, which can very easily happen
with an application to algebraic specification. Another issue that must be discussed is
the help for browsing specifications, which in CafeOBJ has a modular structure, because
research has shown that users spend a lot of time trying to get their specifications just
right.

REFERENCES

1. T. Ogawa and J. Tanaka. Drag and Drop based Visual Programming Environment
for Algebraic Specification Language. In 15th Conference Proceedings Japan Society
for Software Science and Technology(JSSST-98), pages 165–168, 1998. (in Japanese).

2. T. Ogawa and J. Tanaka. Double-Click and Drag-and-Drop in Visual Programming
Environment for CafeOBJ. In Proceedings of International Symposium on Future
Software Technology (ISFST’98), pages 155–160, Hangzhou, October 28-30 1998.

3. T. Ogawa and J. Tanaka. Realistic Program Visualization in CafePie. In Proceedings
of World Conference on Integrated Design and Process Technology (IDPT’99), 1999.
(to appear).

4. T. Ogawa and J. Tanaka. CafePie: CafeOBJ Visualization by using a Combination
of Diagrams. In 16th Conference Proceedings Japan Society for Software Science and
Technology(JSSST-99), pages 65–68, 1999. (in Japanese).

5. B. A. Myers. Taxonomies of Visual Programming and Program Visualization. Journal
of Visual Languages and Computing, 1(1):97–123, 1990.

6. B. Shneiderman. Direct Manipulation: A Step Beyond Programming Languages.
IEEE Computer, 16(8):57–69, 1983.

7. E. J. Golin and S. P. Reiss. The Specification of Visual Language Syntax. Journal of
Visual Languages and Computing, 1(2):141–157, 1990.

8. A. L. Ambler and M. M. Burnett. Influence of Visual Technology on the Evolution
of Language Environments. IEEE Computer, 6(2):9–22, October 1989.

15

9. Brad A. Myers. Incense: A System for Displaying Data Structures. Computer Graph-
ics: SIGGRAPH ’83 Conference Proceedings, 17(3):115–125, July 1983.

10. E. Glinert and S. Tanimoto. PICT: An Interactive Graphical Programming Environ-
ment. IEEE Computer, 17(11):7–25, 1984.

11. M. Hirakawa, M. Tanaka, and T. Ichikawa. An Iconic Programming System, HI-
VISUAL. IEEE Transaction on Software Engineering, 16(10):1178–1184, 1990.

12. J. Tanaka. PP : Visual Programming System For Parallel Logic Programming Lan-
guage GHC. Parallel and Distributied Computing and Networks ’97, pages 188–193,
August 11-13 1997. Singapore.

13. M. P. Stovsky and B. W. Weide. Building Interprocess Communication Models Using
Stile. In E. P. Glinert, editor, Visual Programming Environments: Paradigms and
Systems, pages 566–574. IEEE Computer Society Press, Los Alamitos, 1990.

14. D. C. Smith and J. Susser. A Component Architecture for Personal Computer Soft-
ware. In B. A. Myers, editor, Languages for Developing User Interfaces, pages 31–56.
Jones and Bartlett Publishers, Boston, 1992.

15. A. Wagner, P.Curran, and R. O’Brien. Drag Me, Drop Me, Treat Me Like an Object.
In Proceedings of CHI’95: Human Factors in Computing Systems, pages 525–530,
1995.

16. R. Bundgen. Reduce the Redex→ ReDuX. In Rewriting Techniques and Applications,
LNCS 690, pages 446–450. Springer, 1993.

17. N. Kawaguchi, T. Sakabe, and Y. Inagaki. TERSE: TErm Rewriting Support Envi-
ronment. In Workshop on ML and its Application, pages 91–100, florida, june 1994.
ACM SIGPLAN.

18. P. Viry. A user-interface for Knuth-Bendix completion. In 4th Workshop on User
Interfaces for Theorem Provers (UITP’98), July 1998.

19. R. Saracco, J. Smith, and R. Reed. Telecommunications Systems Engineering using
SDL. North-Holland, Elsevier Science Publishers, Amsterdam, 1989.

20. E. Najm (ed.). G-LOTOS: DAM1 to ISO8807 on graphical representation for LOTOS.
Technical report, ISO/IEC JTC 1 / SC 21 N. 4871, 1992.

21. T.Bolognesi and D.Latella. Techniques for the formal definition of the G-LOTOS
syntax. In Procceeing of the 1987 IEEE Workshop on Visual Languages (VL’89),
Roma, 1987.

22. J. L. Peterson. Petri Net Theory and The Modeling of Systems. Prentice-Hall, 1981.
23. M. M. Burnett and A. L. Ambler. A Declarative Approach to Event-handling in

Visual Programming Languages. In Proceedings of the 1992 IEEE Workshop Visual
Languages (VL’92), pages 34–40, Seattle, Washington, September 1992.

24. B. Bell and C. Lewis. ChemTrains: A Language for Creating Behaving Pictures. In
Proceedings of the 1993 IEEE Symposium Visual Languages (VL’93), pages 188–195,
Bergen, Norway, August 1993.

25. B. Shneiderman. Designing the User Interface (Third Edition). Addison-Wesley Pub-
lishing Company, 1997.

