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Abstract
We present a context-aware user interface system, called
SynCro, comprising a smartphone and a smartwatch.
SynCro provides the user with context-dependent user
interfaces (UIs), and will synthesize layouts, feedback, or
input methods of these devices during use, depending on
a identified usage context. To develop SynCro, we imple-
mented a context recognizer that uses the smartphone
and smartwatch accelerometers. The recognizer can iden-
tify 24 contexts relating to the smartphone grip, user arm
posture, and user activity. Further, we implemented ex-
ample applications that change the UI depending on the
context identified.

Author Keywords
Multi-devices; wearable; mobile; context-aware comput-
ing; interaction design; muti-tasking.

ACM Classification Keywords
H.5.2. [Information Interfaces and Presentation]: User
Interfaces—Input devices and strategies, Interaction styles.

Introduction
Cross-device interaction between devices such as tablets,
smartphones, or PCs and smartphones is a popular area
of research in the field of human computer interaction.
This paper focuses on cross-device interaction between a
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smartphone and smartwatch; this is because both devices
are commonly used daily, contain several built-in sensors,
and have considerable computational power.

Pioneering work that showed the potential of the combi-
nation of a smartphone/smartwatch in enhancing inter-
actions was carried out by Duet [4]. The work explored
and enhances cross-device interactions by coordinating
the user interfaces (UIs) of both devices based on their
spatial configurations.

However, in mobile computing environments, both de-
vices are frequently unavailable for simultaneously use.
For example, a smartphone is frequently placed into a
pocket; alternatively, a user may not see a smartwatch
display if they are holding a child’s hand when crossing
a street. Both examples suggest that the usability and
design of cross-device interactions depends heavily on
where both devices are placed. Thus, context-awareness
in cross-device applications is important.

To further exploration of cross-device interactions be-
tween a smartphone and a smartwatch, in this study, we
designed a context-aware UI system, called SynCro, com-
prising a smartphone and a smartwatch. To develop the
system, we first implemented a context recognizer based
on machine learning, using smartphone and smartwatch
accelerometers; the accelerometers are used only to ex-
plore the simplest form of context recognition. We then
implemented a system that uses the identified contexts to
provide the user with suitable UIs; the system synthesizes
layouts, feedback, or input methods for these devices.
The map application shown in Figure 1 is an example.

Related Work
We reviews prior work exploring cross-device interactions,
and interaction techniques that use context sensing.

Figure 1: Map application. (a) The user can use the wide
screen of the smartphone to browse the map and select a
destination with their thumb. (b) After destination selection,
the smartwatch displays the distance and direction with an
arrow, allowing the user to see the information easily while
walking. (c) The smartwatch screen is mirrored on the
smartphone when the user lowers their left arm. The user can
now zoom in or out using a wrist tilt gesture of their left arm;
this allow the user to browse the map easily with the right
hand to check whether they are on the correct route.

Cross-Device Interactions
Several studies have explored cross-device interaction
between two or more devices. For example, Pick-and-
drop [11] is a method with which the user can use a pen
to transfer data between multiple displays. Yoon et al. [15]
proposed a cross-device interaction that combines grasp
and micro-mobility on a tablet. Schmidt et al. [13] pro-
posed a cross-device interaction style that utilizes a smart-
phone as a tangible input object to a large display. Hinck-
ley et al. [7] explored a technique that combine grip and
motion sensing on a pen and tablet. In contrast to the
above, our cross-device interaction uses a smartphone and
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smartwatch, and Duet [4]— the work most inspired us—
uses the same device. For example, the smartwatch may
be used as a tool palette; it could alternatively serve as
a sub-display, displaying contents of a clipboard on the
smartphone; as a third option, a map on the smartphone
could be zoomed-out by bumping the smartphone twice
on the smartwatch. TakeOut [10] proposed a drawing ap-
plication using a smartphone and a smartwatch, utilizing
them as a canvas and palette respectively. In our study,
we explore cross-device interactions between a smart-
phone and a smartwatch based on context-awareness.

Interaction Techniques using Context Sensing
Some studies have shown the potential of contextual
sensing in improving interactions. Schilit et al. [12] showed
that it is possible to provide an optimal UI based on a
given situation. For example, Proximate Selection is a
UI technique that makes a choice easy based on user’s
location information. Hinckley et al. [8] proposed context-
aware mobile interactions using several sensors; for exam-
ple, their system rotates the UI to adjust to the device’s
orientation. Yang et al. [14] changed the application run-
ning on a smartwatch based on the hand posture, which
was recognized by electromyographic sensors attached to
the arm. iGrasp [5] changes the keyboard layout based
on grip recognition by the device case, which has embed-
ded capacitive touch sensors. Mo-Bi [9] uses bimanual
hand postures, recognized using the accelerometers of one
smartphone and a wrist-worn devices on each hand, to
interface layouts and functions in posture-related appli-
cations. By contrast, our work provides UIs of both the
smartphone and the smartwatch, and which are suitable
for contexts in a smartphone-smartwatch cross-device in-
teraction.

Figure 2: Contexts. a–j can
occur while walking.

Figure 3: Context factors.

Contexts
Our context-aware UI system provides the user with both
smartphone and smartwatch UIs. In this section, we de-
scribed the types of contexts that our recognizer can
identify, and the UIs for cross-device interactions, based
on the identified contexts.

The contexts that our recognizer can identify are shown
in Figure 2, with the assumption that the user wears a
smartwatch on the left wrist. Among these contexts, a–j
can occur while walking, and have therefore been identi-
fied as separate contexts a’–j’; the k–n contexts can only
occur while resting in a chair.

The contexts are determined by three factors: How a
smartphone is gripped (grip), the user’s arm posture
(arm), and the user’s activity (activity). The grip factor
has five levels, as shown in Figure 3a, and adds three fur-
ther levels: Left-hand, right-hand, and both-hands. It also
has two additional levels: Into-a-pocket and on-the-desk.
We included these two levels into the grip factor for the
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Table 1: Relations between the grip and arm factors and the
contexts, when resting.

sake of convenience, but the smartphone is not gripped in
the user’s hand. The arm factor has four levels as shown
in Figure 3b. The activity factor has two levels: resting or
walking.

Relations between the grip and arm factors and the iden-
tified contexts utilizing the two devices are shown in Ta-
bles 1 and 2. Note that our recognizer can identify the
arm factor of the right hand only when the smartphone
is gripped in that hand. In these tables, N/A denotes
the contexts that do not exist; these include under both-
hands, lowering-the-arm, putting-the-arm-on-the-desk,
and looking-at-the-watch. We have also merged simi-
lar contexts into one; this is the reason one ID appears
two or more times in the tables. Specifically, we merged
all “raising-the-arm of the left-hand” with “looking-at-
the-watch” if the smartphone is not gripped in the left
arm; this is because raising the left arm is a preliminary
movement before looking-at-the-watch. Furthermore, “–”
in Table 1 denotes the context that our recognizer does
not try to identify; we incorrectly thought that putting a
smartphone into-a-pocket could occur only when stand-
ing.

Table 2: Relations between the grip and arm factors and the
contexts, when walking.

Implementation
To realize our context-aware UI system, we implemented
a context recognizer based on machine learning using the
accelerometers in a smartphone and smartwatch.

Devices and Configuration
We used a SONY Xperia Z3 Compact SO-02G, and a
SO-NY SmartWatch 3 SWR50. The smartphone has
a quad-core 2.5 GHz processor and 2 GB random ac-
cess memory (RAM). The smartwatch has a quad–core
1.2 GHz processor and 512 MB of RAM. The smartwatch
was connected to the smartphone via Bluetooth, and the
transmission rate of the sensor data was set to 20 Hz. We
empirically determined that this frequency achieves a sta-
ble transmission to the smartphone.

Context Recognizer
Our context recognizer uses the J48 decision tree clas-
sifier in the WEKA data mining software [6], with the
default setting (confidence factor = 0.25) to identify con-
texts. It runs on the smartphone and collects the 3-axis
acceleration values from the smartphone (apx(t), apy(t),
apz(t)) and smartwatch (awx(t), awy(t), awz(t)).
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To identify the grip and arm factors, the recognizer cal-
culates the sum of squares of acceleration ap(t)2, aw(t)2

from each device. The recognizer also calculates ad(t)2,
which is the subtraction of aw(t)2 from ap(t)2. Details of
these values are:

ap(t)2 = apx(t)2 + apy(t)2 + apz(t)2

aw(t)2 = awx(t)2 + awy(t)2 + awz(t)2

ad(t)2 = aw(t)2 − ap(t)2

In addition, to identify activity (i.e., resting or walking),
we used a fast Fourier transform (FFT) to calculate the
following features:

Frequency Power [3]: We used FFT to each ap(t)2,
aw(t)2, and ad(t)2, with a sliding window of 32
samples. The frequency ranges is therefore 0–5 Hz
with the resolution of 0.31 Hz; this is because the
sliding window is 32 and the sampling rate is 20 Hz.
This window produces 16 frequency powers.

Maximum Frequency Power: The maximum frequency
power in FFT for each ap(t)2, aw(t)2, and ad(t)2.

Frequency of Maximum Frequency Power: The fre-
quency that shows the Maximum Frequency Power
for each ap(t)2, aw(t)2, and ad(t)2.

Average Acceleration [2]: The average acceleration in a
sliding window for each axis of both the smartphone
and smartwatch.

Average Difference Acceleration: The average of ad(t)2

in a sliding window.

Average Resultant Acceleration [1]: The average of
each ap(t)2 and aw(t)2 in a sliding window.

The total number of features is 63: 48 Frequency Powers,
three Maximum Frequency Powers, three Frequencies of
Maximum Frequency Power, six Average Accelerations,
one Average Difference Acceleration, and two Average
Resultant Accelerations.

Example Applications
We implemented the following applications to demon-
strate context-aware UI systems comprising a smartphone
and smartwatch.

Map
In the smartphone–smartwatch cross-device interaction
described in [4], a smartwatch serves as a sub-display
showing the map application. We extended this appli-
cation, to change UIs automatically to make it suitable
for different contexts (Figure 1). Figure 1a is the map UI
when a user raises both hands; in this UI, the user can
use the wide screen of the smartphone to browse the map
and select a destination with their thumb. After destina-
tion selection, the smartwatch displays the distance and
direction with an arrow (Figure 1b), allowing the user to
see the information easily while walking. The smartwatch
screen is mirrored on the smartphone when the user low-
ers the left arm (Figure 1c). Using this UI, the user can
now zoom in or out using a wrist tilt gesture of their left
arm; this allows the user to browse the map easily with
the right hand to check whether they are on the correct
route.

Notification Management System
We also implemented a smartphone–smartwatch notifica-
tion management system, which changes notified devices
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Contexts Notified device and vibration
a, d, e smartphone, non-vibration

b, g, j, m smartwatch, non-vibration
c, h smartphone, vibration

f, i, k, l, n, a’ – j’ smartwatch, vibration

Table 3: Notifications. In this table, non-vibration denotes
that the system only displays the notification on the device’s
display, and the device does not vibrate. In contrast, vibration
denotes that the system displays the notification on the device
and vibrates it.

and notification methods (display or vibration) depending
on contexts; this is shown in Table 3.

This system displays notifications on the smartphone
without any vibration when the user operates the smart-
phone (a, d, e). Similarly, it displays notifications on the
smartwatch without any vibration when the user operates
the smartwatch (b, g, j, m). In contrast, the system dis-
plays notifications on, and vibrates the smartphone when
the user does not operate the device, but holds it (c, h).
Similarly, the system displays notifications on the smart-
watch when the user neither holds the smartphone (i, n)
nor operates the two devices (f, k, l). Moreover, the sys-
tem displays all notifications on, and vibrates the smart-
watch, to prevent manipulation while walking (a’–j’).

Figure 4: Multi-tasking
application. (a) The user can
transmit the current application
by pushing the button. The
application is then transmitted to
the smartwatch and can be
operated. (b) The user can use
both applications by using two
devices simultaneously. (c) While
lowering the left arm, the display
of the smartwatch is mirrored
onto the smartphone, which
allows the user to continue to
perform multi-task, even while
lowering the left arm.

Multi-tasking Application
A multi-tasking application was also implemented; the
use case shown is where the user can use a music player
and web browser simultaneously (Figure 4). This appli-
cation displays a button on the current application; when
the user pushes the button, the current application in this
case the music player is mirrored to the smartwatch and
can be operated. As shown in Figure 4b, this allows an-

other application, for example browser, to be used on the
smartphone. The application also mirrors the smartwatch
screen on the smartphone when the user lowers the left
arm (Figure 4c). In the smartwatch’s screen on a smart-
phone, the user can operate the music player with the
his/her finger, and therefore, can continue to perform
multi-tasking even while lowering the left arm.

Conclusions
We presented a context-aware UI system, called SynCro,
comprising a smartphone and a smartwatch. SynCro pro-
vides the user with UIs suitable for contexts; it synthe-
sizes layouts, feedback, or input methods of these devices
depending on the context identified. To develop this sys-
tem, we first implemented a context recognizer that uses
the smartphone and smartwatch accelerometers. This
recognizer can identify 24 contexts relating to how the
smartphone is gripped, the user’s arm posture, and the
user’s activity. Three example applications have demon-
strated the usefulness of context-aware UI systems con-
sisting of a smartphone and smartwatch; the application
types are a map, a notification management system, and
a multi-tasking application.

In the future, we plan to conduct an experiment to eval-
uate the accuracy of the context recognizer in controlled
and non-controlled conditions and the usability of the
example applications. Further, we will explore how accu-
racy improves when we add sensors such as gyroscopes
and magnetometers. Furthermore, we plan to conduct an
experiment to evaluate the accuracy of the context recog-
nizer based on other machine learning methods.
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