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Abstract
We present a block system with magnetism-based structure
recognition. The system allows users to create 3D models
intuitively by assembling physical blocks, each of which has
a simple structure with a permanent magnet. The system
recognizes the structure of assembled blocks by using
hardware with Hall sensors array.
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Tangible User Interface; TUI; building block; 3D modeling;
computational device; interactive device.

ACM Classification Keywords
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Introduction
A tangible user interface (TUI) has been proposed that
allows intangible computer information to be manipulated by
direct manipulation on tangible objects in real world (e.g.,
[7, 10, 15]). As one of such TUIs, block-shaped TUIs (e.g.,
[1, 3, 14]) have been studied, which enable 3D modeling by
assembling tangible blocks such as LEGO1. Compared to
traditional 3D modeling using a mouse and keyboard, 3D
modeling by assembling tangible blocks is intuitive because
the formed 3D model and structure are synchronized in real

1https://www.lego.com



time. Therefore, a block-shaped TUI has the possibility to
realize 3D modeling for beginners and children.

Figure 1: Overview of our system
named Tesla Blocks.
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Figure 2: Operation example of
Tesla Blocks: (upper) before adding
a block, (lower) after adding a
block.

To realize such a block-shaped TUI, it is necessary to
recognize the structure of the assembled blocks. Such
methods can be categorized into two groups. The first ones
recognize the structure by electronic circuits including a
built-in microcontroller in the block. The second ones use
cameras installed where the entire structure can be
observed. However, the first ones have a disadvantage that
it is necessary to incorporate a complicated circuit in each
block. The second ones suffer from problems: the system
tends to be bulky due to the use of cameras; occlusion
occurs by the hand of the user.

To solve these problems, we are exploring a
magnetism-based approach as another approach to
recognize the structure of assembled blocks, and developed
a block structure recognition system named Tesla Blocks
(Figure 1). Figure 2 shows the opertion example of the
system. The system recognizes the structure assembled by
the user and draws the 3D model. Each block of the system
has a simple structure, in which we embed only a
permanent magnet. Since the electronic circuit used for
recognizing the structure exists outside blocks (i.e., in the
base plate on which the user assembles the blocks, in our
current implementation), the system can be compact.
Furthermore, occlusion by users’ hand does not occur since
magnetism is used to recognize the structure.

In this paper, as the first step to explore our
magnetism-based approach to recognize the structure of
assembled blocks, we report our small-scale
implementation of the system and discuss how to scale up
the system in future.

Related Work
Many methods to recognize the structure of the assembled
blocks have been investigated in block-shaped TUIs
studies.

One representative method uses electronic circuits,
including a built-in microcontroller in the block. In the
studies by Anderson et al. [1] and Watanabe et al. [16], the
microcontrollers embedded in the blocks communicate with
each other to recognize the structure when the user
assembles blocks. Ando et al. [2] proposed StackBlock,
which is a block in which infrared (IR) LEDs and
phototransistors are laid in a grid pattern on all its six faces.
Their system estimates the contact area between blocks by
emitting and receiving IR light. Structure recognition is
realized by transferring data between blocks with IR
communication. Hosoi et al. [9] designed a building block
with a Hall sensor, accelerometer, and Bluetooth module. In
addition to the number of blocks stacked, the system
recognizes how each block is placed (blocks’ direction and
how blocks are aligned) in real time. In contrast to the above
studies, our system realizes a block-shaped TUI with simple
structure by embedding a permanent magnet in each block.
While it may become cheaper and easier to manufacture
tangible blocks with integrated electronics in the future, our
block would be still easier to be manufactured because it
has a fairly simpler structure.

Another representative method uses cameras installed
where the entire structure can be observed. The system of
Baudisch et al. [3] uses a block composed of glass fiber and
a marker. The system monitors the structure assembled by
blocks with the camera under the desk, and recognizes the
height of stacked blocks from the difference of how the
bottom of the marker looks. The system of Miller et al. [14]
and Gupta et al. [8] recognize the structure of blocks by



using a depth camera. By contrast, our system is based on
magnetism rather than cameras; therefore it could realize a
compact system compared to these systems and solves the
misrecognition due to occlusion.

In addition to the above two representative methods, some
other methods have been explored. Yoshida et al. [17]
designed a block, which is a capacitor formed by combining
conductive and nonconductive filaments using a fused
deposition modeling 3D printer. When these blocks are
stacked, the capacitors are connected in parallel; therefore
the capacitance measured at the base increases linearly.
The system detects the number of stacked blocks by
mapping the measured capacitance with the number of
blocks. Chan et al. [6] developed a system that can detect
the number of blocks stacked on a capacitive touch panel.
Each block has four or more contact points on its top and
bottom. When the user touches the side of the block when
placing it, several touch points are generated which
correspond to the number of blocks stacked on the touch
panel. The system estimates the number of blocks from the
combination of the generated touch points. Compared to
the methods described above, these methods recognize the
structure of the assembled blocks without incorporating
microcontrollers into blocks, and also solves the occlusion
problem by detecting the capacitance of blocks. Our method
realizes recognition of the structure by a new method of
embedding a permanent magnet in each block.

Research on TUIs based on permanent magnets and Hall
sensors has also been actively conducted. Bianchi et al.
created a tangible tool that can be used in combination with
smartphones with built-in Hall sensors, by using three types
of permanent magnets [4]. Each tool such as a slider and
dial has one or more permanent magnets inside. By
measuring magnetism, the system detects where the tool

was placed around the smartphone or how the tool was
used, which extends interaction of a smartphone.
Furthermore, Bianchi et al. proposed a marker with a
battery, motor, and magnet [5]. The magnet is embedded in
the tip of the motor, and the rotation speed of each motor is
uniquely adjusted. As the permanent magnet of the marker
rotates, the polarity of SN changes. The system
distinguishes the type of the marker by analyzing the
frequency, and applies it to various applications. By
contrast, we use permanent magnets and Hall sensors to
recognize the structure of the assembled blocks.

Similar to our system, some research of TUIs using
permanent magnets and Hall sensors also arrange the Hall
sensors in a grid pattern. Liang et al. ’s GaussStones [13]
is a system that uses markers with built-in permanent
magnets inside a magnetic shield. Markers are recognized
by measuring the locally generated magnetism using the
Hall sensor array (GaussSense [12]) on the back of the
liquid crystal panel. This system can recognize up to two
markers stacked. GaussBricks [11] uses the same
hardware as GaussSense and recognizes the combination
of bone-shaped parts with magnets attached to the both
ends. From this, it realizes various interaction on the touch
panel. On the other hand, we realize a block-shaped TUI by
using permanent magnets and Hall sensors.

Tesla Blocks
Tesla Blocks is a system that recognizes the structure
assembled by the user and draws the recognized structure
as a 3D model (Figure 1). Tesla Blocks is composed of
blocks each of which contains a permanent magnet
(magnetic block), hardware with Hall sensors array placed
in a grid pattern (Structure Recognition Hardware), and 3D
Model Viewer. In this section, we will describe the
components and method of structure recognition based on



magnetism in Tesla Blocks.

Magnetic Block
We created a magnetic block by embedding a permanent
magnet inside a 2× 2 LEGO duplo. Figure 3 shows the
components of the magnetic block. The magnetic block
consists of a permanent magnet (Figure 3a), spacer (Figure
3b), and LEGO duplo (Figure 3c). In our current
implementation, we use a neodymium magnet with a
diameter of 6mm, a height of 2.5mm, and magnetic flux
density of 220mT on the surface as the permanent
magnet. The cylindrical cavity inside the 2× 2 LEGO duplo
has a diameter of 10.8mm (Figure 4a). Therefore, we used
a spacer to fix the permanent magnet in the cavity (Figure
4b). The spacer is cylinder with a diameter of 10.5mm and
a height of 16.0mm. The spacer has a cavity on the top
with a diameter 6.25mm and a height of 2.5mm to fix the
permanent magnet. We designed this spacer and printed it
with a fused deposition modeling 3D printer.

a cb

Figure 3: Components of the
magnetic block: (a) permanent
magnet, (b) spacer, (c) 2× 2
LEGO duplo.

a b

Figure 4: The cylindrical cavity
inside the 2× 2 LEGO duplo: (a)
cavity, (b) cavity with a spacer
inserted.

a b c

Figure 5: Appearance of the
structure recognition hardware: (a)
arduino Nano, (b) multiplexer, (c)
four three-axis Hall sensors.

Structure Recognition Hardware
We implemented hardware for recognizing the structure of
the magnetic block assembled by the user (Figure 5). The
hardware is composed of a microcomputer (Figure 5a,
Arduino Nano), a 16 channel analog multiplexer (Figure 5b,
CD74HC4067 by Texas Instruments), and four three-axis
Hall sensors (Figure 5c, HMC5883L by Honeywell). We
mounted the Hall sensors on the universal board as a grid
of 2× 2 with 32mm between each sensor. To allow the
user to assemble magnetic blocks above the Hall sensors,
we 3D-printed a case for the Hall sensor array to be fitted to
the hardware. This case is a rectangular parallelepiped of
128mm in length and width and 50mm in height. On the
top of this case, 8× 8 projections are placed in the same
way as LEGO duplo, allowing the user to assemble blocks
above the Hall sensor array. Each Hall sensor sends

measured values to the microcomputer at 75Hz. We setup
the sensor to have a detection range of ±0.47mT. Since
the slave address used for I2C communication of the Hall
sensor was fixed, we used a multiplexer for enabling
communication between the microcomputer and multiple
Hall sensors.

3D Model Viewer
We implemented a 3D model viewer that recognizes the
structure of the magnetic blocks assembled by the user and
draws the result as a 3D model. Figure 6 shows a
screenshot of the 3D model viewer. We implemented this
viewer using Processing. We used P3D, which is the
standard 3D drawing engine of Processing for drawing 3D
models. The user can move the viewpoint and zoom the
model using the mouse to make it easy to see the 3D
model.

Block Recognition Method
Tesla Blocks recognizes the structure by comparing the
measured values with Structure Recognition Hardware to
the predicted values of every structure created from training
data beforehand, and draws the 3D model of the structure
with the closed predicted values. In this section, we show
how to create the training data and how to recognize the
structure using the training data.

Creating Training Data
Firstly, assume that the user can stack blocks on each
coordinate of a N ×N grid. Now, a 3D structure can be
represented as a N ×N two-dimensional array, since 0 or
more blocks can be stacked for each coordinate of the
N ×N grid. To create training data, we recorded measured
values of the Hall sensors by changing the number of blocks
stacked from 1 to M . We did this to each coordinate of the
N ×N . That is, we recorded N ×N ×M patterns of



measured value as the training data. In order to eliminate
the effect of the geomagnetism, we also used the sensor
value when the magnetic block was not placed on the
Structure Recognition Hardware as an offset.

Figure 6: Screenshot of our 3D
model viewer: (left) structure
assembled by the user, (right) the
3D model drawn by the 3D Model
Viewer.

Recognition Algorithm
We use the fact that the additive theorem can be applied to
magnetic vectors. That is, if a certain structure is given, the
measured values of the Hall sensors must be the sum of
some training data.

We currently assume that a block is added/removed one by
one by the user (in order to reduce the search cost). In
addition, we also assume that there is no block stacked
when the system starts.

The recognition of the structure begins with calculating
sensor values of possible structures (predicted values),
assuming that one block is added to or removed from the
current structure (this calculation is performed when the
user presses the Enter key). For example, Table 1 shows all
the possible structures when N = 2 and the current
structure has a height of {ax|x = (0, 0) · · · (1, 1)}. The
system does this calculation by adding a training datum to
the current measured value or subtracting a training datum
from the current measured value. Then, the system
compares the predicted values with the current measured
values. The structure with the closest predicted sensor
values to the measured value is used as the search result,
and the 3D model is drawn on the viewer.

Experiment
We investigated the size of the structure which can be
recognized by Tesla Blocks. Firstly, we investigated the
height of the structure that the system can recognize
correctly when the bottom of the structure was 2× 2. To do
this, we first created training data of measured values of

Table 1: Possible structures with 2× 2 data sets.

Code of estimated structure

No change a(0,0) a(0,1) a(1,0) a(1,1)
a(0,0) − 1 a(0,1) a(1,0) a(1,1)

Remove a(0,0) a(0,1) − 1 a(1,0) a(1,1)
a block a(0,0) a(0,1) a(1,0) − 1 a(1,1)

a(0,0) a(0,1) a(1,0) a(1,1) − 1
a(0,0) + 1 a(0,1) a(1,0) a(1,1)

Add a(0,0) a(0,1) + 1 a(1,0) a(1,1)
a block a(0,0) a(0,1) a(1,0) + 1 a(1,1)

a(0,0) a(0,1) a(1,0) a(1,1) + 1

2× 2× 1 pattern. After giving the training data to the
system, we freely created structures with 2× 2 and a height
of 1 or less. As a result, we observed that the system could
recognize all the structures correctly. After that, we created
a new set of training data by increasing the height of the
block by 1, gave it to the system, and repeated the
investigation. As a result, we observed that the system
recognized the structure with a height of 3 correctly;
however the structure with a height of 4 had recognition
errors. Next, we investigated the height of the structure that
the system could recognize correctly when the bottom of the
structure was 3× 3. As a result, the system recognized the
structure with a height of 2 correctly; however the structure
with a height of 3 had recognition errors.

Discussion and Future Work
One reason for the false recognition might be the magnetic
field characteristics. As the structure becomes higher, the
distance between the position where the block is newly
placed and the Hall sensor increases. Since the magnetism
is attenuated in inverse proportion to the square of the
distance, the increase of the sensor value by the newly
placed block becomes smaller and thus the recognition



accuracy lowers. In addition, we assume that the magnetic
block error (e.g., permanent magnet magnetism and spacer
size) and Hall sensors ’accuracy might be another reason.
Therefore, we plan to improve the accuracy, by increasing
the number and density of Hall sensors. In contrast to our
current system where four Hall sensors are arranged in a
2× 2 grid pattern, we will investigate how increasing the
number of Hall sensors (e.g., using nine Hall sensors in a
3× 3 grid pattern) affects the accuracy. Moreover, we will
investigate various arrangements of the Hall sensors to
solve the problem due to magnetic field characteristic to
improve the accuracy (e.g., three-dimensional
arrangement).

In addtion to the accuracy, another issue is the scalability in
training. Currently, it is necessary to create training data
according to the size of the structure in advance; the
training efforts increase quadratically with the area and the
height of construction. To address this issue, we plan to
incorporate an algorithm to track the 3D position of magnets
to remove the requirement for training data. One example
will be the algorithm adopted in uTrack [7], which uses two
three-axis Hall sensors to detect the position (and rotation)
of the magnet attached to the fingertip. Moreover, this
incorporation could solve another limitation where the user
has to press a key to activate the recognition in order to
reduce calculation cost in our current implementation,
because searching the predicted data become totally
unnecessary by using such tracking algorithm.

Still, our system has the following limitations. While our
system solves the occlusion problem occurred by the hand
of the user, the may not operate correctly when there is a
magnetic material or magnetic shield near the system and
they move dynamically. Moreover, in order to eliminate the
effect of geomagnetism, the system records offsets at

startup; therefore, when Structure Recognition Hardware is
moved while the system is used, it is necessary to reset the
offset explicitly. Therefore, some dynamic calibration
technique should be incorporated.

Conclusions
We showed a magnetism-based approach as another
approach to recognize the structure of assembled blocks.
Each block has a simple structure with a permanent
magnet. The structure of the assembled blocks is
recognized by using a hardware with a Hall sensor array.
We also showed the design and implementation of a
prototype system called Tesla Blocks. In our system, the
electronic circuit used to recognize the structure is
integrated into the base plate on which the user assembles
the structure. Therefore, our system realized a compact
system compared with systems using a camera. Our
current implementation could recognize the structure with
the bottom of 2× 2 of a height up to 3 correctly; it also could
recognize the structure with the bottom of 3× 3 of a height
up to 2 correctly. In the future, we plan to pursue the cause
of recognition errors and try to improve the system.

Future Impact
Block-shaped TUIs allow users to create 3D models
intuitively by assembling physical blocks. Therefore, they
can be used even by beginners and children. Nowadays,
fabrication tools such as 3D printers can now be introduced
easily to homes casually. We believe that, in combination of
such fabrication tools, 3D modeling tools based on our
approach will promote fabrication and manufacturing by
general users to daily activities in the future.
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