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Abstract 

 

Semi—bipartite graphs — bipartite graphs with edges within one partition — are a kind 

of graph that can be found in various fields of real life. Visualizing of such graph is 

thought to be valuable but this kind of graph has not attracted much attention until 

recently. 

 

Regarding the purpose of visualizing semi—bipartite graphs with high readability, we 

present a drawing style combined with the anchored map—a drawing method for 

bipartite graph, and matrix representation—one of the most traditional representation 

methods. 

 

In order to drawing semi—bipartite graphs in this hybrid drawing method, first we 

extended the drawing method anchored map to be able to handle semi—bipartite graphs, 

in order to further improve the readability and support data mining, we tried to 

introduce matrix representation into the anchored map, and for display matrices with 

good readability we developed a matrix reordering algorithm based on barycenter 

heuristic. 

 

To evaluate our hybrid drawing method, first we do an evaluation experiment on both the 

extended anchored map and the matrix reordering algorithm. Then we will show the 

characters of our method by showing the same drawing result of real data with a semi—

bipartite graph structure. 
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Chapter 1  

 

Introduction 
 

 

1.1 Information Visualization and Graph Drawing 

Information visualization is a set of technologies that produces visual representations of 

abstract data, and its purpose is to amplify cognitive performance to reinforce human 

cognition, enabling the viewer to gain knowledge about the internal structure of the data 

and causal relationships in it.  

 

A graph is an abstract structure that is used to model information. Graphs may be used 

to represent any information that can be modeled as objects (node) and connections 

between those objects (edge). Unfortunately graphs with large information are always 

hard to read and understood, so how to draw graphs automatically with good readability 

becomes a problem. In this paper, we are focusing on the drawing a kind of graph called 

“semi—bipartite graph” — bipartite graphs with edges within one partition.  

 

1.2 Bipartite Graph and Semi—bipartite Graph 

A bipartite graph is a graph whose nodes can be divided into two disjoint sets A and B 

such that every edge connects a node in A to one in B, that is, A and B are independent 

sets. A bipartite graph can be formally described as G = (A∪B,E). E is a finite set of edges, 

and E ⊆ A× B . Bipartite graphs are a kind of graph which has been well studied 

 

Semi—bipartite graphs can be defined as G = (A ∪ B, E1 ∪ E2), where A and B are two 

finite sets of nodes, E1 is a finite set of edges between A and B, i.e., E1 ⊆ {(u,v) | u∈ A, v∈

B } ,and E2 is a finite set of edges between the nodes in B, i.e., E2 ⊆ {(u,v) | u, v∈B } or 

E2⊆{{u,v} | u, v∈B }. In our research E2 can be both direct and undirected. And the only 

difference between bipartite graph and semi—bipartite graph is the existence of E2 edges 

which exist inside node set B. 

 

1.3 Drawing of Semi—bipartite Graph 

There are two kinds of nodes and edges that exist in a semi—bipartite graph, how to 

visualize those two kinds of nodes as well as their two different relations in good 

readability at the same time is a challenging work. Especially when dealing with large 

scale data. 

 

http://www.infovis-wiki.net/index.php?title=Abstract_data
http://en.wikipedia.org/wiki/Graph_%28mathematics%29
http://en.wikipedia.org/wiki/Vertex_%28graph_theory%29
http://en.wikipedia.org/wiki/Disjoint_sets
http://en.wikipedia.org/wiki/Edge_%28graph_theory%29
http://en.wikipedia.org/wiki/Independent_set_%28graph_theory%29
http://en.wikipedia.org/wiki/Independent_set_%28graph_theory%29
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The structure of the semi—bipartite graph has not brought much attention until recently. 

The model of semi—bipartite graph has been recently introduced by Xu et al. [17], he also 

argued the importance of visualizing semi—bipartite graph, and proposed three layout 

algorithms for visualizing gene ontology networks (semi — bipartite graph with 

hierarchical structure).  

 

1.4 Purpose and Approach 

The purpose of our research is to draw semi—bipartite graphs to reveal their two kinds of 

different relations in good readability and support data mining.  

 

To achieve this, two drawing method are proposed. First we extended the drawing 

method anchored map to be able to draw semi—bipartite graphs where nodes of set A are 

arranged on a circumference with same interval to decide the global structure of the 

graph. And in order to further improve the readability and support data mining, we 

proposed a hybrid drawing style combined with anchored map and matrix representation 

where nodes of set B are clustered and visualized by matrix representation. 

 

1.5 The Organization of this Paper 

In this chapter, we introduced the structure of semi—bipartite graphs and the purpose as 

well as the approach of our research. In the next chapter, related work such as anchored 

map and matrix related researches will be introduced. In Chapter 3, we will discuss the 

characters as well as the requirements for drawing semi—bipartite graphs. 

 

In Chapter 4 we will introduce our proposed drawing style. Then the details of drawing 

style will be discussed; the extended anchored map for drawing semi—bipartite graphs 

will be explained in Chapter 5 and in Chapter 6, a matrix reordering algorithm 

developed for better readability of matrices will be introduced. 

 

In order to evaluate our research, two evaluation experiments are held separately, one is 

for extended anchored map, and the other is for the proposed matrix reordering 

algorithm. The characters of two proposed drawing method will be discussed by showing 

some drawing result of real data in Chapter 7. And lastly the conclusion of our research 

will be presented. 
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Chapter 2  

 

Related Work 
 

 

In this chapter, we show some related works about our research such as graph drawing 

anchored map, the matrix representation and reordering. 

 

 

2.1 Graph Drawing 

Graph drawing is a field of research with a long history and automatic graph drawing has 

many important applications in real life such as software engineering, database and web 

design, networking, and visual interfaces for many other domains [3][11]. However, 

almost all research of graph drawing is based on either node—link diagrams or adjacency 

matrix representations (Figure 1). 

          

Figure 1 node—link diagram (left) and matrix representation (right) 

 

2.1.1 Node—link diagrams 

Node—link diagrams are the most common representation of graphs where nodes are 

represented by dots and arcs represent the edges between connected nodes. In the graph 

drawing community, many researches are dealing with layout techniques to satisfy 

aesthetic criteria such as minimizing edge—crossings, the ratio between the longest edge 

and the shortest edge, and revealing symmetries [5].  

 

Force—directed is one of the most common ways for drawing node—link diagrams, and one 

of the earliest heuristics of force—directed placement was based on the spring embedder 

model[6] where nodes are considered as mutually repulsive charges and edges as springs 

that attract connected nodes. 
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Node—link is the most common way of representing graphs but density has a strong 

impact on readability in these diagrams [10], they become unreadable when visualizing a 

dense graph. Focusing on basic readability tasks such as finding an actor or determining 

if two actors are linked, ghoniem et al. found that node—link diagrams perform badly for 

dense graphs even with few nodes. Spring embedder works in iterations, and in each 

iteration, the forces exerted on each node v are computed. 

 

2.1.2 Matrix Representation 

Bertin first introduced visual matrices to represent graphs in “Semiology of graphics” [2]. 

Ghoniem et al. [10] showed that matrices representation is better than node— link 

diagrams when visualizing large graphs or dense graphs in several low—level reading 

tasks, except path finding. Bertin also qualified matrices as “reorderable” and showed 

that matrices can be used to display high—level structures (or good readability) by finding 

good permutations of their rows and columns. Reordering rows and columns of an 

adjacency matrix is similar to computing the layout for a node—link diagram: finding a 

layout that satisfies certain aesthetic criteria. Reordering of matrices can be divided into 

two categories: automatic and interactive. 

 

Automatic reordering for matrices is a well known problem which can be seen in various 

research areas such as mathematics and biology. Matrix ordering algorithms are always 

tried to optimize certain objective function (or aesthetic criteria). For example, 

diagonalizing the matrix, a goal expressed by Bertin, is proved to be a NP—complete 

problem, but Siirtola and Makinen developed a set of heuristics [26] to find an 

approximate solution. Spectral methods has been widely used for reordering binary 

matrices for image compression or DNA sequencing [1]. In our research, we first proposed 

aesthetic criteria for our matrix representation, and then we developed a matrix 

reordering algorithm based on barycenter heuristic[22]. 

 

In interactive tools such as InfoZoom [27] or TableLens[25], user can quickly identify 

correlated columns by reordering one dimension of the table according to one attribute 

(one column). To sort a matrix according to the names, then dates, then category, the user 

has to order first by category, then by dates and finally, by names which is a long and 

tedious work. 

 

2.1.3 NodeTrix 

In the purpose of visualizing large social networks, Henry et al. [12] presented a hybrid 

representation that combined the advantages of two traditional representations: node—

link diagram and matrix representation. Node—link diagrams are used to show the global 

structure of a network, while arbitrary portions of the network can be shown as adjacency 

matrices to better support the analysis of communities. And they also developed a set of 

interaction techniques allowing the user to create a NodeTrix visualization by dragging 

selections to and from node—link and matrix forms. 
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2.2 Drawing of Bipartite Graph 

Drawing of bipartite graph is a well researched field where a lot of work has been done. 

Misue [19][20] proposed a drawing method called “anchored map” (Figure 2), an advanced 

form of spring embedder model[6], is a drawing technique for visualizing large—scale 

bipartite graphs. Nodes in one set are called “anchors” which are arranged on a 

circumference with the same interval, and nodes in another set called “free nodes” are 

arranged at suitable positions in relation to adjacent anchors by spring embedding. To 

improve the readability of anchored maps, anchors are arranged so as to reduce edge 

crossings and edge length. The algorithm to decide the order of anchors for achieving less 

edge crossing and shorter edge length is proposed by Misue. Base on the anchored map, 

Ito et al. [14] developed a 3D bipartite graph visualization technique and a drawing 

method for clustered bipartite graphs [15]. 

 

Figure 2 example of anchored map style 

 

Other researches about two—sided bipartite graph drawing or extended models are also 

exist, for example, Zheng et al. [31] proposed two layout models for bipartite graphs and 

proved several theorems of edge crossing for these models. Newton et al. [21] proposed 

new heuristics for two—sided bipartite graph drawing. Giacomo et al. [9] developed a 

method that drawing bipartite graphs on two curves to avoid edge crossing.  

 

Although the structure of bipartite graph and semi—bipartite graph are close to each 

other, drawing method for bipartite graph cannot be used for semi—bipartite graph 

directly especially in two—sided style since edges exist in one set of the nodes. In this 

paper, we extended anchored map to visualizing semi—bipartite graph. 

 

2.3 Drawing of Semi—bipartite Graph 

Although semi—bipartite graph is similar to bipartite graph, researches on visualizing 
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semi—bipartite graph are relatively less. The model of semi—bipartite graph has been 

introduced by Xu et al. [17], and he proposed three layout algorithms for visualizing semi

—bipartite graph with hierarchical structure which exist in gene ontology networks. 

Before Xu’s definition, the semi—bipartite graph was be called “Multiple—Category 

Graphs” [16], and Itoh et al. have presented a hybrid method combined with space—filling 

and force—directed layout for visualizing it, however the node cluster is drawn as a single 

node so the information(E2 edges) inside cannot not be read. We have proposed a drawing 

method combined with the anchored map and the matrix representation for 

semi-bipartite graph, but algorithms for better layout or readability are not finished at 

that time [32]. 

 

There are also a lot of researches that have been studied on visualizing data with semi—

bipartite graph structure, such as social network and papers—authors data. For social 

networks, researchers always focus on the actor—actor relations [4], community—actor 

relations can be seen during the related operation by the user instead of visualized on the 

drawing result directly [18]. And for papers—authors data, the paper citation and co—

authorship relations are always visualized separately [7], which means the two 

relationships (edges) of semi—bipartite graph are not visualized simultaneously. 

 

In the field of graph drawing, to our knowledge, research focusing on visualizing data 

with semi—bipartite graph without hierarchical structure does not exist yet. 
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Chapter 3  

 

Drawing of Semi—bipartite graph 
 

 

In this chapter, we will show the characters of semi—bipartite graph, based on that, we 

will discuss the demand and requirements of drawing such a graph. 

 

 

3.1 Characters of Semi—bipartite Graph 

As defined in chapter 1.2, Semi—bipartite graphs(Figure 3) can be defined as G = (A ∪ B, 

E1 ∪ E2). It is obvious that the most important character of semi—bipartite is the 

existence of two different kinds of nodes and edges. So in order to distinguish its two 

different nodes and their relationships (edges), semi—bipartite is not suitable for ordinary 

node—link representation or matrix representation. Xu et al. [17], proposed three layout 

algorithms for semi — bipartite graph with only hierarchical structure, however 

hierarchical structure is not a character of semi—bipartite graph.  

 

Figure 3 semi—bipartite example 

 

3.2 The Demand of Drawing Semi—bipartite Graph 

Semi—bipartite graph have not drawn much attention until recently, but it is a kind 

graph structure which can be seen in lot of fields such as social networks, author—paper 

data, and gene ontology networks [17], et al.  

 

A social network is a social structure made up of individuals (or organizations) called 
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"nodes", which are connected by one or more specific types of interdependency, such as 

friendship, kinship, common interest or some other relationships. There exists research 

and systems that either focus on the relationships between people [12][13] or 

relationships between people and their community. However for real social network 

service data, although both people—people and people—community relationships exist, 

and they are considered to have great influence on each other, for example, people 

belongs the same community are prone to have relationships, researches on visualizing 

such graph with its two kinds of nodes and edges does not exist, so drawing the social 

network with its two kinds of relationships is thought to be needed and valuable. 

 

Another example is the author—paper data. Both citation relationship (paper—paper) and 

co—authorship exist. The existing researches or systems always focuses on the either 

citation relationship or co—authorship [18]. However, it is considered that papers written 

by the same author are prone to have citation relations, the possibility of citation relation 

between papers written by authors studying in different areas is relatively low.  

 

Above all, the semi—bipartite graph exists a lot in the field of real life, and we believe that 

drawing semi—bipartite graphs with its two kinds of nodes and edges simultaneously is 

valuable which will be shown in Chapter 7 with some real drawing examples. 

 

3.3 Requirements of Drawing Semi—bipartite Graph 

As discussed in previous part, in order to drawing semi—bipartite graph in good 

readability, there are several requirements as follows: 

 

Req.1 the two different nodes should be easily distinguished (for example, user should 

quickly understand which one represents people and which one represents communities) 

Req.2 the two different edges should be easily distinguished (for example, user should be 

able to focus on reading one kind of relationship) 

Req.3 nodes with close relationships should be placed near to each other (common 

aesthetic criteria in graph drawing which is also defined as minimizing edge length) 

 

In order to satisfy those three requirements, we developed a hybrid drawing style 

combined with anchored map and matrix representation, which will be introduced in the 

next chapter. 
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Chapter 4  

 

Hybrid Drawing Style Combined with Anchored 

Map and Matrix Representation 
 

 

In this chapter, we will generally explain our proposed drawing style. There are mainly 5 

steps. The extended anchored map and the matrix representation part are the two main 

points of our research which will be explained in later 2 chapters. 

 

 

4.1 Extended Anchored Map for Semi—bipartite Graph 

First, in order to satisfy Req.1 in 3.3, we decided to draw a semi—bipartite graph in 

anchored map style in which nodes of set A are fixed on a circumference as anchors to 

keep the overview of graph, and nodes of set B are arranged as free nodes by the spring 

embedding model [6] which will automatically decide their position by the relationship of 

E1 and E2 edges which are drawn in different colors (Figure 4).  

 

In order to satisfy Req.3 in 3.3 , anchors with close relationship should be place near to 

each other (free nodes with close relationship are automatically arranged by spring 

embedding model). The anchored map has developed techniques to decide a good anchor 

order to satisfy Req.3 for bipartite graph, but for semi—bipartite, it cannot be performed 

directly since the existence of E2 edges, as seen in Figure 4 left, not only anchors with 

common free nodes, but also anchors get connected by E2 edges be close to each other.  

 

In order to find a good anchor order for semi—bipartite graphs, we have extended 

anchored map by redefining the “penalty” — an index for goodness of drawing result, 

which will be discussed later. 

 

But there is a problem with drawing a semi—bipartite graph in the anchored map style. 

When drawing a dense graph which has many edges (especially E2 edge), the readability 

can be not assured whenever the anchor order chances, in another words, it cannot be 

visualized well by the anchored map style (Figure 5). Sato et al. [28] proposed a method 

based on node clustering (on free node) for bipartite graph, and it is proved that the 

readability of dense graph or large scale graph can be improved after performing 

clustering. However, for the semi—bipartite graph, if several free nodes are clustered into 

one node cluster and represented as a single node, the relationship (E2 edge) between free 
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nodes will be lost. In order to solve this problem, we tried to introduce matrix 

representation into anchored map style (Figure 6). First we perform node clustering on 

free nodes, and then we use matrices to represent node clusters.  

 

Figure 4 same data with different anchor order 

 

 

Figure 5 a dense graph drawn in anchored map style 
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Figure 6 the same graph drawn in hybrid drawing style 

 

4.2 Drawing Object 

As discussed in former section, we tried to combine anchored map style with matrix 

representation. In anchored map style, nodes of set A are fixed on a circumference to 

decide the overview of graph, then we perform node clustering on nodes of set B (free 

nodes) and represent the relationship between free nodes inside by matrix style (Figure 

1). And after clustering, the structure of semi—bipartite graph will change. Even the 

possibility of changing into a bipartite graph exists. The definition of the drawing object 

is defined as follows: 

 

Before :  G = (A ∪ B, E1 ∪ E2) 

After:  G = (A ∪ B’, E1’ ∪ E2’ ) 

 

In order to satisfy Req. 2, E2 should be displayed inside matrices as much as possible, so 

we decided to perform clustering on nodes of set B based on E2 edge. There are multiple 

clustering methods with different characters available, and of course different clustering 

methods will bring different drawing result. However, the drawing object is the same, 

and our research is based on drawing such objects in good readability. 

 

After clustering, free nodes connected to each other may be clustered into node clusters, 
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and at the same time a single node may also exist after clustering (Figure 7). In the 

proposed drawing style, both node clusters and single nodes are called free nodes, but 

only node clusters will be drawn in matrices. 

  

Figure 7 a semi—bipartite graph where node clusters and signle nodes both exist and all E2 

edges are inside node clusters(matrices) 

 

4.3 Aesthetic Criteria 

We employed the following aesthetic criteria for proposed hybrid drawing style: 

 

(R1) Anchors with close relations are laid out as closely as possible. 

(R2) Free nodes connected to common anchors are laid out as closely as possible. 

(R3) Free nodes connected to each other are laid out as closely as possible. 

(R4) Minimize the total length of edges 

(R5) Minimize the number of edges—crossings. 

(R6) Free nodes (within single matrix) with close relations are placed near each other as 

close as possible. 

 

(R4) and (R5) are the two most common aesthetic criteria in the graph drawing area, (R2) 

and (R3) can be satisfied by using spring embedder model. In this research, we are 

mainly focusing on (R1) and (R6), details about how (R1) and (R6) are to be satisfied will 

be discussed in later chapters. 
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4.4 Procedures 

There are mainly 5 steps in our research. 

(1) Node clustering on nodes of set B 

(2) Fixing nodes of set A on a circumference (extended anchored map) 

(3) Layout (Spring Embedding model) 

(4) Displaying node clusters by matrix representation 

(5) Drawing edges  

 

4.4.1 Node Clustering 

Cluster analysis or clustering is the assignment of a set of observations into subsets 

(called clusters) so that observations in the same cluster are similar in some sense. 

Clustering is a very important and useful method in graph drawing area[23][28], and also 

a common technique for statistical data analysis used in many other fields, such as 

machine learning, data mining, pattern recognition, image analysis, and bioinformatics. 

 

Node clustering is a very important step in our research, and this kind of research has 

emerged in analyzing networks of many kinds, including the World Wide Web, citation 

networks, transportation networks, software call graphs, email networks, food webs, and 

social and biochemical networks[21][28][29]. Node clustering is always a computationally 

demanding job but it is an effective way to improve the readability of graphs especially 

large scale data. 

 

The purpose of node clustering in our research is to make nodes with close relationship 

into groups of nodes within which connections are dense but between which they are 

sparser. For the same purpose, Newman developed a fast algorithm for detecting 

community structure with high quality [23], so in our search we decided to use his 

algorithm for node clustering (Figure 8). 

 

Figure 8 node clustering 

 

4.4.2 Fixing nodes of set A 

The same as related research “anchored map”, node of set A is fixed on a circumference as 
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anchors. It is obvious that anchors with great relationships should be arranged near each 

other, and it has been proved that the order of anchors has a great influence on the edge 

crossing and edge length when visualizing bipartite graph [19]. 

 

In this procedure, the main purpose is to make sure anchors with close relations are laid 

out as closely as possible to satisfy (R1) of 4.3, and in this part, the same as bipartite 

graph, we also found that the order of anchors has a great influence on the edge crossing 

and edge length which means (R4) and (R5) of 4.3 can be also satisfied by fixing anchors 

with close relations near to each other.  

 

However, finding a good order in not an easy work. The most simple and straightforward 

way is to try all possible orders and find the best one, but it may be a very time—

consuming job because of two reasons: 

(1) The drawing result cannot be understood until the spring embedding model finishes, 

which is a very time costing procedure. 

(2) The amount of all possible orders will be too large when the number of anchors 

increases. 

 

So in order to find a good order, two parts are needed. First, an index which can indicate 

the goodness of the drawing result instead of running the spring embedding model. 

Second, an algorithm for finding an order with a good index is needed. In our research we 

developed an index which can indicate the goodness of drawing result for semi—bipartite 

graph. Details of this part will be discussed in chapter 4. 

 

4.4.3 Layout 

After the anchors are fixed (position will not be changed anymore), the position of 

elements in node set B (both single nodes and node clusters) need to be decided. As said 

before, elements of node set B are arranged at suitable positions by spring embedding [6]. 

 

And by the nature of the spring embedding, the free node will “move” to an appropriate 

position that expresses its relation to the connected anchors and free nodes. In this way, 

(R2) and (R3) of 4.3 can be satisfied. 

 

4.4.4 Matrix Representation 

This part is to visualize node clusters in matrix style, and it has been proved that 

visualizing dense graphs in a matrix representation is better than a node — link 

presentation. And since the matrices we are dealing with are all 0/1 matrices (edge exist 

or not), so we present nodes in line—column (Figure 1), and use color to display edges.  

 

In our research we are focusing on the visualization of adjacent matrices. First we 

defined the aesthetic criteria for adjacent matrix representation which is the (R6) of 4.3, 

then, we developed an algorithm based on barycenter heuristic which will be discussed 

on chapter 6, last we will evaluate the proposed algorithm.  
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4.4.5 Drawing Edges 

The last part of the proposed drawing style is to drawing edges. Edges within matrices 

are displayed by matrix representation so only edges between matrices or outside of 

matrices are drawn by straight lines.  

 

Because of the character of the matrix, each node in the matrices will have four 

connecting points (Figure 9). We choose straight lines to represent the edges. And since 

each node within the matrices will have 4 connecting points, we will simply choose the 

nearest point and draw the edge. In this way, the overlapping between edge and matrices 

can be avoided and the length of edges can be reduced. 

 

 

Figure 9 matrices with four connecting points 
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Chapter 5  

 

Anchored Map for Semi—Bipartite Graph 
 

 

In this chapter, we explain how to drawing a semi—bipartite graph in the anchored map 

style. First we will describe the aesthetic criteria, then how to find an anchor order 

satisfying the aesthetic criteria will be introduced. 

 

5.1 Aesthetic Criteria 

We employ the following aesthetic criteria for drawing semi—bipartite graph in anchored 

map style, and these aesthetic criteria are the 5 aesthetic criteria in 4.3. 

(R1) Anchors with close relations are laid out as closely as possible. 

(R2) Free nodes connected to common anchors are laid out as closely as possible. 

(R3) Free nodes connected to each other are laid out as closely as possible. 

(R4) Minimize the total length of edges 

(R5) Minimize the number of edges—crossings. 

 

5.2 Drawing Procedure 

Anchored map of semi—bipartite graph will be laid out in two steps: 

(Step1) Decide the order of anchors and fix anchors on the circumference at equal 

intervals. 

(Step2)  Arrange free nodes at suitable positions in relation to adjacent anchors and 

other free nodes. 

 

The size of circumference (i.e., radius) will be decided in step 1. This size does not 

influence the quality of the layout but only the size of drawing result. The most 

important of step1 is to decide the order of anchors. Because after the order is decided, 

the position of both anchors and free nodes will be decided. The order of anchors has a 

great influence on the quality of the layout which can be seen in Figure 10. It is obvious 

that the edge—crossing and edge length will change a lot by different orders of anchor, 

Figure 10 are using the same data and the only difference is the anchor order (only a3 

and a4 switched in this case). So we insist that the key to drawing an anchored map is to 

decide the order of anchors. How to decide the order of the anchors will be described in 

next section. In step 2, the position of free nodes will be decided by spring embedding 

with the restriction that the anchors will be fixed, so only the position of free nodes will 

change to a suitable place by spring embedding caused by both E1 and E2 edges. The 

spring embedding as well as the initial positions of the free nodes will have some 
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influence. However, those influences are negligible compared with the order of anchors. 

 

  

Figure 10 same data with different anchor order 

 

5.3 Deciding the Anchor Order 

In this section, we will discuss about how to decide the order of anchors. Here we want to 

emphasize that if anchors have its natural order, for example, when anchors are nodes 

presenting the days of week, we should arrange them as “Sunday”, “Monday”... 

“Saturday”. And if they don’t have a natural order (actually in most cases), we need to 

find a good order for them. 

 

The goodness of a certain anchor order can be evaluated only after the spring embedding 

has been processed. The simplest and most straightforward idea is to try all possible 

orders to find the optimal one.  But this would require too much computing time. 

Suppose there are N anchors, the amount of all possible orders will be (N—1)! /2 (not N! 

because anchors are fix on a circumference and both clockwise and anticlockwise will 

return the same result), which means the computer has to run spring embedding (N—1)! 

/2 times to find the optimal order.  

 

Two things are needed for deciding the order of anchors: first, an index for indicating the 

goodness of certain anchor order instead of performing spring embedding. Second an 

algorithm to search for an anchor order with good index is needed, instead of trying all 

possible (N—1)! /2 orders. 

 

5.3.1 How to Define the Index 

Misue has discussed several definitions of indexes for bipartite graph [13], and “the 

distance along the circumference of anchors” has been proved to be a reliable one. An 

index indicating “the closeness of anchors connected to common free nodes” has been 
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proved to be a good index for bipartite graph. 

 

Semi—bipartite graphs are different from bipartite graphs because of the existence of E2 

edges, so the index of bipartite graphs cannot be used. An example is shown in Figure 4. 

Both of them have put anchors connected to common free nodes as closely as possible. 

However the drawing result is different because of the existence of E2 edge, and Figure 4 

right is obviously better then left. 

 

In short, in order to decide the order of anchors for semi — bipartite graph, two 

requirements are needed. First, anchors connected to common free nodes are laid out as 

closely as possible. Second anchors which can be connected through by E2 edges are laid 

out as closely as possible.  

 

By extending the method of anchored map [12], we have defined an index for the anchor 

order of a semi—bipartite graph named “penalty”, and now we will explain the definition 

of penalty. 

 

5.3.2 Penalty of Semi—Bipartite Graph 
The penalty is a index of the goodness of drawing result, and the requirements for anchor 

order is to put related anchors as close as possible, and penalty is showing how well (or 

bad) this requirement is satisfied. In our research, we proposed two different definitions 

of “penalty” for semi—bipartite graphs which will be discussed later in this paper. We also 

evaluate these two definitions of penalty at the end of this chapter. 

 

5.3.3 Search for the Optimal Penalty 

After definition of penalty, we need to find a good order for penalty. Misue [19] has 

developed an algorithm for finding good anchor order on the circumference for bipartite 

graphs, and it has been proved to be a reliable one. In our research, we decided to use his 

algorithm for searching a sub—optimal penalty. 

 

5.4 Definition of Penalty 

As discussed before, we proposed two different definitions of “penalty” for a semi—

bipartite graph. The goal for penalty is to indicate how far the related anchors are away 

from each other. So two things are needed for penalty: 

 

(1) How far are two anchors away from each other 

This can be easily understood since anchors are fixed on the circumference at equal 

intervals, so the distance between two anchors can be easily understood by the 

anchor order. 

 

(2) How much are the two anchors related to each other 

This part is not relatively hard to definite since anchors can be connected though by 

E1 edges or both E1 and E2 edges (Figure 11). And for two anchors, there are may be 
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more than one path, for example, there are two paths between anchor a1 and a2 in 

Figure 11. 

 

 

Figure 11 drawing example of semi—bipartite graph  

 

To define the distance between anchors, first we will give some definition, and then we 

will discuss the two different definitions of “penalty”. 

 

Suppose that M is the number of anchors, that is, M =| A| .The anchors are arranged on 

the vertices of a regular N—gon (a polygon with N vertices). The vertices of the N—gon are 

labeled clockwise from 1 to M. It doesn’t matter which vertex is chosen to be 1. 

p(a) is the position of anchor a. and p : A → {1,2,3…N} 

lm (i,j) is defined as the distance between anchor i, j  

x= (p(i) — p(j) + N)mod N 

y= (p(j) — p(i) + N)mod N 

lm (i,j) = min{x,y} 

 

5.3.2 Shortest path 

Since there may be more than one path between two anchors, so how to deal with 

multiple path becomes a problem, and in this definition we choose to definite how much 

two anchors are related to each other by the shortest path (least E2 edge, since the 

number of E1 edges are always 2). 

The penalty of shortest path is defined as follows: 
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sp(i,j) is defined as the shortest path between anchor i and j. 

 ,  

 
 d(i,j) = w1* |a(i,j)| + w2* |b(i,j)| 

 g(i,j) = lm (i,j) / d(i,j) 

 

5.3.3 All paths 

In this definition, we choose to definite how much two anchors are related to each other 

by all possible paths. For one single path, we calculate the penalty the same as 5.4.1, the 

only difference is all possible path should be calculated by this method. 

 
p(i,j) is defined as a possible path between anchor i and j. 

  

 
 d(i,j) = w1* |a(i,j)| + w2* |b(i,j)| 

 q(i,j) = lm (i,j) / d(i,j) 

 
 

5.3.4 Definition of w1 and w2 

As described before, w1 and w2 is the weight of E1 edge and E2 edge. It is obvious that E1 edge 

should have more influence than E2 edge which has been proved. And in our research, we 

choose w1 to be 1, and w2 to be 2. In this way, E1 edge will have more influence than E2 edge, 

and has been proved in most cases, it will bring better results than treating those two kinds 

of edges the same way. 

 

5.5 Evaluation 

The main contribution of our extended anchored map is the definition of “penalty”. In 

order to find out how well the proposed two penalties work. First, we want understand 

how “penalty” works in different anchor size, because it is obvious that the size of 

anchors may have some influence.  Then, how penalty can indicate the two most 

important aesthetic criteria — edge length and edge crossing, will be showed by 

calculating the correlation between them. Last, we will compare the result of the two 

proposed definitions of “penalty”. 

 

5.5.1 Design of Experiment 

First we made 100 random graphs for each anchor number of 10, 15, for each of these 

random graphs, we recorded results of 1000 different anchor orders (not all possible 

orders because there are (N—1)! /2 orders when anchor number is N), and calculate the 

correlation between penalty and edge—crossing and edge—length for each graph, and see 

how well the penalty can indicate the goodness of drawing result. And it is obvious that 
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the anchor order for both the least edge—crossing and the shortest edge—lengths may not 

exist. 

 

5.5.2 How to Make Experiment Data 

Let n and p be parameters to generate a random graph, n denotes the number of anchors, 

and p denotes the appearance probability of free nodes. We try 2n times, and for each time, 

the appearance probability of a free node is p, so in this way, the number of free nodes will 

be decided. After free nodes are decided, each free node will have a certain possibility to 

have edges between anchors (pe1) and other free nodes (pe2).When n = 10, we change p 

from 0.03 to 0.05, and set pe1 = 0.1, pe2 = 0.02. When n=15, we change p from 0.0016 to 

0.002, and set pe1 = 0.06, pe2 = 0.02. In this way, random graphs will not be too dense or 

too sparse. After that, free node with degree < 2 will be deleted, since they will have no 

influence on the order of anchors. 

 

5.5.3 Result of “Shortest path” 

First we will show the correlation result of graphs with 10 anchors, then the result of 

graphs with 15 anchors. We will show the correlation result both between penalty edge—

crossing and penalty edge—length. In all figures the vertical axis is the coefficient of 

correlation and the horizontal axis is the graph number. 

 

Figure 12 (a) shows the result of correlation between penalty and edge—crossing in 

descending order and it can be easily seen that correlation are over 0.6 in more than 80 

graphs. Realized that, the correlation between penalty and edge—crossing is independent 

from correlation between penalty and edge—length, in order to see how penalty work, 

Figure 12 (b) shows the result of the correlation between penalty and edge—length with 

the same vertical axis order. And it is can be seen that in no.99 graph, both of the 

correlation are only around 0.4 which is not good enough, and for no.100 graph, even 

though, the correlation between penalty and edge — crossing is only 0.24 but the 

correlation between penalty and edge—length is about 0.84.  
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(a)  “short path” correlation result between penalty, edge—crossing 

 

(b) “short path” correlation result between penalty, edge—length 

 

Figure 12 “short path” correlation result in descending order (penalty, edge—crossing) of 

graphs with 10 anchors 

 

Figure 13 shows the same data of Figure 12 in different vertical axis order. Figure 13 (a) 

shows the correlation between penalty and edge—length in descending order and it is it 

can be easily seen that the result is better than edge—crossing’s, correlation is over 0.8 in 

about 70 graphs. This is quite predictable because of the existence of two different kinds 

of edges.  

 

Figure 13 (b) shows correlation between penalty and edge—crossing in same vertical axis 

order of (a). And two correlations seems quite independent from each other. In no. 66 

graph, the correlation between penalty and edge — length is about 0.84 while the 
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correlation between penalty and edge—crossing is only 0.24. 

 

 

(a) short path” correlation result between penalty, edge—length 

 

(b) short path” correlation result between penalty, edge—crossing 

Figure 13 “short path” correlation result in descending order (penalty, edge—length) of graphs 

with 10 anchors 

 

Then we will show the correlation result of graphs with 15 anchors, the same as the 

former result, Figure 14 (a) is the result of correlation between penalty and edge—

crossing, Figure 14 (b) is the result of correlation between penalty and edge—length. The 

vertical axis shows the coefficient of correlation while the horizontal axis shows the 

graph number.  

 

Figure 14 (a) shows the result of correlation between penalty and edge—crossing in 

descending order and it can be easily seen that the correlation are over 0.65 in more than 
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80 graphs which is a better result than result of graphs with 10 anchors. Figure 14 (b) 

shows the result of correlation between penalty and edge—length with the same vertical 

axis order.  

 

 

(a) short path” correlation result between penalty, edge—crossing 

 

(b) short path” correlation result between penalty, edge—length 

Figure 14 “short path” correlation result in descending order (penalty, edge—crossing) of 

graphs with 15 anchors 

Figure 15 shows the same data of Figure 14 in different vertical axis order. Figure 15 (a) 

shows the correlation between penalty and edge — length in descending order, the 

correlation is over 0.8 in about 70 graphs. Figure 15 (b) shows correlation between 

penalty and edge—crossing in same vertical axis order of (a).  

 

Generally, the result of graphs with 15 anchors is better than graphs with 10 anchors, 

and this will be discussed later in the conclusion part of this chapter. 
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(a) short path” correlation result between penalty, edge—length 

 

(b) short path” correlation result between penalty, edge—crossing 

Figure 15 “short path” correlation result in descending order (penalty, edge—length) of graphs 

with 15 anchors 

 

5.5.4 Result of “All paths” 

The same as with “shortest path”, first we will show the result of anchor 10. The vertical 

axis shows the coefficient of correlation while the horizontal axis shows the graph 

number (sorted from better result to worse result). Figure 16 (a) is the result of 

correlation between penalty and edge—crossing, Figure 16 (b) is the result of correlation 

between penalty and edge—length.  

 

Figure 16 (a) shows the result of correlation between penalty and edge—crossing in 

descending order, although the correlation is over 0.6 in 75 graphs, this result is 

relatively worse than “shortest path” (Figure 12), since in over 10 graphs the correlation 



 

26 

is less than 0.4.  

 

Figure 16 (b) shows the result of correlation between penalty and edge—length with the 

same vertical axis order. And it can be seen that no.97 graph’s result is not so good, the 

correlation between penalty and edge—crossing is only 0.25, and correlation between 

penalty and edge—length is 0.47. 

 

(a) “all paths” correlation result between penalty, edge—crossing 

 

(b) “all paths” correlation result between penalty, edge—length 

Figure 16 “all paths” correlation result in descending order (penalty, edge—corssing) of graphs 

with 10 anchors 

 

Figure 17 shows the same result of Figure 16 in different vertical axis order. Figure 17 

(a) shows the correlation between penalty and edge—length in descending order, and it 

can be understood that “all paths” works better than “shortest path” (Figure 13) since 

correlation is more than 0.8 in 87 graphs. Figure 17 (b) shows result of correlation 
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between penalty and edge—crossing with the same vertical axis order, and it is easy to see 

that these two relations are quite independent. 

 

(a) “all paths” correlation result between penalty, edge—length 

 

(b) “all paths” correlation result between penalty, edge—crossing 

Figure 17 “all paths” correlation result in descending order (penalty, edge—length) of graphs 

with 10 anchors 

 

Lastly we will show the result of graphs with 15 anchors. Figure 18 (a) shows the 

correlation between penalty and edge—crossing in descending order where Figure 18 (a) 

shows the correlation between penalty and edge—length in the same order. And the result 

is not as good since no more than 65 graphs have a correlation more than 0.6 in (a). 
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(a) “all paths” correlation result between penalty, edge—crossing 

 

(b) “all paths” correlation result between penalty, edge—length 

Figure 18 “all paths” correlation result in descending order (penalty, edge—crossing) of graphs 

with 15 anchors 

 

Figure 19 show the same result of Figure 18 in different vertical axis order. It can be seen 

that in most of graphs can bring a good result except No.100 graph (No. 99 graph of 

Figure 18) where correlation between penalty edge—crossing is only 0.16 and correlation 

between penalty edge—length is 0.43. 
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(a) “all paths” correlation result between penalty, edge—length 

 

(b) “all paths” correlation result between penalty, edge—crossing 

Figure 19 “all paths” correlation result in descending order (penalty, edge—length) of graphs 

with 15 anchors 

 

5.5.5 Conclusion 

Generally, penalty is a good index for indicating both edge crossing and edge length in 

most cases, since in most cases, the correlations are over 0.6, and compared with edge 

crossing, penalty has better correlation with edge length, which is predictable since two 

kinds of edges exist and the edge crossing problem is relatively hard to estimate. 

 

By analysis of the results of correlation we found that, in most cases, “shortest path” 

works better than “all path”, especially in graphs with 15 anchors. And “all paths” 

method will be more costly since all possible paths should be calculated, so in our 

research, we prefer “shortest path” method. 



 

30 

 

5.6 Drawing Examples 

In this part, we will show the effectiveness of extended anchored map by showing some 

drawing examples. Figure 20 shows a drawing example of a simple graph where only five 

anchors and five free nodes exist. It is obvious that the proposed method can find a very 

good order for this simple graph, after reordering, related anchors are fixed near to each 

other, edge crossing disappears, and edge length is shortened. Figure 21 and Figure 22 

shows the drawing example of a relatively complex graph, Figure 21 shows graph in a 

random anchor the anchor order in Figure 22 is decided by the proposed method. It is 

obvious that the readability has been improved a lot after anchor reordering by the 

proposed method. 

 

         

Figure 20 drawing example of a simple graph (left: random anchor order, right: anchor order 

decided by proposed method) 
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Figure 21 drawing example in random anchor order  
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Figure 22 drawing example with anchor order decided by proposed method 
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Chapter 6  

 

Matrix Representation 
 

 

In this chapter, we explain how to draw node clusters by matrix representation. First we 

will discuss the aesthetic criteria of matrix representation of our research, then we will 

introduce an adjacent matrix reordering algorithm based on barycenter heuristic, 

last ,we will show the effectiveness of proposed algorithm. 

 

 

6.1 Aesthetic Criteria of Matrix Representation 

We employ the following aesthetic criteria for matrix representation which is the same 

aesthetic criteria of 4.3: 

(R6) Free nodes (within single matrix) with close relations are placed near each other as 

close as possible. 

 

Existed matrix ordering algorithms try to optimize an objective function useful for some 

network related operation such as Bandwidth, Minimum Linear Arrangement (MinLA), 

Cutwidth, Modified Cut, Vertex Separation, Sum Cut, Profile, Edge Bisection and Vertex 

Bisection[13]. These algorithms find a linear order of the vertices of a graph that 

optimizes either a function of the edge length (the distance between the two nodes), or of 

the number of crossings of the edges. Exact solutions to these functions are all 

NP—complete but some have good polynomial time approximations. Among these 

functions, some have been used for matrix visualization. Reducing the bandwidth is 

related to diagonalizing the matrix, a goal expressed by Bertin. And it consists in finding 

an order that minimizes the maximum edge length.  

 

In our research, the matrix ordering problem is quite different from other related 

researches. First, the drawing object is diagonal matrices. Second the matrices are groups 

of nodes with close relations.  

 

Since the main purpose for matrix representation is to revealing the connecting pattern 

between nodes within matrices, we considered that, if nodes with close relations are put 

each other as close to each other as possible, the readability of matrices may be better. To 

test whether a particular matrix order is good we define a quality function Q as follows: 

Q =  

M represents the node set (matrix) and f represents the node inside.  
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M = {f1,f2…fn}, |M| = n 

p(f) is the position of node f in matrix, where p:M →{1,2,3…n} 

C(f) is defined as the node set inside matrix which have connection with node f. 

C(f) = { } or C(f) = { } 

 

So the purpose of matrix ordering in part turns out to be a problem of finding an order 

with small Q. The most simple and straightforward way is to choose the order with 

smallest Q from all possible orders, which is impossible when the node size of matrix 

becomes large. In our research we developed a reordering algorithm based on the well 

known barycenter heuristic. 

 

6.2 Barycenter Heuristic Based Algorithm 

Barycenter heuristic is first proposed by Sugiyama et al. at 1981 for drawing hierarchical 

structures [30]. Makinen and Siirtola introduce the barycenter heuristic (Figure 23) as an 

efficient tool for manipulating the reorderable matrix by considering the ordering of the 

matrix as a bipartite graph drawing problem [22].  

 

 

Figure 23 barycenter heuristic example 

 

 

Figure 24 an ordering example of proposed algorithm 

 

In the barycenter heuristic, the nodes will be ordered according to the averages of their 

adjacent nodes in the opposite node set. Repeating this ordering process in turns in the 

two node sets, may reach to an ordering of nodes that minimize the number of edge 
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crossings. 

 

Barycenter heuristic seems to be a very good way to put node near each other, but it 

cannot be used directly since the drawing object of our research are diagonal matrices 

which cannot be treated as bipartite graphs. So we developed an algorithm based on 

barycenter heuristic to reorder diagonal matrices. 

 

The same as brycenter heuristic, the ordering of nodes depends on the adjacent nodes, 

but the difference is that only one node set exists (Figure 24). In Figure 24, we can see 

that 4 nodes “a, b, c, d” exist with a default ordering “1, 2, 3, 4” shown above, node “a” is 

connected with “b, c”, so the averages of adjacent nodes is 2.5. In the same way, we can 

see that the averages of adjacent nodes for node b, c, and d are 1, 2.5, and 3. The order of 

nodes “a, b, c, d” will be decided by the averages of adjacent nodes “2.5, 1, 2.5, 3”, and 

after ordering is changed, the ordering of “a, b, c, d” as well their averages of adjacent 

nodes will also change. 

 

By experiment, we found that repeating this ordering process may not bring better 

results, it may get worse sometimes or run into a loop. So in our research, we try 

repeating the ordering process n times (n is number of nodes inside matrix) and choose 

the order with smallest Q. In this way, we hopefully find a good ordering. The algorithm 

is given as follow: 

 

Algorithm: 

Given a matrix with n nodes as well as their connecting relations 

Repeat n times  

 For each node compute the average of its adjacent nodes  

 Order the nodes by the averages of adjacent nodes  

 Calculate and record the Q. 

Find the ordering with best Q in n results. 

End 

 

To improve the effectiveness of proposed algorithm, we made an evaluation experiment 

which will be discussed later. 

 

6.3 Evaluation 

6.3.1 Design of Experiment 

The purpose of this experiment is to evaluate the proposed matrix ordering algorithm, to 

see how much the reordering result can satisfy the aesthetic criteria described in 6.1.  

 

For each node number of 5, 6, and 7, we made 1000 random matrices and see how well is 

the ordering decided by proposed algorithm. The vertical axis shows the top % of 

proposed result in all possible ordering, 0 means optimal result and 100 means the worst 
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result. The horizontal axis shows the data number (sorted from worse result to better 

result) 

 

6.3.2 Result of Experiment 

First, we will show the result of matrices with 5 nodes in Figure 25. It shows that in more 

than 70% random matrices, our proposed algorithm found the optimal result. Even 

though in some rare case which our algorithm does not work so well, the result is in the 

top 45%.  

 

Figure 25 result of matrices with 5 nodes 

 

Figure 26 shows the result of matrices with 6 nodes, it is also shows a very good result 

where in almost 60% random data, the proposed algorithm can reach to an optimal result. 

The worst result is still in top 45%. 

 

Figure 26 result of matrices with 6 nodes 
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Figure 27 shows the result of matrices with 7 nodes where in about 65% of random data, 

proposed algorithm can reach to an optimal result. 

 

 

Figure 27 result of matrices with 6 nodes 

 

6.4 Conclusion  

From the experiment result, we can conclude that, proposed algorithm can satisfy the 

aesthetic criteria described in 6.1 well. Even if it cannot find the optimal result in some 

rare cases, the result is still not bad.  

 

Here we will show a single result of matrix reordering, Figure 28 shows the graph with 

random matrix order, and Figure 29 shows the drawing result of same graph while using 

proposed matrix reordering algorithm. It is obvious that after putting related nodes close 

together, the readability of matrix is thought to be improved. It is considered that, the 

readability of matrices after reordering is thought to be better than random matrix 

ordering. 
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Figure 28 graph without matrix reordering 
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Figure 29 graph with matrix reordering 
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Chapter 7  

 

Drawing Examples 
 

 

In this chapter, we will discuss the characters of drawing style by showing some semi—

bipartite graph data of real life including two real SNS Data and one real author—paper 

data. First we will show the drawing result by anchored map style, and then we will 

shown the drawing result of same data by proposed hybrid drawing style.  

 

 

7.1 SNS Data 

 

  

Figure 30 real SNS data 1 in anchored map style 
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Figure 31 real SNS data 1 in proposed hybrid drawing style 

 

A drawing result of a real social network data is showed in Figure 30 and Figure 31 

where anchors represent communities and free nodes represent user. In anchored map 

style (Figure 30), anchors (communities) will decide the overview of the graph, and free 

node will be arranged to a suitable place to express its relation to related anchors and 

other free nodes by spring embedder model. Anchors with close relations will be fixed 

near to each other. In this way, the aesthetic criteria for edge crossing and length can be 

also satisfied. 

 

After node clustering, users with close relations are grouped together and drawn in 

matrix style (Figure 31). It is obvious that users belonging to a common community are 

prone to have connection and grouped into same matrix with high possibility, and their 

relationship can be easily read by matrix representation. At the same time communities 

with many common user will arranged close to each other. Another obvious feature of our 

drawing method is that, “key person” who connected different user groups together can 

be easily found by reading edges between matrices. 
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As discussed before, matrix representation is used to improve the readability of dense 

graph, especially when lots of E2 edges exist between free nodes (Figure 5). By this 

example we can understand that for drawing a sparse graph, the extended anchored map 

style may also bring a good readability, without considering the characters of node 

clustering it is hard to say which one is better. When drawing a dense graph (Figure 5, 

Figure 6) or graph where dense sub—graph exist, the proposed hybrid drawing style may 

bring better readability.  

 

Figure 32 shows the drawing result of a real social network data in anchored map style, 

where a lot of E2 edges exist between free nodes near anchor “7” and “8” which makes it is 

hard to read the relations between them. 

 

Figure 33 shows the drawing results of the same data in the proposed hybrid drawing 

style where free nodes with close relations are grouped into clusters and drawn in matrix 

representation.  

 

In this way, it is easy to found that almost all users in the biggest group belongs to 

community “1” except node “4” who belongs to community 8 but still have relations with 

nodes “2,3,5,6,7”. And it is obvious that there is a key person node “6” who is connected 

with other two different user groups. At the same time, communities with many common 

users such as community “3” and “4” are arranged near to each other. 

 

 

Figure 32 real SNS data 2 in anchored map style 



 

43 

 

Figure 33 real SNS Data 2 in proposed hybrid drawing style 

 

7.2 Author—Paper Data 

Drawing results of an author—paper data in both anchored map style and hybrid drawing 

method are shown in this part. 

 

Figure 34 shows the drawing result in anchored map style, where authors are fixed as 

anchors in a circumference to decide the overview and papers are displayed as free nodes. 

Authors with close relations (both co—author relationship and citation relationship) are 

set close to each other, and papers are arranged in a suitable place to reveal its relation 

to related authors and paper. The readability of this example is not bad, but still, by 

drawing it in hybrid drawing style, some potential information can be understood by the 

characters of node clustering. 

 

Figure 35 shows the drawing result of author—paper data in proposed hybrid drawing 

style. Anchors represent authors and free nodes represent papers. It is obvious that, 

papers in the same research area are prone to have citation relations, so a paper cluster 

(matrix) can thought to be a research area. And from the drawing result, we can easily 

find authors who a have high possibility of focusing on the same research area, and their 

citation relations can be read by matrix representation. 
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Figure 34 author—paper data in anchored map style 
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Figure 35 author—paper data in proposed hybrid drawing style 
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Chapter 8  

 

Conclusion 

 
 

In this paper, we represent a hybrid drawing style combined with anchored map and 

matrix representation. First, we extended the anchored map for drawing the semi—

bipartite graphs by definition of two indexes of penalty, which has been proved to be a 

good index for searching good anchor order. Then, in order to improve the readability of 

the drawing result, we proposed a hybrid drawing style combined with the anchored map 

and the matrix representation. For better readability of the matrix representation, we 

also developed a matrix reordering algorithm based on barycenter heuristic. 

 

To our knowledge, our research is the first drawing method which focused on visualizing 

semi—bipartite graph and we also want to emphasize the importance of this new graph 

structure since it is can be seen in many fields of real life. 

 

By using our drawing style, the characters of the semi—bipartite graphs can be well read, 

at the same time, some data mining work can be also be performed based on the feature 

node clustering.  
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Appendix 
 

This part will show the original data of correlation result which shows in 5.5. The first 

row shows the original graph number, the second row shows the correlation between 

penalty and edge—crossing, and the third row is the correlation between penalty and edge

—length. 

 

Table 1 , Table 2 shows the result of “shortest path”, and Table 3, Table 4 shows the result 

of “all path”. 

 

Table 1 original data of “shortest path” method with 10 anchors 

Graph Number Edge—crossing Edge—length 

1 0.678051349 0.754610657 

2 0.790203226 0.92664194 

3 0.800366197 0.892971916 

4 0.811477241 0.910775254 

5 0.709223311 0.901997451 

6 0.555584396 0.87628924 

7 0.680341707 0.892757978 

8 0.636464896 0.855547763 

9 0.760472855 0.963328543 

10 0.674814265 0.722458763 

11 0.665142373 0.948474671 

12 0.628384789 0.8392366 

13 0.801119645 0.962968913 

14 0.592648577 0.912188208 

15 0.770950138 0.952219752 

16 0.839793416 0.965437875 

17 0.76988009 0.896481716 

18 0.596521828 0.895897797 

19 0.70203359 0.799903126 

20 0.704879683 0.80838634 

21 0.646221093 0.943700059 

22 0.726867462 0.793114277 

23 0.721101864 0.887439648 

24 0.672013772 0.863571334 

25 0.815790615 0.867726434 

26 0.47625868 0.750624331 

27 0.670769985 0.947327988 

28 0.748267924 0.841254572 



 

vi 

29 0.790947504 0.874627441 

30 0.709694308 0.860916926 

31 0.8033326 0.922399042 

32 0.652477478 0.746118418 

33 0.786126488 0.887408305 

34 0.651636779 0.764400082 

35 0.734662757 0.917671169 

36 0.732228293 0.824025838 

37 0.801493308 0.937675623 

38 0.77127564 0.912702086 

39 0.662320676 0.777840312 

40 0.817257746 0.879512837 

41 0.596292301 0.826021252 

42 0.765584941 0.834926816 

43 0.43357653 0.820809294 

44 0.6702148 0.76504068 

45 0.750295186 0.934120203 

46 0.665110597 0.824756101 

47 0.735819169 0.9190294 

48 0.771573224 0.900686456 

49 0.756804464 0.895913894 

50 0.770913773 0.93305834 

51 0.833445827 0.864222977 

52 0.731175372 0.788189827 

53 0.580880383 0.738843923 

54 0.706840104 0.905314787 

55 0.733415517 0.843835562 

56 0.74853055 0.93519639 

57 0.755744417 0.84043975 

58 0.507473126 0.78523873 

59 0.533008212 0.85246153 

60 0.764045678 0.939396603 

61 0.683437743 0.752172071 

62 0.673865399 0.826455025 

63 0.686952896 0.878890055 

64 0.244352142 0.837873355 

65 0.70893056 0.883690703 

66 0.606356069 0.793731943 

67 0.860392284 0.958791333 

68 0.753718118 0.863220141 

69 0.680347025 0.954430168 

70 0.788853486 0.936559893 

71 0.736819081 0.81118053 



 

vii 

72 0.714984001 0.761700219 

73 0.502615506 0.72075231 

74 0.781971913 0.954164281 

75 0.723622943 0.880951719 

76 0.383312386 0.434595278 

77 0.694403894 0.826097489 

78 0.673589472 0.926221905 

79 0.650222143 0.777093851 

80 0.807071899 0.880337312 

81 0.745238935 0.796878032 

82 0.696252189 0.809276305 

83 0.703292742 0.79716178 

84 0.57814557 0.714249796 

85 0.710156608 0.806818552 

86 0.663377079 0.859664614 

87 0.69789081 0.792068182 

88 0.838357413 0.894922673 

89 0.756249429 0.899579442 

90 0.858635174 0.924007435 

91 0.640664548 0.710548385 

92 0.645017629 0.948687168 

93 0.775377472 0.840806254 

94 0.831283578 0.90655148 

95 0.54537436 0.751916499 

96 0.867025795 0.896826933 

97 0.636419559 0.601325072 

98 0.662601005 0.746490039 

99 0.555552728 0.748699021 

100 0.579583072 0.835022985 

 

Table 2 original data of “shortest path” method with 15 anchors 

Graph number Edge—crossing Edge—length 

1 0.79441468 0.896387846 

2 0.717623009 0.825702462 

3 0.775840017 0.902688109 

4 0.730637745 0.83550613 

5 0.768511133 0.863092146 

6 0.559328874 0.584290074 

7 0.748323005 0.856870715 

8 0.77291464 0.95068606 

9 0.619891681 0.697019445 

10 0.780118561 0.898753417 



 

viii 

11 0.709898227 0.863435772 

12 0.803990095 0.892156424 

13 0.785386574 0.919170433 

14 0.832167453 0.927344354 

15 0.808538852 0.909513645 

16 0.684734821 0.732574238 

17 0.736916769 0.879535542 

18 0.650868862 0.795718798 

19 0.672823379 0.801168013 

20 0.725906849 0.765486524 

21 0.719861982 0.820542414 

22 0.573919309 0.719613457 

23 0.800628376 0.938709472 

24 0.794984404 0.892589335 

25 0.827944235 0.923903127 

26 0.765994762 0.85253139 

27 0.754245437 0.853174612 

28 0.688975122 0.785690927 

29 0.747048408 0.86706537 

30 0.660023407 0.822206349 

31 0.6709934 0.788533054 

32 0.694418453 0.844994866 

33 0.777388479 0.87893366 

34 0.851436523 0.905994421 

35 0.815869187 0.93610727 

36 0.805002528 0.875795853 

37 0.690198988 0.90040276 

38 0.716298357 0.800707157 

39 0.603463771 0.728377359 

40 0.649432311 0.780330635 

41 0.70276412 0.801188417 

42 0.809182234 0.872372858 

43 0.809494493 0.926103836 

44 0.656150923 0.750440275 

45 0.663874791 0.759073035 

46 0.726377547 0.869913595 

47 0.668610158 0.835236855 

48 0.787788898 0.898262449 

49 0.68388357 0.823107293 

50 0.803735518 0.916314117 

51 0.744712749 0.897326173 

52 0.739677109 0.865516997 

53 0.812883474 0.944854202 



 

ix 

54 0.771969732 0.838064014 

55 0.723275106 0.81890675 

56 0.610866392 0.839962802 

57 0.650905414 0.766227916 

58 0.741315229 0.852372262 

59 0.752193724 0.850922433 

60 0.693362969 0.796718512 

61 0.771302025 0.891710376 

62 0.764373465 0.882348762 

63 0.824981446 0.902440029 

64 0.727658474 0.894567898 

65 0.717047434 0.784091386 

66 0.702103897 0.789162672 

67 0.686401432 0.802790026 

68 0.665724256 0.746549935 

69 0.692015073 0.850392912 

70 0.451653944 0.617825108 

71 0.643491382 0.801807923 

72 0.694960155 0.73730156 

73 0.569299147 0.760590469 

74 0.630823245 0.688687019 

75 0.770898882 0.841757311 

76 0.683312618 0.768982536 

77 0.671697715 0.772054664 

78 0.564369115 0.516072513 

79 0.729520803 0.909395782 

80 0.742470145 0.90807058 

81 0.744041031 0.847109463 

82 0.746438714 0.930318753 

83 0.614412989 0.804113635 

84 0.621152768 0.834181844 

85 0.786987763 0.898872669 

86 0.809058055 0.893420213 

87 0.697435361 0.773255581 

88 0.61048595 0.706271517 

89 0.750472897 0.822421151 

90 0.721346876 0.790365518 

91 0.763292392 0.819178908 

92 0.731379861 0.826707682 

93 0.762290846 0.816363724 

94 0.711879497 0.865278874 

95 0.691321583 0.794137922 

96 0.731972456 0.798619051 



 

x 

97 0.71335237 0.809133424 

98 0.786082947 0.865834881 

99 0.757641826 0.855735408 

100 0.683975386 0.748717832 

 

Table 3 original data of “all paths” method with 10 anchors 

Graph number  Edge—crossing Edge—length 

1 0.664126761 0.848109609 

2 0.833603953 0.961320232 

3 0.841593038 0.930448247 

4 0.84000802 0.937327397 

5 0.538025927 0.826401327 

6 0.493683558 0.866047047 

7 0.641229904 0.942918514 

8 0.714985665 0.933150088 

9 0.785778805 0.973198022 

10 0.692639914 0.864433816 

11 0.520089757 0.943757033 

12 0.42677108 0.852797274 

13 0.790831146 0.967250352 

14 0.686526392 0.921008348 

15 0.768505424 0.954404201 

16 0.832173653 0.959663732 

17 0.737892203 0.935451911 

18 0.567843865 0.92615098 

19 0.723541093 0.886842206 

20 0.623579192 0.904709457 

21 0.494319312 0.84408989 

22 0.811127767 0.897571111 

23 0.545703515 0.9059786 

24 0.693076445 0.856541884 

25 0.873509477 0.94101878 

26 0.531250672 0.847379336 

27 0.665647302 0.951235443 

28 0.77296794 0.917990342 

29 0.821385936 0.947334692 

30 0.689115895 0.888132752 

31 0.832045413 0.952696539 

32 0.403943904 0.764837764 

33 0.83307367 0.940536938 

34 0.505447439 0.866372694 

35 0.632842526 0.899450108 



 

xi 

36 0.818314518 0.925735499 

37 0.856000508 0.965031778 

38 0.736733602 0.906820589 

39 0.678195582 0.883444779 

40 0.806231912 0.908967573 

41 0.346240082 0.812845744 

42 0.785050716 0.877102507 

43 0.350009515 0.925818248 

44 0.719430864 0.864207665 

45 0.789013975 0.944204304 

46 0.730234887 0.908192683 

47 0.683136293 0.895573896 

48 0.713423413 0.875035813 

49 0.777541692 0.947364882 

50 0.780315512 0.934225485 

51 0.833670633 0.867740649 

52 0.752935089 0.895455541 

53 0.666057566 0.914992759 

54 0.709521372 0.935586585 

55 0.753360324 0.850255717 

56 0.756123998 0.938408652 

57 0.692079707 0.878078887 

58 0.560386071 0.877194785 

59 0.555291085 0.935444529 

60 0.783248632 0.943582462 

61 0.661273278 0.795387523 

62 0.787608405 0.898492752 

63 0.747265368 0.939550623 

64 0.216344946 0.858643268 

65 0.627640609 0.908652694 

66 0.614243691 0.915523911 

67 0.8338543 0.937059525 

68 0.77258037 0.872631961 

69 0.64944883 0.925794449 

70 0.794588643 0.937438564 

71 0.694280291 0.844224242 

72 0.603467317 0.699119309 

73 0.21779353 0.719747085 

74 0.795351485 0.942882636 

75 0.512348487 0.872946087 

76 0.580443747 0.771664534 

77 0.770957909 0.909964492 

78 0.628419287 0.915551492 



 

xii 

79 0.634861171 0.848331394 

80 0.816952626 0.884113473 

81 0.765286093 0.894693618 

82 0.614843576 0.866400632 

83 0.743284783 0.928782189 

84 0.529321048 0.757866575 

85 0.782610276 0.851717251 

86 0.68613947 0.895654335 

87 0.578010351 0.692054555 

88 0.576310165 0.774544235 

89 0.789806084 0.913893672 

90 0.812611607 0.884168503 

91 0.403746355 0.710833671 

92 0.658647452 0.962921009 

93 0.71569183 0.818201106 

94 0.78862048 0.873005219 

95 0.090979622 0.584747892 

96 0.84237775 0.914361101 

97 0.245928656 0.470124984 

98 0.721291995 0.861931187 

99 0.573390623 0.788398729 

100 0.629934685 0.904083317 

 

Table 4 original data of “all paths” method with 15 anchors 

Graph number Edge—crossing Edge—length 

1 0.721592674 0.844085342 

2 0.658274343 0.84744768 

3 0.675869718 0.849057041 

4 0.592128265 0.74805479 

5 0.77944701 0.887490923 

6 0.238748872 0.477980249 

7 0.677605246 0.89390789 

8 0.809181577 0.96560259 

9 0.382373244 0.579600645 

10 0.774382246 0.921544454 

11 0.681238824 0.872369326 

12 0.798482449 0.912487933 

13 0.773274753 0.926739971 

14 0.878598428 0.94860905 

15 0.732062535 0.882906843 

16 0.628205182 0.682068804 

17 0.514710441 0.727850419 



 

xiii 

18 0.737388395 0.906485637 

19 0.367790464 0.64691001 

20 0.604067153 0.707043834 

21 0.833605025 0.91695339 

22 0.665944938 0.760965284 

23 0.792154934 0.926319378 

24 0.788375701 0.863598903 

25 0.782651532 0.875197999 

26 0.753874854 0.862074004 

27 0.79178248 0.946690863 

28 0.407631368 0.590760462 

29 0.746467839 0.881869324 

30 0.482951562 0.802786457 

31 0.3834656 0.676372891 

32 0.642740263 0.838491594 

33 0.731113723 0.859051092 

34 0.777199071 0.83936306 

35 0.829694999 0.938584261 

36 0.613164801 0.799984154 

37 0.712511548 0.910912076 

38 0.626151414 0.691110857 

39 0.383802926 0.682989762 

40 0.324181118 0.768151339 

41 0.68256582 0.817198632 

42 0.795442764 0.846218236 

43 0.795499654 0.930025952 

44 0.510225956 0.68644824 

45 0.13005414 0.578240861 

46 0.79535719 0.860895594 

47 0.597023856 0.857080012 

48 0.67090451 0.828905773 

49 0.495420974 0.758543163 

50 0.788860946 0.905713555 

51 0.745446249 0.937074406 

52 0.561825903 0.734180203 

53 0.800387644 0.916877264 

54 0.815798729 0.888751061 

55 0.558747878 0.687281484 

56 0.335878123 0.690271365 

57 0.48617384 0.698075726 

58 0.67824684 0.857899262 

59 0.692931307 0.838410539 

60 0.83797675 0.921846153 



 

xiv 

61 0.692548691 0.819835718 

62 0.822889813 0.934972282 

63 0.63337801 0.796891231 

64 0.649616014 0.814001743 

65 0.773521134 0.833519363 

66 0.438647443 0.579399935 

67 0.643807376 0.774004947 

68 0.702222767 0.870542106 

69 0.531864924 0.710918541 

70 0.539005294 0.714021983 

71 0.602144143 0.827326813 

72 0.288645972 0.619335431 

73 0.51517039 0.819962063 

74 0.431519329 0.627155158 

75 0.76858594 0.871956762 

76 0.661537986 0.824535971 

77 0.572679628 0.669403973 

78 0.167097608 0.435053448 

79 0.741013578 0.893115851 

80 0.654703401 0.858466785 

81 0.706487756 0.831125821 

82 0.649091293 0.810557707 

83 0.568068852 0.819891277 

84 0.716109748 0.91257036 

85 0.516949554 0.781418938 

86 0.71903599 0.800079159 

87 0.578223921 0.707874264 

88 0.456750434 0.66699031 

89 0.593724708 0.757497569 

90 0.359965884 0.502428732 

91 0.563592446 0.684386907 

92 0.686561509 0.841160598 

93 0.726697954 0.836222031 

94 0.549078912 0.656785363 

95 0.700791423 0.876193596 

96 0.800620393 0.890420146 

97 0.739859206 0.798761141 

98 0.69862668 0.89909744 

99 0.736268537 0.861211442 

100 0.713321991 0.780908588 

 


