
Submitted to the Graduate School of

Systems and Information Engineering

in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering

at the

University of Tsukuba

A Hybrid Drawing Style for Semi—Bipartite Graphs

March 2011

Qi Zhou

（Master’s Program in Computer Science）

Advised by Kazuo Misue

Abstract

Semi—bipartite graphs — bipartite graphs with edges within one partition — are a kind

of graph that can be found in various fields of real life. Visualizing of such graph is

thought to be valuable but this kind of graph has not attracted much attention until

recently.

Regarding the purpose of visualizing semi—bipartite graphs with high readability, we

present a drawing style combined with the anchored map—a drawing method for

bipartite graph, and matrix representation—one of the most traditional representation

methods.

In order to drawing semi—bipartite graphs in this hybrid drawing method, first we

extended the drawing method anchored map to be able to handle semi—bipartite graphs,

in order to further improve the readability and support data mining, we tried to

introduce matrix representation into the anchored map, and for display matrices with

good readability we developed a matrix reordering algorithm based on barycenter

heuristic.

To evaluate our hybrid drawing method, first we do an evaluation experiment on both the

extended anchored map and the matrix reordering algorithm. Then we will show the

characters of our method by showing the same drawing result of real data with a semi—

bipartite graph structure.

i

Contents

Chapter 1 Introduction ·· 1

1.1 Information Visualization and Graph Drawing ··· 1

1.2 Bipartite Graph and Semi—bipartite Graph ·· 1

1.3 Drawing of Semi—bipartite Graph ·· 1

1.4 Purpose and Approach ··· 2

1.5 The Organization of this Paper ··· 2

Chapter 2 Related Work ·· 3

2.1 Graph Drawing ·· 3

2.1.1 Node—link diagrams ··· 3

2.1.2 Matrix Representation ··· 4

2.1.3 NodeTrix ·· 4

2.2 Drawing of Bipartite Graph ··· 5

2.3 Drawing of Semi—bipartite Graph ·· 5

Chapter 3 Drawing of Semi—bipartite graph ··· 7

3.1 Characters of Semi—bipartite Graph ·· 7

3.2 The Demand of Drawing Semi—bipartite Graph ··· 7

3.3 Requirements of Drawing Semi—bipartite Graph ··· 8

Chapter 4 Hybrid Drawing Style Combined with Anchored Map and Matrix

Representation ··· 9

4.1 Extended Anchored Map for Semi—bipartite Graph ······································ 9

4.2 Drawing Object ··· 11

4.3 Aesthetic Criteria ·· 12

4.4 Procedures ·· 13

4.4.1 Node Clustering ··· 13

4.4.2 Fixing nodes of set A ··· 13

4.4.3 Layout ·· 14

4.4.4 Matrix Representation ·· 14

4.4.5 Drawing Edges ·· 15

Chapter 5 Anchored Map for Semi—Bipartite Graph ··· 16

5.1 Aesthetic Criteria ·· 16

5.2 Drawing Procedure ·· 16

5.3 Deciding the Anchor Order ·· 17

5.3.1 How to Define the Index ·· 17

5.3.2 Penalty of Semi—Bipartite Graph ··· 18

5.3.3 Search for the Optimal Penalty ·· 18

5.4 Definition of Penalty ·· 18

5.5 Evaluation ·· 20

5.5.1 Design of Experiment ··· 20

5.5.2 How to Make Experiment Data ·· 21

ii

5.5.3 Result of “Shortest path” ··· 21

5.5.4 Result of “All paths” ··· 25

5.5.5 Conclusion··· 29

5.6 Drawing Examples ··· 30

Chapter 6 Matrix Representation ·· 33

6.1 Aesthetic Criteria of Matrix Representation ·· 33

6.2 Barycenter Heuristic Based Algorithm ··· 34

6.3 Evaluation ·· 35

6.3.1 Design of Experiment ··· 35

6.3.2 Result of Experiment ·· 36

6.4 Conclusion ·· 37

Chapter 7 Drawing Examples ··· 40

7.1 SNS Data·· 40

7.2 Author—Paper Data ·· 43

Chapter 8 Conclusion ··· 46

Acknowledgements ··· i

Bibliography ··· ii

Appendix ··· v

iii

List of Figures

Figure 1 node—link diagram (left) and matrix representation (right)3

Figure 2 example of anchored map style ...5

Figure 3 semi—bipartite example ...7

Figure 4 same data with different anchor order ...10

Figure 5 a dense graph drawn in anchored map style ..10

Figure 6 the same graph drawn in hybrid drawing style ... 11

Figure 7 a semi—bipartite graph where node clusters and signle nodes both exist

and all E2 edges are inside node clusters(matrices) ..12

Figure 8 node clustering ..13

Figure 9 matrices with four connecting points ...15

Figure 10 same data with different anchor order ...17

Figure 11 drawing example of semi—bipartite graph ..19

Figure 12 “short path” correlation result in descending order (penalty,

edge—crossing) of graphs with 10 anchors ..22

Figure 13 “short path” correlation result in descending order (penalty, edge—length)

of graphs with 10 anchors ...23

Figure 14 “short path” correlation result in descending order (penalty,

edge—crossing) of graphs with 15 anchors ..24

Figure 15 “short path” correlation result in descending order (penalty, edge—length)

of graphs with 15 anchors ...25

Figure 16 “all paths” correlation result in descending order (penalty, edge—corssing)

of graphs with 10 anchors ...26

Figure 17 “all paths” correlation result in descending order (penalty, edge—length) of

graphs with 10 anchors...27

Figure 18 “all paths” correlation result in descending order (penalty, edge—crossing)

of graphs with 15 anchors ...28

Figure 19 “all paths” correlation result in descending order (penalty, edge—length) of

graphs with 15 anchors...29

Figure 20 drawing example of a simple graph (left: random anchor order, right:

anchor order decided by proposed method) ..30

Figure 21 drawing example in random anchor order ...31

Figure 22 drawing example with anchor order decided by proposed method32

Figure 23 barycenter heuristic example ...34

Figure 24 an ordering example of proposed algorithm ...34

Figure 25 result of matrices with 5 nodes ...36

Figure 26 result of matrices with 6 nodes ...36

Figure 27 result of matrices with 6 nodes ...37

Figure 28 graph without matrix reordering ..38

Figure 29 graph with matrix reordering ...39

iv

Figure 30 real SNS data 1 in anchored map style ..40

Figure 31 real SNS data 1 in proposed hybrid drawing style41

Figure 32 real SNS data 2 in anchored map style ..42

Figure 33 real SNS Data 2 in proposed hybrid drawing style43

Figure 34 author—paper data in anchored map style ..44

Figure 35 author—paper data in proposed hybrid drawing style45

v

List of Tables

Table 1 original data of “shortest path” method with 10 anchorsv

Table 2 original data of “shortest path” method with 15 anchors vii

Table 3 original data of “all paths” method with 10 anchors ..x

Table 4 original data of “all paths” method with 15 anchors xii

1

Chapter 1

Introduction

1.1 Information Visualization and Graph Drawing

Information visualization is a set of technologies that produces visual representations of

abstract data, and its purpose is to amplify cognitive performance to reinforce human

cognition, enabling the viewer to gain knowledge about the internal structure of the data

and causal relationships in it.

A graph is an abstract structure that is used to model information. Graphs may be used

to represent any information that can be modeled as objects (node) and connections

between those objects (edge). Unfortunately graphs with large information are always

hard to read and understood, so how to draw graphs automatically with good readability

becomes a problem. In this paper, we are focusing on the drawing a kind of graph called

“semi—bipartite graph” — bipartite graphs with edges within one partition.

1.2 Bipartite Graph and Semi—bipartite Graph

A bipartite graph is a graph whose nodes can be divided into two disjoint sets A and B

such that every edge connects a node in A to one in B, that is, A and B are independent

sets. A bipartite graph can be formally described as G = (A∪B,E). E is a finite set of edges,

and E ⊆ A× B . Bipartite graphs are a kind of graph which has been well studied

Semi—bipartite graphs can be defined as G = (A ∪ B, E1 ∪ E2), where A and B are two

finite sets of nodes, E1 is a finite set of edges between A and B, i.e., E1 ⊆ {(u,v) | u∈ A, v∈

B } ,and E2 is a finite set of edges between the nodes in B, i.e., E2 ⊆ {(u,v) | u, v∈B } or

E2⊆{{u,v} | u, v∈B }. In our research E2 can be both direct and undirected. And the only

difference between bipartite graph and semi—bipartite graph is the existence of E2 edges

which exist inside node set B.

1.3 Drawing of Semi—bipartite Graph

There are two kinds of nodes and edges that exist in a semi—bipartite graph, how to

visualize those two kinds of nodes as well as their two different relations in good

readability at the same time is a challenging work. Especially when dealing with large

scale data.

http://www.infovis-wiki.net/index.php?title=Abstract_data
http://en.wikipedia.org/wiki/Graph_%28mathematics%29
http://en.wikipedia.org/wiki/Vertex_%28graph_theory%29
http://en.wikipedia.org/wiki/Disjoint_sets
http://en.wikipedia.org/wiki/Edge_%28graph_theory%29
http://en.wikipedia.org/wiki/Independent_set_%28graph_theory%29
http://en.wikipedia.org/wiki/Independent_set_%28graph_theory%29

2

The structure of the semi—bipartite graph has not brought much attention until recently.

The model of semi—bipartite graph has been recently introduced by Xu et al. [17], he also

argued the importance of visualizing semi—bipartite graph, and proposed three layout

algorithms for visualizing gene ontology networks (semi — bipartite graph with

hierarchical structure).

1.4 Purpose and Approach

The purpose of our research is to draw semi—bipartite graphs to reveal their two kinds of

different relations in good readability and support data mining.

To achieve this, two drawing method are proposed. First we extended the drawing

method anchored map to be able to draw semi—bipartite graphs where nodes of set A are

arranged on a circumference with same interval to decide the global structure of the

graph. And in order to further improve the readability and support data mining, we

proposed a hybrid drawing style combined with anchored map and matrix representation

where nodes of set B are clustered and visualized by matrix representation.

1.5 The Organization of this Paper

In this chapter, we introduced the structure of semi—bipartite graphs and the purpose as

well as the approach of our research. In the next chapter, related work such as anchored

map and matrix related researches will be introduced. In Chapter 3, we will discuss the

characters as well as the requirements for drawing semi—bipartite graphs.

In Chapter 4 we will introduce our proposed drawing style. Then the details of drawing

style will be discussed; the extended anchored map for drawing semi—bipartite graphs

will be explained in Chapter 5 and in Chapter 6, a matrix reordering algorithm

developed for better readability of matrices will be introduced.

In order to evaluate our research, two evaluation experiments are held separately, one is

for extended anchored map, and the other is for the proposed matrix reordering

algorithm. The characters of two proposed drawing method will be discussed by showing

some drawing result of real data in Chapter 7. And lastly the conclusion of our research

will be presented.

3

Chapter 2

Related Work

In this chapter, we show some related works about our research such as graph drawing

anchored map, the matrix representation and reordering.

2.1 Graph Drawing

Graph drawing is a field of research with a long history and automatic graph drawing has

many important applications in real life such as software engineering, database and web

design, networking, and visual interfaces for many other domains [3][11]. However,

almost all research of graph drawing is based on either node—link diagrams or adjacency

matrix representations (Figure 1).

Figure 1 node—link diagram (left) and matrix representation (right)

2.1.1 Node—link diagrams

Node—link diagrams are the most common representation of graphs where nodes are

represented by dots and arcs represent the edges between connected nodes. In the graph

drawing community, many researches are dealing with layout techniques to satisfy

aesthetic criteria such as minimizing edge—crossings, the ratio between the longest edge

and the shortest edge, and revealing symmetries [5].

Force—directed is one of the most common ways for drawing node—link diagrams, and one

of the earliest heuristics of force—directed placement was based on the spring embedder

model[6] where nodes are considered as mutually repulsive charges and edges as springs

that attract connected nodes.

4

Node—link is the most common way of representing graphs but density has a strong

impact on readability in these diagrams [10], they become unreadable when visualizing a

dense graph. Focusing on basic readability tasks such as finding an actor or determining

if two actors are linked, ghoniem et al. found that node—link diagrams perform badly for

dense graphs even with few nodes. Spring embedder works in iterations, and in each

iteration, the forces exerted on each node v are computed.

2.1.2 Matrix Representation

Bertin first introduced visual matrices to represent graphs in “Semiology of graphics” [2].

Ghoniem et al. [10] showed that matrices representation is better than node— link

diagrams when visualizing large graphs or dense graphs in several low—level reading

tasks, except path finding. Bertin also qualified matrices as “reorderable” and showed

that matrices can be used to display high—level structures (or good readability) by finding

good permutations of their rows and columns. Reordering rows and columns of an

adjacency matrix is similar to computing the layout for a node—link diagram: finding a

layout that satisfies certain aesthetic criteria. Reordering of matrices can be divided into

two categories: automatic and interactive.

Automatic reordering for matrices is a well known problem which can be seen in various

research areas such as mathematics and biology. Matrix ordering algorithms are always

tried to optimize certain objective function (or aesthetic criteria). For example,

diagonalizing the matrix, a goal expressed by Bertin, is proved to be a NP—complete

problem, but Siirtola and Makinen developed a set of heuristics [26] to find an

approximate solution. Spectral methods has been widely used for reordering binary

matrices for image compression or DNA sequencing [1]. In our research, we first proposed

aesthetic criteria for our matrix representation, and then we developed a matrix

reordering algorithm based on barycenter heuristic[22].

In interactive tools such as InfoZoom [27] or TableLens[25], user can quickly identify

correlated columns by reordering one dimension of the table according to one attribute

(one column). To sort a matrix according to the names, then dates, then category, the user

has to order first by category, then by dates and finally, by names which is a long and

tedious work.

2.1.3 NodeTrix

In the purpose of visualizing large social networks, Henry et al. [12] presented a hybrid

representation that combined the advantages of two traditional representations: node—

link diagram and matrix representation. Node—link diagrams are used to show the global

structure of a network, while arbitrary portions of the network can be shown as adjacency

matrices to better support the analysis of communities. And they also developed a set of

interaction techniques allowing the user to create a NodeTrix visualization by dragging

selections to and from node—link and matrix forms.

5

2.2 Drawing of Bipartite Graph

Drawing of bipartite graph is a well researched field where a lot of work has been done.

Misue [19][20] proposed a drawing method called “anchored map” (Figure 2), an advanced

form of spring embedder model[6], is a drawing technique for visualizing large—scale

bipartite graphs. Nodes in one set are called “anchors” which are arranged on a

circumference with the same interval, and nodes in another set called “free nodes” are

arranged at suitable positions in relation to adjacent anchors by spring embedding. To

improve the readability of anchored maps, anchors are arranged so as to reduce edge

crossings and edge length. The algorithm to decide the order of anchors for achieving less

edge crossing and shorter edge length is proposed by Misue. Base on the anchored map,

Ito et al. [14] developed a 3D bipartite graph visualization technique and a drawing

method for clustered bipartite graphs [15].

Figure 2 example of anchored map style

Other researches about two—sided bipartite graph drawing or extended models are also

exist, for example, Zheng et al. [31] proposed two layout models for bipartite graphs and

proved several theorems of edge crossing for these models. Newton et al. [21] proposed

new heuristics for two—sided bipartite graph drawing. Giacomo et al. [9] developed a

method that drawing bipartite graphs on two curves to avoid edge crossing.

Although the structure of bipartite graph and semi—bipartite graph are close to each

other, drawing method for bipartite graph cannot be used for semi—bipartite graph

directly especially in two—sided style since edges exist in one set of the nodes. In this

paper, we extended anchored map to visualizing semi—bipartite graph.

2.3 Drawing of Semi—bipartite Graph

Although semi—bipartite graph is similar to bipartite graph, researches on visualizing

6

semi—bipartite graph are relatively less. The model of semi—bipartite graph has been

introduced by Xu et al. [17], and he proposed three layout algorithms for visualizing semi

—bipartite graph with hierarchical structure which exist in gene ontology networks.

Before Xu’s definition, the semi—bipartite graph was be called “Multiple—Category

Graphs” [16], and Itoh et al. have presented a hybrid method combined with space—filling

and force—directed layout for visualizing it, however the node cluster is drawn as a single

node so the information(E2 edges) inside cannot not be read. We have proposed a drawing

method combined with the anchored map and the matrix representation for

semi-bipartite graph, but algorithms for better layout or readability are not finished at

that time [32].

There are also a lot of researches that have been studied on visualizing data with semi—

bipartite graph structure, such as social network and papers—authors data. For social

networks, researchers always focus on the actor—actor relations [4], community—actor

relations can be seen during the related operation by the user instead of visualized on the

drawing result directly [18]. And for papers—authors data, the paper citation and co—

authorship relations are always visualized separately [7], which means the two

relationships (edges) of semi—bipartite graph are not visualized simultaneously.

In the field of graph drawing, to our knowledge, research focusing on visualizing data

with semi—bipartite graph without hierarchical structure does not exist yet.

7

Chapter 3

Drawing of Semi—bipartite graph

In this chapter, we will show the characters of semi—bipartite graph, based on that, we

will discuss the demand and requirements of drawing such a graph.

3.1 Characters of Semi—bipartite Graph

As defined in chapter 1.2, Semi—bipartite graphs(Figure 3) can be defined as G = (A ∪ B,

E1 ∪ E2). It is obvious that the most important character of semi—bipartite is the

existence of two different kinds of nodes and edges. So in order to distinguish its two

different nodes and their relationships (edges), semi—bipartite is not suitable for ordinary

node—link representation or matrix representation. Xu et al. [17], proposed three layout

algorithms for semi — bipartite graph with only hierarchical structure, however

hierarchical structure is not a character of semi—bipartite graph.

Figure 3 semi—bipartite example

3.2 The Demand of Drawing Semi—bipartite Graph

Semi—bipartite graph have not drawn much attention until recently, but it is a kind

graph structure which can be seen in lot of fields such as social networks, author—paper

data, and gene ontology networks [17], et al.

A social network is a social structure made up of individuals (or organizations) called

8

"nodes", which are connected by one or more specific types of interdependency, such as

friendship, kinship, common interest or some other relationships. There exists research

and systems that either focus on the relationships between people [12][13] or

relationships between people and their community. However for real social network

service data, although both people—people and people—community relationships exist,

and they are considered to have great influence on each other, for example, people

belongs the same community are prone to have relationships, researches on visualizing

such graph with its two kinds of nodes and edges does not exist, so drawing the social

network with its two kinds of relationships is thought to be needed and valuable.

Another example is the author—paper data. Both citation relationship (paper—paper) and

co—authorship exist. The existing researches or systems always focuses on the either

citation relationship or co—authorship [18]. However, it is considered that papers written

by the same author are prone to have citation relations, the possibility of citation relation

between papers written by authors studying in different areas is relatively low.

Above all, the semi—bipartite graph exists a lot in the field of real life, and we believe that

drawing semi—bipartite graphs with its two kinds of nodes and edges simultaneously is

valuable which will be shown in Chapter 7 with some real drawing examples.

3.3 Requirements of Drawing Semi—bipartite Graph

As discussed in previous part, in order to drawing semi—bipartite graph in good

readability, there are several requirements as follows:

Req.1 the two different nodes should be easily distinguished (for example, user should

quickly understand which one represents people and which one represents communities)

Req.2 the two different edges should be easily distinguished (for example, user should be

able to focus on reading one kind of relationship)

Req.3 nodes with close relationships should be placed near to each other (common

aesthetic criteria in graph drawing which is also defined as minimizing edge length)

In order to satisfy those three requirements, we developed a hybrid drawing style

combined with anchored map and matrix representation, which will be introduced in the

next chapter.

9

Chapter 4

Hybrid Drawing Style Combined with Anchored

Map and Matrix Representation

In this chapter, we will generally explain our proposed drawing style. There are mainly 5

steps. The extended anchored map and the matrix representation part are the two main

points of our research which will be explained in later 2 chapters.

4.1 Extended Anchored Map for Semi—bipartite Graph

First, in order to satisfy Req.1 in 3.3, we decided to draw a semi—bipartite graph in

anchored map style in which nodes of set A are fixed on a circumference as anchors to

keep the overview of graph, and nodes of set B are arranged as free nodes by the spring

embedding model [6] which will automatically decide their position by the relationship of

E1 and E2 edges which are drawn in different colors (Figure 4).

In order to satisfy Req.3 in 3.3 , anchors with close relationship should be place near to

each other (free nodes with close relationship are automatically arranged by spring

embedding model). The anchored map has developed techniques to decide a good anchor

order to satisfy Req.3 for bipartite graph, but for semi—bipartite, it cannot be performed

directly since the existence of E2 edges, as seen in Figure 4 left, not only anchors with

common free nodes, but also anchors get connected by E2 edges be close to each other.

In order to find a good anchor order for semi—bipartite graphs, we have extended

anchored map by redefining the “penalty” — an index for goodness of drawing result,

which will be discussed later.

But there is a problem with drawing a semi—bipartite graph in the anchored map style.

When drawing a dense graph which has many edges (especially E2 edge), the readability

can be not assured whenever the anchor order chances, in another words, it cannot be

visualized well by the anchored map style (Figure 5). Sato et al. [28] proposed a method

based on node clustering (on free node) for bipartite graph, and it is proved that the

readability of dense graph or large scale graph can be improved after performing

clustering. However, for the semi—bipartite graph, if several free nodes are clustered into

one node cluster and represented as a single node, the relationship (E2 edge) between free

10

nodes will be lost. In order to solve this problem, we tried to introduce matrix

representation into anchored map style (Figure 6). First we perform node clustering on

free nodes, and then we use matrices to represent node clusters.

Figure 4 same data with different anchor order

Figure 5 a dense graph drawn in anchored map style

11

Figure 6 the same graph drawn in hybrid drawing style

4.2 Drawing Object

As discussed in former section, we tried to combine anchored map style with matrix

representation. In anchored map style, nodes of set A are fixed on a circumference to

decide the overview of graph, then we perform node clustering on nodes of set B (free

nodes) and represent the relationship between free nodes inside by matrix style (Figure

1). And after clustering, the structure of semi—bipartite graph will change. Even the

possibility of changing into a bipartite graph exists. The definition of the drawing object

is defined as follows:

Before : G = (A ∪ B, E1 ∪ E2)

After: G = (A ∪ B’, E1’ ∪ E2’)

In order to satisfy Req. 2, E2 should be displayed inside matrices as much as possible, so

we decided to perform clustering on nodes of set B based on E2 edge. There are multiple

clustering methods with different characters available, and of course different clustering

methods will bring different drawing result. However, the drawing object is the same,

and our research is based on drawing such objects in good readability.

After clustering, free nodes connected to each other may be clustered into node clusters,

12

and at the same time a single node may also exist after clustering (Figure 7). In the

proposed drawing style, both node clusters and single nodes are called free nodes, but

only node clusters will be drawn in matrices.

Figure 7 a semi—bipartite graph where node clusters and signle nodes both exist and all E2

edges are inside node clusters(matrices)

4.3 Aesthetic Criteria

We employed the following aesthetic criteria for proposed hybrid drawing style:

(R1) Anchors with close relations are laid out as closely as possible.

(R2) Free nodes connected to common anchors are laid out as closely as possible.

(R3) Free nodes connected to each other are laid out as closely as possible.

(R4) Minimize the total length of edges

(R5) Minimize the number of edges—crossings.

(R6) Free nodes (within single matrix) with close relations are placed near each other as

close as possible.

(R4) and (R5) are the two most common aesthetic criteria in the graph drawing area, (R2)

and (R3) can be satisfied by using spring embedder model. In this research, we are

mainly focusing on (R1) and (R6), details about how (R1) and (R6) are to be satisfied will

be discussed in later chapters.

13

4.4 Procedures

There are mainly 5 steps in our research.

(1) Node clustering on nodes of set B

(2) Fixing nodes of set A on a circumference (extended anchored map)

(3) Layout (Spring Embedding model)

(4) Displaying node clusters by matrix representation

(5) Drawing edges

4.4.1 Node Clustering

Cluster analysis or clustering is the assignment of a set of observations into subsets

(called clusters) so that observations in the same cluster are similar in some sense.

Clustering is a very important and useful method in graph drawing area[23][28], and also

a common technique for statistical data analysis used in many other fields, such as

machine learning, data mining, pattern recognition, image analysis, and bioinformatics.

Node clustering is a very important step in our research, and this kind of research has

emerged in analyzing networks of many kinds, including the World Wide Web, citation

networks, transportation networks, software call graphs, email networks, food webs, and

social and biochemical networks[21][28][29]. Node clustering is always a computationally

demanding job but it is an effective way to improve the readability of graphs especially

large scale data.

The purpose of node clustering in our research is to make nodes with close relationship

into groups of nodes within which connections are dense but between which they are

sparser. For the same purpose, Newman developed a fast algorithm for detecting

community structure with high quality [23], so in our search we decided to use his

algorithm for node clustering (Figure 8).

Figure 8 node clustering

4.4.2 Fixing nodes of set A

The same as related research “anchored map”, node of set A is fixed on a circumference as

14

anchors. It is obvious that anchors with great relationships should be arranged near each

other, and it has been proved that the order of anchors has a great influence on the edge

crossing and edge length when visualizing bipartite graph [19].

In this procedure, the main purpose is to make sure anchors with close relations are laid

out as closely as possible to satisfy (R1) of 4.3, and in this part, the same as bipartite

graph, we also found that the order of anchors has a great influence on the edge crossing

and edge length which means (R4) and (R5) of 4.3 can be also satisfied by fixing anchors

with close relations near to each other.

However, finding a good order in not an easy work. The most simple and straightforward

way is to try all possible orders and find the best one, but it may be a very time—

consuming job because of two reasons:

(1) The drawing result cannot be understood until the spring embedding model finishes,

which is a very time costing procedure.

(2) The amount of all possible orders will be too large when the number of anchors

increases.

So in order to find a good order, two parts are needed. First, an index which can indicate

the goodness of the drawing result instead of running the spring embedding model.

Second, an algorithm for finding an order with a good index is needed. In our research we

developed an index which can indicate the goodness of drawing result for semi—bipartite

graph. Details of this part will be discussed in chapter 4.

4.4.3 Layout

After the anchors are fixed (position will not be changed anymore), the position of

elements in node set B (both single nodes and node clusters) need to be decided. As said

before, elements of node set B are arranged at suitable positions by spring embedding [6].

And by the nature of the spring embedding, the free node will “move” to an appropriate

position that expresses its relation to the connected anchors and free nodes. In this way,

(R2) and (R3) of 4.3 can be satisfied.

4.4.4 Matrix Representation

This part is to visualize node clusters in matrix style, and it has been proved that

visualizing dense graphs in a matrix representation is better than a node — link

presentation. And since the matrices we are dealing with are all 0/1 matrices (edge exist

or not), so we present nodes in line—column (Figure 1), and use color to display edges.

In our research we are focusing on the visualization of adjacent matrices. First we

defined the aesthetic criteria for adjacent matrix representation which is the (R6) of 4.3,

then, we developed an algorithm based on barycenter heuristic which will be discussed

on chapter 6, last we will evaluate the proposed algorithm.

15

4.4.5 Drawing Edges

The last part of the proposed drawing style is to drawing edges. Edges within matrices

are displayed by matrix representation so only edges between matrices or outside of

matrices are drawn by straight lines.

Because of the character of the matrix, each node in the matrices will have four

connecting points (Figure 9). We choose straight lines to represent the edges. And since

each node within the matrices will have 4 connecting points, we will simply choose the

nearest point and draw the edge. In this way, the overlapping between edge and matrices

can be avoided and the length of edges can be reduced.

Figure 9 matrices with four connecting points

16

Chapter 5

Anchored Map for Semi—Bipartite Graph

In this chapter, we explain how to drawing a semi—bipartite graph in the anchored map

style. First we will describe the aesthetic criteria, then how to find an anchor order

satisfying the aesthetic criteria will be introduced.

5.1 Aesthetic Criteria

We employ the following aesthetic criteria for drawing semi—bipartite graph in anchored

map style, and these aesthetic criteria are the 5 aesthetic criteria in 4.3.

(R1) Anchors with close relations are laid out as closely as possible.

(R2) Free nodes connected to common anchors are laid out as closely as possible.

(R3) Free nodes connected to each other are laid out as closely as possible.

(R4) Minimize the total length of edges

(R5) Minimize the number of edges—crossings.

5.2 Drawing Procedure

Anchored map of semi—bipartite graph will be laid out in two steps:

(Step1) Decide the order of anchors and fix anchors on the circumference at equal

intervals.

(Step2) Arrange free nodes at suitable positions in relation to adjacent anchors and

other free nodes.

The size of circumference (i.e., radius) will be decided in step 1. This size does not

influence the quality of the layout but only the size of drawing result. The most

important of step1 is to decide the order of anchors. Because after the order is decided,

the position of both anchors and free nodes will be decided. The order of anchors has a

great influence on the quality of the layout which can be seen in Figure 10. It is obvious

that the edge—crossing and edge length will change a lot by different orders of anchor,

Figure 10 are using the same data and the only difference is the anchor order (only a3

and a4 switched in this case). So we insist that the key to drawing an anchored map is to

decide the order of anchors. How to decide the order of the anchors will be described in

next section. In step 2, the position of free nodes will be decided by spring embedding

with the restriction that the anchors will be fixed, so only the position of free nodes will

change to a suitable place by spring embedding caused by both E1 and E2 edges. The

spring embedding as well as the initial positions of the free nodes will have some

17

influence. However, those influences are negligible compared with the order of anchors.

Figure 10 same data with different anchor order

5.3 Deciding the Anchor Order

In this section, we will discuss about how to decide the order of anchors. Here we want to

emphasize that if anchors have its natural order, for example, when anchors are nodes

presenting the days of week, we should arrange them as “Sunday”, “Monday”...

“Saturday”. And if they don’t have a natural order (actually in most cases), we need to

find a good order for them.

The goodness of a certain anchor order can be evaluated only after the spring embedding

has been processed. The simplest and most straightforward idea is to try all possible

orders to find the optimal one. But this would require too much computing time.

Suppose there are N anchors, the amount of all possible orders will be (N—1)! /2 (not N!

because anchors are fix on a circumference and both clockwise and anticlockwise will

return the same result), which means the computer has to run spring embedding (N—1)!

/2 times to find the optimal order.

Two things are needed for deciding the order of anchors: first, an index for indicating the

goodness of certain anchor order instead of performing spring embedding. Second an

algorithm to search for an anchor order with good index is needed, instead of trying all

possible (N—1)! /2 orders.

5.3.1 How to Define the Index

Misue has discussed several definitions of indexes for bipartite graph [13], and “the

distance along the circumference of anchors” has been proved to be a reliable one. An

index indicating “the closeness of anchors connected to common free nodes” has been

18

proved to be a good index for bipartite graph.

Semi—bipartite graphs are different from bipartite graphs because of the existence of E2

edges, so the index of bipartite graphs cannot be used. An example is shown in Figure 4.

Both of them have put anchors connected to common free nodes as closely as possible.

However the drawing result is different because of the existence of E2 edge, and Figure 4

right is obviously better then left.

In short, in order to decide the order of anchors for semi — bipartite graph, two

requirements are needed. First, anchors connected to common free nodes are laid out as

closely as possible. Second anchors which can be connected through by E2 edges are laid

out as closely as possible.

By extending the method of anchored map [12], we have defined an index for the anchor

order of a semi—bipartite graph named “penalty”, and now we will explain the definition

of penalty.

5.3.2 Penalty of Semi—Bipartite Graph
The penalty is a index of the goodness of drawing result, and the requirements for anchor

order is to put related anchors as close as possible, and penalty is showing how well (or

bad) this requirement is satisfied. In our research, we proposed two different definitions

of “penalty” for semi—bipartite graphs which will be discussed later in this paper. We also

evaluate these two definitions of penalty at the end of this chapter.

5.3.3 Search for the Optimal Penalty

After definition of penalty, we need to find a good order for penalty. Misue [19] has

developed an algorithm for finding good anchor order on the circumference for bipartite

graphs, and it has been proved to be a reliable one. In our research, we decided to use his

algorithm for searching a sub—optimal penalty.

5.4 Definition of Penalty

As discussed before, we proposed two different definitions of “penalty” for a semi—

bipartite graph. The goal for penalty is to indicate how far the related anchors are away

from each other. So two things are needed for penalty:

(1) How far are two anchors away from each other

This can be easily understood since anchors are fixed on the circumference at equal

intervals, so the distance between two anchors can be easily understood by the

anchor order.

(2) How much are the two anchors related to each other

This part is not relatively hard to definite since anchors can be connected though by

E1 edges or both E1 and E2 edges (Figure 11). And for two anchors, there are may be

19

more than one path, for example, there are two paths between anchor a1 and a2 in

Figure 11.

Figure 11 drawing example of semi—bipartite graph

To define the distance between anchors, first we will give some definition, and then we

will discuss the two different definitions of “penalty”.

Suppose that M is the number of anchors, that is, M =| A| .The anchors are arranged on

the vertices of a regular N—gon (a polygon with N vertices). The vertices of the N—gon are

labeled clockwise from 1 to M. It doesn’t matter which vertex is chosen to be 1.

p(a) is the position of anchor a. and p : A → {1,2,3…N}

lm (i,j) is defined as the distance between anchor i, j

x= (p(i) — p(j) + N)mod N

y= (p(j) — p(i) + N)mod N

lm (i,j) = min{x,y}

5.3.2 Shortest path

Since there may be more than one path between two anchors, so how to deal with

multiple path becomes a problem, and in this definition we choose to definite how much

two anchors are related to each other by the shortest path (least E2 edge, since the

number of E1 edges are always 2).

The penalty of shortest path is defined as follows:

20

sp(i,j) is defined as the shortest path between anchor i and j.

 ,

 d(i,j) = w1* |a(i,j)| + w2* |b(i,j)|

 g(i,j) = lm (i,j) / d(i,j)

5.3.3 All paths

In this definition, we choose to definite how much two anchors are related to each other

by all possible paths. For one single path, we calculate the penalty the same as 5.4.1, the

only difference is all possible path should be calculated by this method.

p(i,j) is defined as a possible path between anchor i and j.

 d(i,j) = w1* |a(i,j)| + w2* |b(i,j)|

 q(i,j) = lm (i,j) / d(i,j)

5.3.4 Definition of w1 and w2

As described before, w1 and w2 is the weight of E1 edge and E2 edge. It is obvious that E1 edge

should have more influence than E2 edge which has been proved. And in our research, we

choose w1 to be 1, and w2 to be 2. In this way, E1 edge will have more influence than E2 edge,

and has been proved in most cases, it will bring better results than treating those two kinds

of edges the same way.

5.5 Evaluation

The main contribution of our extended anchored map is the definition of “penalty”. In

order to find out how well the proposed two penalties work. First, we want understand

how “penalty” works in different anchor size, because it is obvious that the size of

anchors may have some influence. Then, how penalty can indicate the two most

important aesthetic criteria — edge length and edge crossing, will be showed by

calculating the correlation between them. Last, we will compare the result of the two

proposed definitions of “penalty”.

5.5.1 Design of Experiment

First we made 100 random graphs for each anchor number of 10, 15, for each of these

random graphs, we recorded results of 1000 different anchor orders (not all possible

orders because there are (N—1)! /2 orders when anchor number is N), and calculate the

correlation between penalty and edge—crossing and edge—length for each graph, and see

how well the penalty can indicate the goodness of drawing result. And it is obvious that

21

the anchor order for both the least edge—crossing and the shortest edge—lengths may not

exist.

5.5.2 How to Make Experiment Data

Let n and p be parameters to generate a random graph, n denotes the number of anchors,

and p denotes the appearance probability of free nodes. We try 2n times, and for each time,

the appearance probability of a free node is p, so in this way, the number of free nodes will

be decided. After free nodes are decided, each free node will have a certain possibility to

have edges between anchors (pe1) and other free nodes (pe2).When n = 10, we change p

from 0.03 to 0.05, and set pe1 = 0.1, pe2 = 0.02. When n=15, we change p from 0.0016 to

0.002, and set pe1 = 0.06, pe2 = 0.02. In this way, random graphs will not be too dense or

too sparse. After that, free node with degree < 2 will be deleted, since they will have no

influence on the order of anchors.

5.5.3 Result of “Shortest path”

First we will show the correlation result of graphs with 10 anchors, then the result of

graphs with 15 anchors. We will show the correlation result both between penalty edge—

crossing and penalty edge—length. In all figures the vertical axis is the coefficient of

correlation and the horizontal axis is the graph number.

Figure 12 (a) shows the result of correlation between penalty and edge—crossing in

descending order and it can be easily seen that correlation are over 0.6 in more than 80

graphs. Realized that, the correlation between penalty and edge—crossing is independent

from correlation between penalty and edge—length, in order to see how penalty work,

Figure 12 (b) shows the result of the correlation between penalty and edge—length with

the same vertical axis order. And it is can be seen that in no.99 graph, both of the

correlation are only around 0.4 which is not good enough, and for no.100 graph, even

though, the correlation between penalty and edge — crossing is only 0.24 but the

correlation between penalty and edge—length is about 0.84.

22

(a) “short path” correlation result between penalty, edge—crossing

(b) “short path” correlation result between penalty, edge—length

Figure 12 “short path” correlation result in descending order (penalty, edge—crossing) of

graphs with 10 anchors

Figure 13 shows the same data of Figure 12 in different vertical axis order. Figure 13 (a)

shows the correlation between penalty and edge—length in descending order and it is it

can be easily seen that the result is better than edge—crossing’s, correlation is over 0.8 in

about 70 graphs. This is quite predictable because of the existence of two different kinds

of edges.

Figure 13 (b) shows correlation between penalty and edge—crossing in same vertical axis

order of (a). And two correlations seems quite independent from each other. In no. 66

graph, the correlation between penalty and edge — length is about 0.84 while the

23

correlation between penalty and edge—crossing is only 0.24.

(a) short path” correlation result between penalty, edge—length

(b) short path” correlation result between penalty, edge—crossing

Figure 13 “short path” correlation result in descending order (penalty, edge—length) of graphs

with 10 anchors

Then we will show the correlation result of graphs with 15 anchors, the same as the

former result, Figure 14 (a) is the result of correlation between penalty and edge—

crossing, Figure 14 (b) is the result of correlation between penalty and edge—length. The

vertical axis shows the coefficient of correlation while the horizontal axis shows the

graph number.

Figure 14 (a) shows the result of correlation between penalty and edge—crossing in

descending order and it can be easily seen that the correlation are over 0.65 in more than

24

80 graphs which is a better result than result of graphs with 10 anchors. Figure 14 (b)

shows the result of correlation between penalty and edge—length with the same vertical

axis order.

(a) short path” correlation result between penalty, edge—crossing

(b) short path” correlation result between penalty, edge—length

Figure 14 “short path” correlation result in descending order (penalty, edge—crossing) of

graphs with 15 anchors

Figure 15 shows the same data of Figure 14 in different vertical axis order. Figure 15 (a)

shows the correlation between penalty and edge — length in descending order, the

correlation is over 0.8 in about 70 graphs. Figure 15 (b) shows correlation between

penalty and edge—crossing in same vertical axis order of (a).

Generally, the result of graphs with 15 anchors is better than graphs with 10 anchors,

and this will be discussed later in the conclusion part of this chapter.

25

(a) short path” correlation result between penalty, edge—length

(b) short path” correlation result between penalty, edge—crossing

Figure 15 “short path” correlation result in descending order (penalty, edge—length) of graphs

with 15 anchors

5.5.4 Result of “All paths”

The same as with “shortest path”, first we will show the result of anchor 10. The vertical

axis shows the coefficient of correlation while the horizontal axis shows the graph

number (sorted from better result to worse result). Figure 16 (a) is the result of

correlation between penalty and edge—crossing, Figure 16 (b) is the result of correlation

between penalty and edge—length.

Figure 16 (a) shows the result of correlation between penalty and edge—crossing in

descending order, although the correlation is over 0.6 in 75 graphs, this result is

relatively worse than “shortest path” (Figure 12), since in over 10 graphs the correlation

26

is less than 0.4.

Figure 16 (b) shows the result of correlation between penalty and edge—length with the

same vertical axis order. And it can be seen that no.97 graph’s result is not so good, the

correlation between penalty and edge—crossing is only 0.25, and correlation between

penalty and edge—length is 0.47.

(a) “all paths” correlation result between penalty, edge—crossing

(b) “all paths” correlation result between penalty, edge—length

Figure 16 “all paths” correlation result in descending order (penalty, edge—corssing) of graphs

with 10 anchors

Figure 17 shows the same result of Figure 16 in different vertical axis order. Figure 17

(a) shows the correlation between penalty and edge—length in descending order, and it

can be understood that “all paths” works better than “shortest path” (Figure 13) since

correlation is more than 0.8 in 87 graphs. Figure 17 (b) shows result of correlation

27

between penalty and edge—crossing with the same vertical axis order, and it is easy to see

that these two relations are quite independent.

(a) “all paths” correlation result between penalty, edge—length

(b) “all paths” correlation result between penalty, edge—crossing

Figure 17 “all paths” correlation result in descending order (penalty, edge—length) of graphs

with 10 anchors

Lastly we will show the result of graphs with 15 anchors. Figure 18 (a) shows the

correlation between penalty and edge—crossing in descending order where Figure 18 (a)

shows the correlation between penalty and edge—length in the same order. And the result

is not as good since no more than 65 graphs have a correlation more than 0.6 in (a).

28

(a) “all paths” correlation result between penalty, edge—crossing

(b) “all paths” correlation result between penalty, edge—length

Figure 18 “all paths” correlation result in descending order (penalty, edge—crossing) of graphs

with 15 anchors

Figure 19 show the same result of Figure 18 in different vertical axis order. It can be seen

that in most of graphs can bring a good result except No.100 graph (No. 99 graph of

Figure 18) where correlation between penalty edge—crossing is only 0.16 and correlation

between penalty edge—length is 0.43.

29

(a) “all paths” correlation result between penalty, edge—length

(b) “all paths” correlation result between penalty, edge—crossing

Figure 19 “all paths” correlation result in descending order (penalty, edge—length) of graphs

with 15 anchors

5.5.5 Conclusion

Generally, penalty is a good index for indicating both edge crossing and edge length in

most cases, since in most cases, the correlations are over 0.6, and compared with edge

crossing, penalty has better correlation with edge length, which is predictable since two

kinds of edges exist and the edge crossing problem is relatively hard to estimate.

By analysis of the results of correlation we found that, in most cases, “shortest path”

works better than “all path”, especially in graphs with 15 anchors. And “all paths”

method will be more costly since all possible paths should be calculated, so in our

research, we prefer “shortest path” method.

30

5.6 Drawing Examples

In this part, we will show the effectiveness of extended anchored map by showing some

drawing examples. Figure 20 shows a drawing example of a simple graph where only five

anchors and five free nodes exist. It is obvious that the proposed method can find a very

good order for this simple graph, after reordering, related anchors are fixed near to each

other, edge crossing disappears, and edge length is shortened. Figure 21 and Figure 22

shows the drawing example of a relatively complex graph, Figure 21 shows graph in a

random anchor the anchor order in Figure 22 is decided by the proposed method. It is

obvious that the readability has been improved a lot after anchor reordering by the

proposed method.

Figure 20 drawing example of a simple graph (left: random anchor order, right: anchor order

decided by proposed method)

31

Figure 21 drawing example in random anchor order

32

Figure 22 drawing example with anchor order decided by proposed method

33

Chapter 6

Matrix Representation

In this chapter, we explain how to draw node clusters by matrix representation. First we

will discuss the aesthetic criteria of matrix representation of our research, then we will

introduce an adjacent matrix reordering algorithm based on barycenter heuristic,

last ,we will show the effectiveness of proposed algorithm.

6.1 Aesthetic Criteria of Matrix Representation

We employ the following aesthetic criteria for matrix representation which is the same

aesthetic criteria of 4.3:

(R6) Free nodes (within single matrix) with close relations are placed near each other as

close as possible.

Existed matrix ordering algorithms try to optimize an objective function useful for some

network related operation such as Bandwidth, Minimum Linear Arrangement (MinLA),

Cutwidth, Modified Cut, Vertex Separation, Sum Cut, Profile, Edge Bisection and Vertex

Bisection[13]. These algorithms find a linear order of the vertices of a graph that

optimizes either a function of the edge length (the distance between the two nodes), or of

the number of crossings of the edges. Exact solutions to these functions are all

NP—complete but some have good polynomial time approximations. Among these

functions, some have been used for matrix visualization. Reducing the bandwidth is

related to diagonalizing the matrix, a goal expressed by Bertin. And it consists in finding

an order that minimizes the maximum edge length.

In our research, the matrix ordering problem is quite different from other related

researches. First, the drawing object is diagonal matrices. Second the matrices are groups

of nodes with close relations.

Since the main purpose for matrix representation is to revealing the connecting pattern

between nodes within matrices, we considered that, if nodes with close relations are put

each other as close to each other as possible, the readability of matrices may be better. To

test whether a particular matrix order is good we define a quality function Q as follows:

Q =

M represents the node set (matrix) and f represents the node inside.

34

M = {f1,f2…fn}, |M| = n

p(f) is the position of node f in matrix, where p:M →{1,2,3…n}

C(f) is defined as the node set inside matrix which have connection with node f.

C(f) = { } or C(f) = { }

So the purpose of matrix ordering in part turns out to be a problem of finding an order

with small Q. The most simple and straightforward way is to choose the order with

smallest Q from all possible orders, which is impossible when the node size of matrix

becomes large. In our research we developed a reordering algorithm based on the well

known barycenter heuristic.

6.2 Barycenter Heuristic Based Algorithm

Barycenter heuristic is first proposed by Sugiyama et al. at 1981 for drawing hierarchical

structures [30]. Makinen and Siirtola introduce the barycenter heuristic (Figure 23) as an

efficient tool for manipulating the reorderable matrix by considering the ordering of the

matrix as a bipartite graph drawing problem [22].

Figure 23 barycenter heuristic example

Figure 24 an ordering example of proposed algorithm

In the barycenter heuristic, the nodes will be ordered according to the averages of their

adjacent nodes in the opposite node set. Repeating this ordering process in turns in the

two node sets, may reach to an ordering of nodes that minimize the number of edge

35

crossings.

Barycenter heuristic seems to be a very good way to put node near each other, but it

cannot be used directly since the drawing object of our research are diagonal matrices

which cannot be treated as bipartite graphs. So we developed an algorithm based on

barycenter heuristic to reorder diagonal matrices.

The same as brycenter heuristic, the ordering of nodes depends on the adjacent nodes,

but the difference is that only one node set exists (Figure 24). In Figure 24, we can see

that 4 nodes “a, b, c, d” exist with a default ordering “1, 2, 3, 4” shown above, node “a” is

connected with “b, c”, so the averages of adjacent nodes is 2.5. In the same way, we can

see that the averages of adjacent nodes for node b, c, and d are 1, 2.5, and 3. The order of

nodes “a, b, c, d” will be decided by the averages of adjacent nodes “2.5, 1, 2.5, 3”, and

after ordering is changed, the ordering of “a, b, c, d” as well their averages of adjacent

nodes will also change.

By experiment, we found that repeating this ordering process may not bring better

results, it may get worse sometimes or run into a loop. So in our research, we try

repeating the ordering process n times (n is number of nodes inside matrix) and choose

the order with smallest Q. In this way, we hopefully find a good ordering. The algorithm

is given as follow:

Algorithm:

Given a matrix with n nodes as well as their connecting relations

Repeat n times

 For each node compute the average of its adjacent nodes

 Order the nodes by the averages of adjacent nodes

 Calculate and record the Q.

Find the ordering with best Q in n results.

End

To improve the effectiveness of proposed algorithm, we made an evaluation experiment

which will be discussed later.

6.3 Evaluation

6.3.1 Design of Experiment

The purpose of this experiment is to evaluate the proposed matrix ordering algorithm, to

see how much the reordering result can satisfy the aesthetic criteria described in 6.1.

For each node number of 5, 6, and 7, we made 1000 random matrices and see how well is

the ordering decided by proposed algorithm. The vertical axis shows the top % of

proposed result in all possible ordering, 0 means optimal result and 100 means the worst

36

result. The horizontal axis shows the data number (sorted from worse result to better

result)

6.3.2 Result of Experiment

First, we will show the result of matrices with 5 nodes in Figure 25. It shows that in more

than 70% random matrices, our proposed algorithm found the optimal result. Even

though in some rare case which our algorithm does not work so well, the result is in the

top 45%.

Figure 25 result of matrices with 5 nodes

Figure 26 shows the result of matrices with 6 nodes, it is also shows a very good result

where in almost 60% random data, the proposed algorithm can reach to an optimal result.

The worst result is still in top 45%.

Figure 26 result of matrices with 6 nodes

37

Figure 27 shows the result of matrices with 7 nodes where in about 65% of random data,

proposed algorithm can reach to an optimal result.

Figure 27 result of matrices with 6 nodes

6.4 Conclusion

From the experiment result, we can conclude that, proposed algorithm can satisfy the

aesthetic criteria described in 6.1 well. Even if it cannot find the optimal result in some

rare cases, the result is still not bad.

Here we will show a single result of matrix reordering, Figure 28 shows the graph with

random matrix order, and Figure 29 shows the drawing result of same graph while using

proposed matrix reordering algorithm. It is obvious that after putting related nodes close

together, the readability of matrix is thought to be improved. It is considered that, the

readability of matrices after reordering is thought to be better than random matrix

ordering.

38

Figure 28 graph without matrix reordering

39

Figure 29 graph with matrix reordering

40

Chapter 7

Drawing Examples

In this chapter, we will discuss the characters of drawing style by showing some semi—

bipartite graph data of real life including two real SNS Data and one real author—paper

data. First we will show the drawing result by anchored map style, and then we will

shown the drawing result of same data by proposed hybrid drawing style.

7.1 SNS Data

Figure 30 real SNS data 1 in anchored map style

41

Figure 31 real SNS data 1 in proposed hybrid drawing style

A drawing result of a real social network data is showed in Figure 30 and Figure 31

where anchors represent communities and free nodes represent user. In anchored map

style (Figure 30), anchors (communities) will decide the overview of the graph, and free

node will be arranged to a suitable place to express its relation to related anchors and

other free nodes by spring embedder model. Anchors with close relations will be fixed

near to each other. In this way, the aesthetic criteria for edge crossing and length can be

also satisfied.

After node clustering, users with close relations are grouped together and drawn in

matrix style (Figure 31). It is obvious that users belonging to a common community are

prone to have connection and grouped into same matrix with high possibility, and their

relationship can be easily read by matrix representation. At the same time communities

with many common user will arranged close to each other. Another obvious feature of our

drawing method is that, “key person” who connected different user groups together can

be easily found by reading edges between matrices.

42

As discussed before, matrix representation is used to improve the readability of dense

graph, especially when lots of E2 edges exist between free nodes (Figure 5). By this

example we can understand that for drawing a sparse graph, the extended anchored map

style may also bring a good readability, without considering the characters of node

clustering it is hard to say which one is better. When drawing a dense graph (Figure 5,

Figure 6) or graph where dense sub—graph exist, the proposed hybrid drawing style may

bring better readability.

Figure 32 shows the drawing result of a real social network data in anchored map style,

where a lot of E2 edges exist between free nodes near anchor “7” and “8” which makes it is

hard to read the relations between them.

Figure 33 shows the drawing results of the same data in the proposed hybrid drawing

style where free nodes with close relations are grouped into clusters and drawn in matrix

representation.

In this way, it is easy to found that almost all users in the biggest group belongs to

community “1” except node “4” who belongs to community 8 but still have relations with

nodes “2,3,5,6,7”. And it is obvious that there is a key person node “6” who is connected

with other two different user groups. At the same time, communities with many common

users such as community “3” and “4” are arranged near to each other.

Figure 32 real SNS data 2 in anchored map style

43

Figure 33 real SNS Data 2 in proposed hybrid drawing style

7.2 Author—Paper Data

Drawing results of an author—paper data in both anchored map style and hybrid drawing

method are shown in this part.

Figure 34 shows the drawing result in anchored map style, where authors are fixed as

anchors in a circumference to decide the overview and papers are displayed as free nodes.

Authors with close relations (both co—author relationship and citation relationship) are

set close to each other, and papers are arranged in a suitable place to reveal its relation

to related authors and paper. The readability of this example is not bad, but still, by

drawing it in hybrid drawing style, some potential information can be understood by the

characters of node clustering.

Figure 35 shows the drawing result of author—paper data in proposed hybrid drawing

style. Anchors represent authors and free nodes represent papers. It is obvious that,

papers in the same research area are prone to have citation relations, so a paper cluster

(matrix) can thought to be a research area. And from the drawing result, we can easily

find authors who a have high possibility of focusing on the same research area, and their

citation relations can be read by matrix representation.

44

Figure 34 author—paper data in anchored map style

45

Figure 35 author—paper data in proposed hybrid drawing style

46

Chapter 8

Conclusion

In this paper, we represent a hybrid drawing style combined with anchored map and

matrix representation. First, we extended the anchored map for drawing the semi—

bipartite graphs by definition of two indexes of penalty, which has been proved to be a

good index for searching good anchor order. Then, in order to improve the readability of

the drawing result, we proposed a hybrid drawing style combined with the anchored map

and the matrix representation. For better readability of the matrix representation, we

also developed a matrix reordering algorithm based on barycenter heuristic.

To our knowledge, our research is the first drawing method which focused on visualizing

semi—bipartite graph and we also want to emphasize the importance of this new graph

structure since it is can be seen in many fields of real life.

By using our drawing style, the characters of the semi—bipartite graphs can be well read,

at the same time, some data mining work can be also be performed based on the feature

node clustering.

i

Acknowledgements

First and foremost, I would like to express my heartfelt gratitude to my supervisor Dr.

Misue Kazuo, associate professor of University of Tsukuba, for his precious advice,

guidance and supervision during the course of my present study. It would not have

been possible for me to complete my study without his generous training. His kind

gestures will never be forgotten.

I also want to thank the other professors of our lab, Dr. Jiro Tanaka, Dr. Shin

Takahashi and Dr. Buntaro Shizuki for their valuable comments and constructive

suggestions.

I would also thank all the members of our lab especially the members of NAIS team who

have been next to me all these years and all my friends both in China and Japan for their

support and encouragement.

ii

Bibliography

[1] J.E. Atkins, E.G. Boman, and B. Hendrickson, A Spectral Algorithm for Seriation and

the Consecutive Ones Problem. SIAM J. Comput., 28(1). pp.297—310, 1998.

[2] Bertin, J. Semiologie graphique : Les diagrammes — Les reseaux — Les cartes.

Editions de l'Ecole des Hautes Etudes en Sciences, Paris, France, 1967.

[3] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for

the Visualization of Graphs. Prentice—Hall, 1999.

[4] P.J. Carrington, J. Scott, and S. Wasserman. Models and Methods in Social Network

Analysis. Cambridge University Press, 2005.

[5] J. Díaz, J. Petit and M. Serna, M. A survey of graph layout problems.ACM Comput.

Surv., 34 (3). pp.313—356, 2002.

[6] P.Eades, “A heuristic for graph drawing”, Congressus Numerantium, vol42,

pp.149—160, 1984.

[7] J. Gao, K. Misue, J. Tanaka. A Multiple—aspects Visualization Tool for Exploring

Social Networks. HCI International, pp.277—286, 2009.

[8] http://www.graphviz.org

[9] E. D. Giacomo, L. Grilli, G. Liotta : Drawing Bipartite Graphs on Two Curves. In

Proceedings of Symposium on Graph Drawing (GD 2006), LNCS 4372, 380—385,

2007.

[10] M. Ghoniem, J.—D Fekete and P. Castagliola. On the readability of graphs using

node—link and matrix—based representations: a controlled experiment and

statistical analysis. Information Visualization, 4 (2). pp.114—135, 2005.

[11] I. Herman, G. Melanc，on, and M. S. Marshall. Graph visualization and

navigation in information visualization: A survey. IEEE Transactions on

Visualization and Computer Graphics, 6(1): pp.24—43, 2000.

[12] N.Henry, J.D.Fekete, M.J.McGuffin. NodeTrix: A Hybrid Visualization of Social

Networks. InfoVis, pp.1302—1309, 2007.

[13] N. Henry and J.—D. Fekete. MatrixExplorer: a Dual—Representation Systemto

Explore Social Networks. IEEE Transactions on Visualization andComputer

Graphics, 12(5): pp.677—684, 2006.

[14] T. Ito, K. Misue and J. Tanaka: Sphere Anchored Map: A Visualization Technique

for Bipartite Graphs in 3D. In Proceedings of 13th International Conference on

Human—Computer Interaction (HCI International 2009), Human—Computer

Interaction, Part II, LNCS 5611, pp.811—820, San Diego, California, USA, July

19—24, 2009.

[15] T. Ito, K. Misue and J. Tanaka: Drawing Clustered Bipartite Graphs in

Multi—Circular Style. In Proceedings of 2010 14th International Conference

Information Visualisation (IV2010), pp.23—28, London, United Kingdom, July

26—29, 2010.

iii

[16] T. Itoh, C. Muelder, Kwan—Liu Ma, Jun Sese. A Hybrid Space—Filling and

Force—Directed Layout Method for Visualizing Multiple—Category Graphs. IEEE

Pacific Visualization Symposium, pp.121—128, 2009.

[17] K.Xu, R.Williams, SH.Hong, Q.Liu, J.Zhang. Semi—Bipartite

GraphVisualization for Gene Ontology Networks. 17th International Symposium on

Graph Drawing, pp. 244—255, 2009.

[18] Weimao Ke, Katy Börner, Lalitha Viswanath. Major Information Visualization

Authors, Papers and Topics in the ACM Library. Proceedings of the IEEE Symposium

on Information Visualization, pp. 216.1, 2004.

[19] K. Misue. Drawing Bipartite Graphs as Anchored Maps. Asia Pacific Symposium

on Information Visualization, pp.169 — 177, 2006.

[20] K. Misue, “Anchored map: Graph drawing technique to support network

mining,” IEICE Trans. Inf. & Syst., vol. E91—D, no. 11, pp. 2599—2606, 2008.

[21] M. E. J. Newman, The structure and function of complexnetworks. SIAM Review

45, pp.167—256, 2003.

[22] E. Mäkinen, and H. Siirtola. The Barycenter Heuristic andthe Reorderable

Matrix. Informatica, 29(3):pp.357—364, 2005.

[23] M. E. J. Newman. Fast algorithm for detecting community structure in networks.

Physical Review E 69, 066133, 2004.

[24] M. Newton, O. Sykora, I. Vrto : Two New Heuristics for Two—Sided Bipartite

GraphDrawing. In : Proceedings of Symposium on Graph Drawing(GD 2002), LNCS

2528, pp.312—319, 2002.

[25] Rao, R. and Card, S.K. The table lens: merging graphical and

symbolicrepresentations in an interactive focus + context visualization for

tabularinformation in Proceedings of the SIGCHI conference on Humanfactors in

computing systems: celebrating interdependence ACM Press, Boston, Massachusetts,

United States, pp.318—322, 1994

[26] H. Siirtola, and E. Mäkinen, Constructing and reconstructing the reorderable

matrix. Information Visualization, pp.32—48, 2005

[27] M. Spenke, C.Beilken, and T. Berlage, FOCUS: the interactive tablefor product

comparison and selection in Proceedings of the 9th annualACM symposium on User

interface software and technology ACMPress, Seattle, Washington, United States,

pp.41—50, 1996.

[28] S. Sato, K. Misue, and J. Tanaka. Readable Representations for Large—Scale

Bipartite Graphs. In Proceedings of the 12th International Conference on

Knowledge—Based and Intelligent Information & Engineering Systems, pp.831—838,

2008.

[29] S. H. Strogatz, Exploring complex networks. Nature 410, pp.268—276, 2001.

[30] Kozo Sugiyama, Shojiro Tagawa and Mitsuhiko Toda: Methods for visual

understanding of hierarchical system structures, IEEE Trans. on Systems, Man, and

Cybernetics, vol.SMC—11, no.2, pp.109—125, 1981.

iv

[31] L. Zheng, L. Song, P. Eades : Crossing Minimization Problems of Drawing

Bipartite Graphsin Two Clusters. In : Proceedings of Asia—Pacific Symposium on

Information Visualization(APVIS 2005), pp.33—38 , 2005.

[32] Q. Zhou, K. Misue, J. Tanaka. “Drawing Method Combined With Matrix

Representation and Anchored Map for Semi-Bipartite Graph”. In Transactions of

Information Processing Society of Japan, 2N-3, 2010

v

Appendix

This part will show the original data of correlation result which shows in 5.5. The first

row shows the original graph number, the second row shows the correlation between

penalty and edge—crossing, and the third row is the correlation between penalty and edge

—length.

Table 1 , Table 2 shows the result of “shortest path”, and Table 3, Table 4 shows the result

of “all path”.

Table 1 original data of “shortest path” method with 10 anchors

Graph Number Edge—crossing Edge—length

1 0.678051349 0.754610657

2 0.790203226 0.92664194

3 0.800366197 0.892971916

4 0.811477241 0.910775254

5 0.709223311 0.901997451

6 0.555584396 0.87628924

7 0.680341707 0.892757978

8 0.636464896 0.855547763

9 0.760472855 0.963328543

10 0.674814265 0.722458763

11 0.665142373 0.948474671

12 0.628384789 0.8392366

13 0.801119645 0.962968913

14 0.592648577 0.912188208

15 0.770950138 0.952219752

16 0.839793416 0.965437875

17 0.76988009 0.896481716

18 0.596521828 0.895897797

19 0.70203359 0.799903126

20 0.704879683 0.80838634

21 0.646221093 0.943700059

22 0.726867462 0.793114277

23 0.721101864 0.887439648

24 0.672013772 0.863571334

25 0.815790615 0.867726434

26 0.47625868 0.750624331

27 0.670769985 0.947327988

28 0.748267924 0.841254572

vi

29 0.790947504 0.874627441

30 0.709694308 0.860916926

31 0.8033326 0.922399042

32 0.652477478 0.746118418

33 0.786126488 0.887408305

34 0.651636779 0.764400082

35 0.734662757 0.917671169

36 0.732228293 0.824025838

37 0.801493308 0.937675623

38 0.77127564 0.912702086

39 0.662320676 0.777840312

40 0.817257746 0.879512837

41 0.596292301 0.826021252

42 0.765584941 0.834926816

43 0.43357653 0.820809294

44 0.6702148 0.76504068

45 0.750295186 0.934120203

46 0.665110597 0.824756101

47 0.735819169 0.9190294

48 0.771573224 0.900686456

49 0.756804464 0.895913894

50 0.770913773 0.93305834

51 0.833445827 0.864222977

52 0.731175372 0.788189827

53 0.580880383 0.738843923

54 0.706840104 0.905314787

55 0.733415517 0.843835562

56 0.74853055 0.93519639

57 0.755744417 0.84043975

58 0.507473126 0.78523873

59 0.533008212 0.85246153

60 0.764045678 0.939396603

61 0.683437743 0.752172071

62 0.673865399 0.826455025

63 0.686952896 0.878890055

64 0.244352142 0.837873355

65 0.70893056 0.883690703

66 0.606356069 0.793731943

67 0.860392284 0.958791333

68 0.753718118 0.863220141

69 0.680347025 0.954430168

70 0.788853486 0.936559893

71 0.736819081 0.81118053

vii

72 0.714984001 0.761700219

73 0.502615506 0.72075231

74 0.781971913 0.954164281

75 0.723622943 0.880951719

76 0.383312386 0.434595278

77 0.694403894 0.826097489

78 0.673589472 0.926221905

79 0.650222143 0.777093851

80 0.807071899 0.880337312

81 0.745238935 0.796878032

82 0.696252189 0.809276305

83 0.703292742 0.79716178

84 0.57814557 0.714249796

85 0.710156608 0.806818552

86 0.663377079 0.859664614

87 0.69789081 0.792068182

88 0.838357413 0.894922673

89 0.756249429 0.899579442

90 0.858635174 0.924007435

91 0.640664548 0.710548385

92 0.645017629 0.948687168

93 0.775377472 0.840806254

94 0.831283578 0.90655148

95 0.54537436 0.751916499

96 0.867025795 0.896826933

97 0.636419559 0.601325072

98 0.662601005 0.746490039

99 0.555552728 0.748699021

100 0.579583072 0.835022985

Table 2 original data of “shortest path” method with 15 anchors

Graph number Edge—crossing Edge—length

1 0.79441468 0.896387846

2 0.717623009 0.825702462

3 0.775840017 0.902688109

4 0.730637745 0.83550613

5 0.768511133 0.863092146

6 0.559328874 0.584290074

7 0.748323005 0.856870715

8 0.77291464 0.95068606

9 0.619891681 0.697019445

10 0.780118561 0.898753417

viii

11 0.709898227 0.863435772

12 0.803990095 0.892156424

13 0.785386574 0.919170433

14 0.832167453 0.927344354

15 0.808538852 0.909513645

16 0.684734821 0.732574238

17 0.736916769 0.879535542

18 0.650868862 0.795718798

19 0.672823379 0.801168013

20 0.725906849 0.765486524

21 0.719861982 0.820542414

22 0.573919309 0.719613457

23 0.800628376 0.938709472

24 0.794984404 0.892589335

25 0.827944235 0.923903127

26 0.765994762 0.85253139

27 0.754245437 0.853174612

28 0.688975122 0.785690927

29 0.747048408 0.86706537

30 0.660023407 0.822206349

31 0.6709934 0.788533054

32 0.694418453 0.844994866

33 0.777388479 0.87893366

34 0.851436523 0.905994421

35 0.815869187 0.93610727

36 0.805002528 0.875795853

37 0.690198988 0.90040276

38 0.716298357 0.800707157

39 0.603463771 0.728377359

40 0.649432311 0.780330635

41 0.70276412 0.801188417

42 0.809182234 0.872372858

43 0.809494493 0.926103836

44 0.656150923 0.750440275

45 0.663874791 0.759073035

46 0.726377547 0.869913595

47 0.668610158 0.835236855

48 0.787788898 0.898262449

49 0.68388357 0.823107293

50 0.803735518 0.916314117

51 0.744712749 0.897326173

52 0.739677109 0.865516997

53 0.812883474 0.944854202

ix

54 0.771969732 0.838064014

55 0.723275106 0.81890675

56 0.610866392 0.839962802

57 0.650905414 0.766227916

58 0.741315229 0.852372262

59 0.752193724 0.850922433

60 0.693362969 0.796718512

61 0.771302025 0.891710376

62 0.764373465 0.882348762

63 0.824981446 0.902440029

64 0.727658474 0.894567898

65 0.717047434 0.784091386

66 0.702103897 0.789162672

67 0.686401432 0.802790026

68 0.665724256 0.746549935

69 0.692015073 0.850392912

70 0.451653944 0.617825108

71 0.643491382 0.801807923

72 0.694960155 0.73730156

73 0.569299147 0.760590469

74 0.630823245 0.688687019

75 0.770898882 0.841757311

76 0.683312618 0.768982536

77 0.671697715 0.772054664

78 0.564369115 0.516072513

79 0.729520803 0.909395782

80 0.742470145 0.90807058

81 0.744041031 0.847109463

82 0.746438714 0.930318753

83 0.614412989 0.804113635

84 0.621152768 0.834181844

85 0.786987763 0.898872669

86 0.809058055 0.893420213

87 0.697435361 0.773255581

88 0.61048595 0.706271517

89 0.750472897 0.822421151

90 0.721346876 0.790365518

91 0.763292392 0.819178908

92 0.731379861 0.826707682

93 0.762290846 0.816363724

94 0.711879497 0.865278874

95 0.691321583 0.794137922

96 0.731972456 0.798619051

x

97 0.71335237 0.809133424

98 0.786082947 0.865834881

99 0.757641826 0.855735408

100 0.683975386 0.748717832

Table 3 original data of “all paths” method with 10 anchors

Graph number Edge—crossing Edge—length

1 0.664126761 0.848109609

2 0.833603953 0.961320232

3 0.841593038 0.930448247

4 0.84000802 0.937327397

5 0.538025927 0.826401327

6 0.493683558 0.866047047

7 0.641229904 0.942918514

8 0.714985665 0.933150088

9 0.785778805 0.973198022

10 0.692639914 0.864433816

11 0.520089757 0.943757033

12 0.42677108 0.852797274

13 0.790831146 0.967250352

14 0.686526392 0.921008348

15 0.768505424 0.954404201

16 0.832173653 0.959663732

17 0.737892203 0.935451911

18 0.567843865 0.92615098

19 0.723541093 0.886842206

20 0.623579192 0.904709457

21 0.494319312 0.84408989

22 0.811127767 0.897571111

23 0.545703515 0.9059786

24 0.693076445 0.856541884

25 0.873509477 0.94101878

26 0.531250672 0.847379336

27 0.665647302 0.951235443

28 0.77296794 0.917990342

29 0.821385936 0.947334692

30 0.689115895 0.888132752

31 0.832045413 0.952696539

32 0.403943904 0.764837764

33 0.83307367 0.940536938

34 0.505447439 0.866372694

35 0.632842526 0.899450108

xi

36 0.818314518 0.925735499

37 0.856000508 0.965031778

38 0.736733602 0.906820589

39 0.678195582 0.883444779

40 0.806231912 0.908967573

41 0.346240082 0.812845744

42 0.785050716 0.877102507

43 0.350009515 0.925818248

44 0.719430864 0.864207665

45 0.789013975 0.944204304

46 0.730234887 0.908192683

47 0.683136293 0.895573896

48 0.713423413 0.875035813

49 0.777541692 0.947364882

50 0.780315512 0.934225485

51 0.833670633 0.867740649

52 0.752935089 0.895455541

53 0.666057566 0.914992759

54 0.709521372 0.935586585

55 0.753360324 0.850255717

56 0.756123998 0.938408652

57 0.692079707 0.878078887

58 0.560386071 0.877194785

59 0.555291085 0.935444529

60 0.783248632 0.943582462

61 0.661273278 0.795387523

62 0.787608405 0.898492752

63 0.747265368 0.939550623

64 0.216344946 0.858643268

65 0.627640609 0.908652694

66 0.614243691 0.915523911

67 0.8338543 0.937059525

68 0.77258037 0.872631961

69 0.64944883 0.925794449

70 0.794588643 0.937438564

71 0.694280291 0.844224242

72 0.603467317 0.699119309

73 0.21779353 0.719747085

74 0.795351485 0.942882636

75 0.512348487 0.872946087

76 0.580443747 0.771664534

77 0.770957909 0.909964492

78 0.628419287 0.915551492

xii

79 0.634861171 0.848331394

80 0.816952626 0.884113473

81 0.765286093 0.894693618

82 0.614843576 0.866400632

83 0.743284783 0.928782189

84 0.529321048 0.757866575

85 0.782610276 0.851717251

86 0.68613947 0.895654335

87 0.578010351 0.692054555

88 0.576310165 0.774544235

89 0.789806084 0.913893672

90 0.812611607 0.884168503

91 0.403746355 0.710833671

92 0.658647452 0.962921009

93 0.71569183 0.818201106

94 0.78862048 0.873005219

95 0.090979622 0.584747892

96 0.84237775 0.914361101

97 0.245928656 0.470124984

98 0.721291995 0.861931187

99 0.573390623 0.788398729

100 0.629934685 0.904083317

Table 4 original data of “all paths” method with 15 anchors

Graph number Edge—crossing Edge—length

1 0.721592674 0.844085342

2 0.658274343 0.84744768

3 0.675869718 0.849057041

4 0.592128265 0.74805479

5 0.77944701 0.887490923

6 0.238748872 0.477980249

7 0.677605246 0.89390789

8 0.809181577 0.96560259

9 0.382373244 0.579600645

10 0.774382246 0.921544454

11 0.681238824 0.872369326

12 0.798482449 0.912487933

13 0.773274753 0.926739971

14 0.878598428 0.94860905

15 0.732062535 0.882906843

16 0.628205182 0.682068804

17 0.514710441 0.727850419

xiii

18 0.737388395 0.906485637

19 0.367790464 0.64691001

20 0.604067153 0.707043834

21 0.833605025 0.91695339

22 0.665944938 0.760965284

23 0.792154934 0.926319378

24 0.788375701 0.863598903

25 0.782651532 0.875197999

26 0.753874854 0.862074004

27 0.79178248 0.946690863

28 0.407631368 0.590760462

29 0.746467839 0.881869324

30 0.482951562 0.802786457

31 0.3834656 0.676372891

32 0.642740263 0.838491594

33 0.731113723 0.859051092

34 0.777199071 0.83936306

35 0.829694999 0.938584261

36 0.613164801 0.799984154

37 0.712511548 0.910912076

38 0.626151414 0.691110857

39 0.383802926 0.682989762

40 0.324181118 0.768151339

41 0.68256582 0.817198632

42 0.795442764 0.846218236

43 0.795499654 0.930025952

44 0.510225956 0.68644824

45 0.13005414 0.578240861

46 0.79535719 0.860895594

47 0.597023856 0.857080012

48 0.67090451 0.828905773

49 0.495420974 0.758543163

50 0.788860946 0.905713555

51 0.745446249 0.937074406

52 0.561825903 0.734180203

53 0.800387644 0.916877264

54 0.815798729 0.888751061

55 0.558747878 0.687281484

56 0.335878123 0.690271365

57 0.48617384 0.698075726

58 0.67824684 0.857899262

59 0.692931307 0.838410539

60 0.83797675 0.921846153

xiv

61 0.692548691 0.819835718

62 0.822889813 0.934972282

63 0.63337801 0.796891231

64 0.649616014 0.814001743

65 0.773521134 0.833519363

66 0.438647443 0.579399935

67 0.643807376 0.774004947

68 0.702222767 0.870542106

69 0.531864924 0.710918541

70 0.539005294 0.714021983

71 0.602144143 0.827326813

72 0.288645972 0.619335431

73 0.51517039 0.819962063

74 0.431519329 0.627155158

75 0.76858594 0.871956762

76 0.661537986 0.824535971

77 0.572679628 0.669403973

78 0.167097608 0.435053448

79 0.741013578 0.893115851

80 0.654703401 0.858466785

81 0.706487756 0.831125821

82 0.649091293 0.810557707

83 0.568068852 0.819891277

84 0.716109748 0.91257036

85 0.516949554 0.781418938

86 0.71903599 0.800079159

87 0.578223921 0.707874264

88 0.456750434 0.66699031

89 0.593724708 0.757497569

90 0.359965884 0.502428732

91 0.563592446 0.684386907

92 0.686561509 0.841160598

93 0.726697954 0.836222031

94 0.549078912 0.656785363

95 0.700791423 0.876193596

96 0.800620393 0.890420146

97 0.739859206 0.798761141

98 0.69862668 0.89909744

99 0.736268537 0.861211442

100 0.713321991 0.780908588

