

Dynamic Parameter Spring Model
 for Automatic Graph Layout

Xuejun Liu

(Doctoral Program in Computer Science)

Advised by Jiro Tanaka

Submitted to the Graduate School of
Systems and Information Engineering

in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering

at the
University of Tsukuba

February 2002

Abstract

A multitude of data presentation problems require the drawing or
display of graphs. A graph drawing algorithm takes a graph as an
input and computes a layout of the graph. The layout should be
“aesthetically nice” and “easy to understand”. The Spring Model and
the corresponding Spring Modeling Algorithm are well known for
automatic graph layout and have been widely applied in many fields of
information visualization.

In the Spring Model, the speed of layout is increased at the cost of the
appearance of vibration phenomenon, which influences the stability of
the algorithm and results in failure to finish the automatic graph
layout. This problem of trade-off between speeding up the layout and
avoiding vibration phenomenon restricts the applications of the Spring
Model.

In the present work, an attempt is made to find methods to speed up
the process of automatic graph layout and to avoid the existing
problem. An improved spring model and its corresponding algorithm
are proposed to solve the trade-off in the Spring Model. The improved
model is called Dynamic Parameter Spring Model. In the proposed
approach, dynamic parameters are introduced to improve the physical
model. The corresponding algorithm is implemented.

We conduct performance evaluations to compare our algorithm with
the Spring Modeling Algorithm. The results of evaluations show that
the Dynamic Parameter Spring Model makes the process of automatic
graph layout faster and more stable.

Contents

1 Introduction.. 1

2 Automatic Graph Layout and Algorithms ... 3

2.1 Graph Classification.. 3

2.2 Graph Drawing and Automatic Graph Layout.. 3

2.3 Spring Model and Algorithm.. 5

2.3.1 Spring Model .. 5

2.3.2 Definition of Forces in Spring Model... 7

2.3.3 Spring Modeling Algorithm.. 9

3 Dynamic Parameter Spring Model and Algorithm .. 11

3.1 Problems in Spring Model .. 11

3.1.1 User Requirements.. 11

3.1.2 Trade-off between Speed and Vibrations ... 11

3.2 Dynamic Parameter Spring Model.. 12

3.2.1 Expected Position of Node ... 13

3.2.2 Dynamic Parameters ... 13

3.2.3 Definition of Force Model .. 14

3.3 Dynamic Parameters and Avoiding Vibrations .. 17

3.3.1 Vibration Phenomena ... 17

3.3.2 Avoiding Vibrations in DPSM ... 19

3.4 Algorithms .. 20

3.4.1 All Pairs of Shortest Path.. 20

3.4.2 Dynamic Parameter Adjusting.. 21

3.4.3 Dynamic Parameter Spring Modeling Algorithm....................................... 22

4 Application to 3D-PP... 24

4.1 Three Dimensional Pictorial Programming .. 24

4.1.1 Visual Programming System .. 24

4.1.2 Three Dimensional Visual Programming System 24

4.2 Implementation of DPSMA in 3D-PP .. 25

 i

5 Application and Performance Evaluation .. 27

5.1 Properties of DPSM and Applications.. 27

5.1.1 Properties of DPSM .. 27

5.1.2 Applications and Examples .. 27

5.2 Performance Evaluations .. 30

6 Conclusions.. 35

Acknowledgements... 36

Bibliography ... 37

 ii

List of Figures

Figure 2.1 Graph classification... 3

Figure 2.2 Automatic graph layout ... 4

Figure 2.3 Automatic graph layout by the Spring Model ... 6

Figure 2.4 The Spring Model.. 6

Figure 2.5 Spring force ... 7

Figure 2.6 Repulsion force.. 8

Figure 3.1 The Dynamic Parameter Spring Model... 15

Figure 3.2 An example of DPSM graph ... 17

Figure 3.3 Vibration phenomenon .. 18

Figure 3.4 Vibration phenomenon detection .. 20

Figure 3.5 An example of shortest path .. 20

Figure 5.1 An example of laying out a graph automatically................................... 28

Figure 5.2 Layout of symmetric planar graph .. 29

Figure 5.3 Representations of trees... 30

Figure 5.4 Cube and twin-cubes are laid out by the two-dimensional version of
DPSMA... 30

Figure 5.5 Comparison of number of iterations.. 32

Figure 5.6 Comparison of real running time... 34

 iii

List of Tables

Table 5.1 Graph data... 31

Table 5.2 Comparison of number of iterations ... 32

Table 5.3 Comparison of real running time .. 33

 iv

Chapter 1

Introduction

Recent developments in computer science and its applications have made
the visualization of complex conceptual data increasingly important. In
this respect, graphs, as a simple, yet powerful and elegant data
abstraction, are widely used to represent information that can be modeled
as objects and connections among them. Graph drawing makes
information more readable and understandable to the users.

In information visualization, graph drawing addresses the problem of
visualizing structural information. Automatic graph layout raises the
problem of how to get an intuitive and readable layout for a given graph.
Hence, automatic graph layout algorithms are commonly used when
displaying graphs because they provide a “nice” drawing of the graph
without user intervention. Without automatic graph layout, the
information visualization would be meaningless.

Many models and algorithms for graph layout have been proposed in
recent years [1,2,3,4,5,6]. Different systems need different algorithms
according to the requirements of system and application. Originally, these
algorithms were designed and applied for graph drawing and automatic
graph layout in the two-dimensional space. Recently, some algorithms
have been designed for the three-dimensional space [7,8].

For visual presentation of undirected graphs, in these automatic layout
algorithms, one of the most important issues focuses on the speed of
layout. Particularly for a huge graph with a complex structure containing
many nodes or vertices, the workload of computation becomes much
larger and the algorithm looks heavier. As a classical and well-known
Force-Directed Method, the Spring Modeling Algorithm [2] is a heuristic
approach of graph drawing. It is widely applied in automatic graph layout,
especially in some cases where the graph is in the status of editing. But
on account of the restriction, there is a big trade-off between the speed of
graph layout and the appearance of vibrations phenomenon. Based on
this trade-off, in our research, we analyzed the relationship between the
speed of layout and the parameters, as well as the relationship between
vibrations of nodes and parameters defined in the Spring Model. The

 1

Dynamic Parameter Spring Model and The Dynamic Parameter Spring
Modeling Algorithm [9] are used to speed up the process of graph layout,
in which the vibration phenomenon can be avoided to ensure the stability
of the algorithm.

This thesis is organized as follows. Chapter 2 gives the fundamental
knowledge and definitions of the concepts used in this work. Chapter 3
discusses the existing problem in Spring Model. The improved model,
Dynamic Parameter Spring Model and corresponding algorithm are also
described here. Chapter 4 describes the application of the Dynamic
Spring Model to 3D-PP project. In Chapter 5 a discussion about the
proposed approach is given. Finally, Chapter 6 presents the conclusions.

 2

Chapter 2

Automatic Graph Layout and Algorithms

2.1 Graph Classification

As basic drawing objects, graphs can be classified as follows: trees,
directed graphs, undirected graphs, etc. Each class of graphs can also be
divided into various subclasses. There are several methods for graph
classification in terms of different graphic standards. Figure 2.1 shows
the graph classification by Sugiyama [10].

graph

directed graphtree

directed
connected graph

rooted
tree

free
tree

general
directed graph

general
undirected graph

planar
undirected graph

binary
tree

undirected graph

Figure 2.1 Graph classification

Among all the graphs, undirected graphs are the most generic graphs and
are widely used in many areas of application.

2.2 Graph Drawing and Automatic Graph Layout

 3

Graph drawing addresses the problem of visualizing structural
information. More specifically, it is concerned with the construction of
geometric representations of graphs and related combined structures.

Graph drawing is generally used to represent relational structures that
consist of a set of entities and relationships. Such structures are modeled
as graphs: the entities are vertices, and the relationships are edges.
Visualization means using graphs to model the objects with the data and
the dependencies between modules. A module is represented as a vertex
in a graph and the dependency is represented as an edge. Visualizations
of relational structures are useful to transmit the associated information
to the user. Different types of graphs can be used to represent different
types of structures in visualization.

Automatic graph layout (an important area of research in computer
science technologies) addresses the problem of getting an intuitive and
readable layout for a given graph that helps the user understand and
remember the information easily. There is a wide range of applications
including data structures, software engineering, database design,
network design, VLSI, visual programming systems and various
engineering applications.

 (b) After automatic layout (a) Before automatic layout

Figure 2.2 Automatic graph layout

As an example, Figure 2.2 shows the difference in visualization before
and after the automatic layout. After the automatic layout, the
information is more intuitive and easy to understand.

Various methods and algorithms have been proposed to layout a graph
automatically, such as [11,12,13] for the layout of trees, [14,15] for the
layout of planar graphs, [16,17] for the layout of hierarchical directed
graphs. Algorithms to draw the undirected graph automatically have also

 4

been proposed. In this last category, Force-Directed Methods occupy an
important position.

Force-Directed Method is a well-known technique for automatically
laying out generic undirected graphs. Many models and algorithms have
been proposed for the Force-Directed Methods, such as Spring Model by
Eades [2], magnetic spring model by Sugiyama [6], and others
[3,4,5,18,19].

For visual presentations of undirected graphs, one of the most important
issues focuses on the speed of layout. Especially for a huge graph with a
complicated structure with many nodes or vertices, the workload of
computation becomes larger and the algorithm looks heavier. Therefore,
the improvement of existing algorithms becomes more and more
important, especially for the popular algorithm, the Spring Modeling
Algorithm for automatic undirected graph layout.

2.3 Spring Model and Algorithm

2.3.1 Spring Model

The Spring Model uses a physical analogy to draw graphs. A graph is
viewed as a system of bodies with forces acting between them. The
algorithm for the automatic layout of graph consists of seeking a
configuration of the bodies with locally minimal energy, that is a position
for each body, such that the value of resultant forces on each body is zero
[20].

In the Spring Model, vertices of graph are replaced with steel rings and
each edge is replaced with a spring to form a mechanical system;
repulsive and attractive forces are defined among rings. For example,
Figure 2.3(a) shows a graph expressed by the Spring Model in its
initialization configuration. After the action of repulsive and attractive
forces, an equilibrium configuration is finally obtained as in Figure 2.3(b).
Figures 2.3(c) and 2.3(d) show the corresponding straight-line drawing of
the graph. For an undirected graph, the automatic graph layout is a
process from initialization configuration to equilibrium configuration.

 5

(a) (b)

(d)
(c)

Figure 2.3 Automatic graph layout by the Spring Model

Fs

In the Spring Model, two types of forces are defined. The spring force acts
on each pair of vertices (nodes) connected by spring directly. Experience
shows that Hookes Law (linear) Springs are too strong when the nodes
are far apart, therefore the logarithmic force are used to represents the
spring force. The repulsion force is the force acting on each pair of
vertices (nodes) without a direct connection. The two forces are illustrated
in Figure 2.4.

 Fs

 Fr Fs

 Fr Fs

Figure 2.4 The Spring Model

 6

In the figure above, represents the spring force and F represents the
repulsion force.

sF r

As a method of force-directed placement approach, the Spring Model has
accepted four aesthetic criteria [3].

 A1. Ensuring (almost) the same length for all edges.

 A2. Minimizing edge crossings.

 A3. Revealing symmetry.

 A4. Distributing vertices evenly.

These aesthetic criteria ensure that a given generic undirected graph has
a “nice” layout after the automatic layout by the Spring Model.

2.3.2 Definition of Forces in Spring Model

z Spring force

Spring force F is acting on each pair of nodes connected directly in
the graph. It behaves as an attractive spring force or as a repulsive
spring force according to the length of spring (the distance between
two nodes).

s

d

)1.2.....(..............................)........./log(dss CdCF =

d

sF

dC









<<
==
>>

)(,0
)(,0
)(,0

d

d

d

CdifFs
CdifFs
CdifFs

0

Figure 2.5 Spring force

 7

Parameter represents the natural (zero energy) length of spring.
Parameter and parameter in the definition of repulsion force
are two constant parameters in the Spring Model used to balance the
influence of spring force and repulsive force. Fig. 2.5 shows the spring
force.

dC

sC rC

z Repulsion force

Repulsion force F is acting on each pair of nodes without a direct
connection by spring. It is given by

r

),2.2.....(../ 2dCF rr =

where denotes the distance between a pair of nodes. Figure 2.6

shows the repulsion force as follows.
d

d

rF

0

Figure 2.6 Repulsion force

For every node i in the graph, the acting resultant of forces is the sum of
all spring forces and all repulsion forces acting on i.

 ()

)5.2.....(....................).........()()(

)4.2.(..).........(/)(

)3.2.........(............................../)(log)(
2

iFiFiF

idCiF

CidCiF

rs

rr

dss

∑∑ +=

=

=

 8

2.3.3 Spring Modeling Algorithm

Based on the Spring Model, the Spring Modeling Algorithm for automatic
graph layout is given as follows:

Algorithm:

Initialize all positions of nodes in the graph
Initialize all constant parameters
Set the stop condition.

While (stop condition not reached)
{
 for v=1 to (number of nodes)
 {
 for w=1 to (number of nodes)
 {

 if (node v and node w are a pair of nodes connected directly)
 {
 compute the spring force acting on the node v by node w;)(vFs

 ;)()()(vFvFvF s+=
 }
 else

{
 compute the repulsion force acting on the node v by node w)(vFr

 ;)()()(vFvFvF r+=
 }
 }

 compute the movement)(vFδ of node v;
 }
 move all nodes;
}

The Spring Modeling Algorithm is a heuristic method for automatic graph
layout in which positions of all nodes cannot be decided immediately. The
process of layout is a simulation of force model. The simulation consists of
computing the displacement of nodes by computing the resultant of force
acting on nodes and moving all nodes to new positions.

Thus, in the same iteration of computing and moving, all nodes will reach
their appropriate position until the graph reaches the stop condition. The
stop condition needs to be set in the initialization stage according to the

 9

requirements of the user. This process represents the process of
automatic layout for a specified graph.

 10

Chapter 3

Dynamic Parameter Spring Model and
Algorithm

3.1 Problems in Spring Model

As a Force-Directed Method, the Spring Model is very suitable for
automatic undirected graph layout. In real applications though, we found
that there are some problems that restrict the application of algorithm.

3.1.1 User Requirements

When the Spring Modeling Algorithm is applied to layout a given graph
automatically, the main desire of a user is to get a “nice” and stable
configuration of the graph in a short time. In fact, this desire emphasizes
two fundamental and important requirements:

1. The algorithm must be stable.

2. The algorithm must be quick.

In some cases, the Spring Modeling Algorithm described in Section 2.3.3
cannot fulfill these two requirements.

3.1.2 Trade-off between Speed and Vibrations

From the definition of spring forces and repulsion forces in Section 2.3.1,
we know that there are two constant parameters C and which will
influence the result of computation of spring forces and repulsion forces
directly. This influence will result in different values of displacement and
movement for nodes in the graph and will ultimately determine the speed
of layout.

s rC

 11

Apparently, the bigger parameters C and are, the higher the speed of
automatic graph layout is. In fact, through experiments, we obtained the
same results. We hope to increase the speed of layout by giving two
parameters C and C large enough to speed up the procedure of layout.
Unfortunately, this idea succeeds only occasionally. In most cases, this
will result in a new problem appearing that is the vibrations phenomenon.
We will describe the vibration phenomenon and the relationship between
parameters and vibration phenomenon in detail in Section 3.3.1. Here we
will explain it briefly. Vibration of nodes is a phenomenon that appears in
the process of layout. Under the action of resultant forces, nodes in the
graph should move closer and closer towards the stable position and the
graph should change its configuration closer to the equilibrium
configuration according to the algorithm. In fact, in some cases, because
of the vibration, the nodes look like a reciprocator. This leads to a
situation where the automatic graph layout cannot be finished
successfully. In other words, the vibration phenomenon of nodes will
influence the stability of the Spring Modeling Algorithm. Through
experiments, we found that vibration appears not only when the values of
parameters C and C are too big, but also when they are too small.

s rC

s

s

r

r

Therefore, the vibration phenomenon of nodes restricts the application of
the Spring Modeling Algorithm. Because the reason of appearance of
vibration phenomenon is that parameters C and are too big or too
small, the problem of vibration phenomena is not only a drawback of the
Spring Modeling Algorithm; essentially, it is the drawback of the Spring
Model.

s rC

When using the Spring Modeling Algorithm, in fact, user can avoid the
vibration phenomenon by giving appropriate initialization settings and
stop conditions. But in consideration of the speed, apparently the
vibration phenomena and the speed of layout is a trade-off in the Spring
Model. In a sense, if this trade-off can be solved, the two requirements
mentioned in Section 3.1.1 can also be fulfilled.

Aiming at solving the trade-off between appearance of vibration
phenomenon and the speed of automatic layout in the Spring Model, in
the next chapter, we give our approach: the Dynamic Parameter Spring
Modeling Algorithm, a modified spring modeling algorithm in which the
basic aesthetic criteria existing in Spring Model mentioned in Section 3.1
continue to be maintained.

3.2 Dynamic Parameter Spring Model

 12

3.2.1 Expected Position of Node

After the process of layout is finished, every node in the graph will move
to a stable position called final stable position. If we know the final stable
position for every node or a position close to the final stable position
before laying out the graph, we can quickly move every node towards that
position. However, before the layout, the user has no means to tell where
the final stable position for every node will be.

According to the properties of spring, after layout, the distance between
each pair of nodes connected by a spring will be close to the length of
spring. In a graph, if two nodes are not connected directly, but the
shortest path between them can be found, we can imagine that after
layout, the real distance between these two nodes will be close to the
shortest path multiplied by the spring length.

Therefore, the concept of expected position of a node can be used in the
algorithm to speed up the process of layout. In the physical model, we can
provide a mechanism that drives every node towards its expected position,
and thus increase the speed of layout.

We make some experiments to test the validity of assuming the expected
position of a node. We are more concerned with the validity of the
assumption rather than its rationality. Through experiments, we found
that by using the expected position, the algorithm is more effective for
various types of undirected graphs.

In general, for a given graph, the assumptions for the majority of nodes
are fairly precise. Only when large numbers of connection loops exist in a
connected graph, our assumptions are not precise enough. However this
lack of precision does not influence the stability of the algorithm; it has
an indirect, slight influence on the final layout. This has also been proved
by our experiments.

3.2.2 Dynamic Parameters

After the discussion based on the expected position of a node, we apply
the concept of expected position to the new spring model. In the Spring
Model, all the parameters are constant parameters, and this leads to the
trade-off we mentioned before. If we want to solve the trade-off, we have
to adjust these parameters. Therefore, in our approach, we redefine all
the parameters and apply these new definitions of parameters to solve
the trade-off.

 13

At first, let us make an analysis of all parameters in the Spring Model at
first. In Section 2.3, the definitions of forces are given in formulas (2.1)
and (2.2).

)2.2.....(../

)1.2.....(..............................)........./log(
2dCF

CdCF

rr

dss

=

=

According to the definition of spring forces and repulsion forces in the
Spring Model, C determines the spring forces and C determines the
repulsion forces. C represents the natural length of spring used in the
Spring Model. The user needs to define these parameters before the
layout. How to define these fixed parameters is still decided by the
structure of graph and what types of layout the user wants to make. For
example, the user can put a large graph in a small space by giving a small
parameter to increase the density; At the same time, he also needs to
think about the consistency among these three parameters. Therefore the
user finds it difficult to set the parameters in the Spring Model.

s r

d

dC

In general, parameters C and represent a pair of related and
proportional parameters in terms of the balance between spring forces
and repulsion forces acting on every node in the system. In our approach,
we give a similar definition.

s rC

In Section 3.2.1, we discussed how different nodes have different relative
positions in a given graph and how these relative positions can be
calculated by the concept of shortest path. Our proposal is to give every
node in the graph a group of independent and irrelative parameters,
which are called dynamic parameters. Thus we can adjust every
parameter of the node in terms of the relative position in the graph and
obtain the automatic layout in a short interval of time.

To be specific, we give each node i a group of independent parameters

 and with corresponding definitions for C and in the original
Spring Model. The variable i in and expresses that these two
private parameters are related only to node i . This is the difference
between the definitions of parameters in our approach and that in the
original Spring Model where parameters have the same value for all
nodes and they are constant throughout the process of layout.

)(iCs)(iCr s rC
)(iCs)(iCr

3.2.3 Definition of Force Model

 14

Figure 3.1 shows the Dynamic Parameter Spring Model in three-
dimensional space. Due to the fact that graphs in real applications have
become more complex, many of them are drawn in 3D space, not only in
2D space. Therefore we give the improved spring model in three-
dimensional space. The model can be used in automatic graph layout in
two-dimensional space as well.

Figure 3.1 The Dynamic Parameter Spring Model

For every node i in the graph, the force acting on it should be calculated
using the parameters of the node itself. For any node i in the graph, the
spring force acting on it by the spring connected with node j is
represented by F . The repulsion force acting on the node i connected
with node is represented by . , have the same meaning
with and C in the original Spring Model respectively. C and C
are defined only for the node i , not for the whole system. The variable

 is the real distance between node i and node , and has the same
definition as in the original Spring Model. Formulas (3.1) and (3.2) give
the definitions of spring force and repulsion forces, and (3.3) shows the
formula for the resultant of forces.

),(jis

j),(jirF)(iCs)(iCr

sC r)(is)(ir

),(jid j

 15

)3.3.......()(

)2.3........(..).........,(/)(

)1.3..(..),(log)(

),(1
),(

1
),(

2
),(

),(

∑∑
==

+=

=









=

n

jij
jir

n

j
jis

rjir

d
sjis

FFiF

jidiCF

C
jidiCF

connectednotareconnected)arej(i,

After defining the forces, our next concern is how to define the dynamic
parameters and how to calculate them. In subsection 3.2.1, we discussed
the expected position of nodes. We can use the expected position for every
node to replace the final position and to define the dynamic parameters
based on this assumption. Thus we can make every node move quickly
towards the expected position to increase the speed of layout.

In terms of different positions for a given node, we consider that two
different groups of formulas will be used to compute the dynamic
parameters C and C of every node.)(is)(ir

If the real distance between the fixed node and node i is larger than the
distance between the fixed node and its expected position, for every node

, and will be i)(iCs)(iCr

)5.3....(..)(

)4.3....(..)(

),(
),(

),(
),(

d

d

Cifsp
ifd

rr

Cifsp
ifd

ss

KiC

KiC

=

=

respectively, where and are constant parameters predefined in the
initialization stage of program running. C is the common constant
parameter of the system. and represent the shortest path and
distance between the fixed node and every node i respectively. The fixed
node is a unique node that is chosen by the user from all nodes of the
graph before the procedure of layout.

sK rK

,(fsp
d

)i),(ifd

If the real distance between the fixed node and node i is smaller than the
distance between the fixed node and the expected position of node i , C
and C will be

)(is

)(ir

)7.3(..)(

)6.3.(..)(

),(
),(

),(
),(

ifd
Cifsp

rr

ifd
Cifsp

s

d

d

KiC

KiC

=

=

For these two situations, we use the maximum of the two ratios to adjust
these parameters and speed up the computation. Based on the definition
of dynamic parameters, we give the general formulas (3.8) and (3.9) for
the Dynamic Parameter Spring Model.

)9.3....(..............................),max()(

)8.3....(..............................),max()(

),(
),(

),(
),(

),(
),(

),(
),(

rifd
Cifsp

Cifsp
ifd

r

sifd
Cifsp

Cifsp
ifd

s

KiC

KiC

d

d

d

d

=

=

 16

Figure 3.2 shows a simple example and we can use it to illustrate the defined formula.
The dotted circles represent the expected stable position of node i and node . Node

 is further from the fixed node than the expected position of i . Therefore the

parameter will be

j
i

d
rs Cifsp

ifdKi
),(
),()(=C . As for node , it is closer to the fixed node

than its expected position, and therefore we use the following formula:

j

),(
),(

)(
jfd
Cjfsp

Kj d
ss =C .

f
j

i

i′

j′

ji ′′,
ji,

Node f:

dCif
sp

),(

dCjfsp),(

),(
ifd

),(jfd

: Expected positions

:Node i, j

Fixed Node

Figure 3.2 An example of DPSM graph

3.3 Dynamic Parameters and Avoiding Vibrations

3.3.1 Vibration Phenomena

Vibration phenomena can be found everywhere around us. Speaking of
vibration, most people will imagine that two objects connected by a spring
and these objects will make a rapid linear motion around an equilibrium
position under the spring force. People take for granted that the vibration
in the Spring Model is the same as the generic vibration we mentioned.

The truth is entirely different. The vibration phenomenon we mentioned
in the Spring Model is a special state in the automatic graph layout. In
the process of automatic layout, certain forces are computed and nodes
are moved. The computations and movements are done several times
without any interference from the user and each time a new layout is
obtained until certain conditions are satisfied. In other words, the

 17

automatic layout is not obtained in only one step, but in many steps and
their number cannot be estimated. The description above corresponds to a
successful automatic graph layout.

Sometimes the process of layout cannot be finished successfully. If we
observe every step of layout, we will find that the same graphs appear
after different layouts. This phenomenon gives the illusion that makes it
look like an object (or a particle) appears in the same place many times.
The same graph can appear after some consecutive layouts or not. In the
Spring Model, if this type of phenomenon appears, in most cases we have
consecutive layouts. The phenomenon makes it appear as some nodes are
vibrating around some special equilibrium positions. We call this
vibration phenomenon of nodes.

In the Spring Model, why does this type of phenomenon appear? The
answer to this question can also give us a solution for the question of
avoiding it in our DPSM.

Let us analyze a simple example.

Fs(k)

) equilibrium
position

(k)

Fs(k+1)

+1)

+1)

Fr(k

Fr (k

F
F (k

Figure 3.3 Vibration phenomenon

In this example (Figure 3.3), we observe a vibrating node in the graph.
We assume that the left red circle represents the position after the (
layout. In the next layout, the resultant of force F including both the
spring force F and the repulsion force will drive the node towards
the next position, the position of the right red circle in Figure 3.3. After
the layout but before the (layout, the node in the right position
will move towards the left position under a similar force, Therefore the
node will move between left position and right position and a stable state
will never be reached, the process of automatic layout will never end.

thk)1−

)(k

)(ks)(krF

thk thk)1+

 18

3.3.2 Avoiding Vibrations in DPSM

Since we know why the vibration phenomenon appears, we should make
this phenomenon disappear to ensure that the automatic graph layout
can continue successfully. Because parameters in the original Spring
Model need to be predefined, these parameters cannot be changed in the
process of layout. Therefore, the force between two nodes is determined
only by the distance between them.
In the DPSM, every node has a group of private parameters. In the
process of layout, these parameters can be changed to be suitable for the
status of the graph at that time. For a node far away from its expected
position, private parameters will be assigned a bigger value to make the
acting force bigger. Thus every node tends to move to its expected
position.
The dynamic parameters also stop all nodes from moving away from their
expected position. In real experiments, the dynamic parameters are
effective in decreasing the possibility of appearance of vibration
phenomenon.

In order to remove the influence of vibration phenomena entirely, another
detecting algorithm has been added to the DPSM. Considering that the
influence to the whole graph caused by each node is different, we only
search the node with the biggest displacement in the graph and judge
whether the node is in vibration or not to do the detection. After the
detection, we examine 3 consecutive steps of layout. We consider the node
vibrating if after the third step of layout, the node moves back to a place
close to the position corresponding to the first step of layout. If a node is
found in vibration, we need to:

1) set the position of the node after the second layout as the
position for next step of layout and

2) decrease the constant parameters K and to decrease the

probability of appearance of vibration in subsequent layouts.
s rK

Figure 3.4 shows the detection of vibrations. If the distance S is
much smaller than the distance S or which correspond to two
consecutive layouts, we think there must be a vibration.

)1,1(+− kk

),1(kk−)1,(+kkS

 19

after k-1times of layout
appearsVibration

or

)1,()1,1(

),1()1,1(

++−

−+−

<<

<<

kkkk

kkkk

SS

SSif

after k times of layout

after k+1 times of layout
)1,1(+− kkS

),1(kkS −

)1(+kP

)1(−kP

)(kP

 middle position

Figure 3.4 Vibration phenomenon detection

As far as vibrations of nodes are concerned, the important thing is to
decrease the influence of vibration and not to avoid them completely. This
is exactly what we achieve in DPSM.

3.4 Algorithms

Based on the definition of DPSM, this section will give the corresponding
algorithm, the Dynamic Parameter Spring Modeling Algorithm (DPSMA).
Section 3.4.1 will introduce a traditional algorithm to compute the
shortest path for a given graph. The algorithm for dynamic parameter
computing and adjusting will be introduced in section 3.4.2. DPSMA is
given in section 3.4.3

3.4.1 All Pairs of Shortest Path

The concept of shortest path means finding the shortest path in the graph
from one node to another node. The algorithm will become different if the
edges have different weights. Figure 3.5 shows a small example of
shortest path. In this graph, if the weights of all edges are the same, the
shortest path between node a and node is equal to 2, and the shortest
path between node b and node is 3.

d
h

a

c

b

h

g

e

d

f

Figure 3.5 An example of shortest path

 20

In DPSMA, for a given graph, all pairs of shortest path for the graph need
to be computed before layout, and just once. Therefore the influence over
the system of the computations of all pairs of shortest path is very small.
As for the DPSMA, in order to compute all pairs of shortest path

between the fixed node and any node i , we use the Floyd-Wars Hall
algorithm [21]. The input to the algorithm is d , which represents the
distance between node i and node (in the following code, d[i][j]) that is
the shortest path between all pairs of nodes.

),(ifsp

ij

j

Algorithm:

Input adjacency matrix of graph with n nodes, W[0.. n-1][0..n-1]. Initialize
shortest path matrix, d[0..n][0..n];
for i=0 to n (number of nodes)
{

for j=0 to n
 d[i][j]=W[i][j];

}

for k=0 to n
{
 for i=0 to n
 for j=0 to n
 d[i][j] =min (d[i][j], d[i][k]+d[k][j]);

}

3.4.2 Dynamic Parameter Adjusting

The definitions of dynamic parameters C and C have been given in
section 3.2.3. In the process of automatic graph layout, parameters need
to be recomputed in every step of layout and readjusted to be suitable for
the next steps.

)(is)(ir

Algorithm:

Compute all pairs of shortest path for every node;),(ifsp

Initialize const parameters and ; sK rK

 21

for i=0 to n (number of nodes)
{

compute ;),(ifd

if () // two separate cases are needed),(),(ifspifd <

{

()dss CifspifdKiC),(/),()(= ;

()drr CifspifdKiC),(/),()(= ;

}
else
{

()),(/),()(ifdCifspKiC dss = ;

()),(/),()(ifdCifspKiC drr = ;

}
}

3.4.3 Dynamic Parameter Spring Modeling Algorithm

The Dynamic Parameter Spring Modeling Algorithm is based on the
proposed Dynamic Parameter Spring Model that has been described in
detail in Section 3.2. The following give the frame of the algorithm:

Algorithm:

Compute all pairs of shortest path sp ;),(if
Initialize all positions of nodes;
Initialize all parameters;
Initialize stop condition;

While (graph does not reach stop condition)
{

for i=1 to n (number of nodes)
 {
 Initialize the F)(i
 Compute dynamic parameters C)(is

and C)(ir

 for j =1 to n
 { compute the distance d ;
 if(node i and node is is connected directly) j

 22

{)log)(),(
),(







=
dC

jidisCsKF jis
;

),()()(jisFiFiF += ;

}
else
{),(/)(2

),(jidirCrKF jir = ;

 ;
),()()(jirFiFiF +=

}
}

 compute displacement)(iFδ of every node i ;

 }
 modify positions of all nodes;

 if(vibration phenomena existing)
 {
 Adjusting parameter

sK and
rK ;

 Adjusting the positions of vibrating nodes;
}

 compute the stop condition;
}

In the algorithm, in order to compute the distance d , we have two
different formulas that are used in two-dimensional space and three-
dimensional space respectively. In two-dimensional space, we use

22)()(),(jiji yyxxjid −+−= to compute the distance between node i and .
In three-dimensional space, the formula is

j

222)()()(),(jijiji zzyyxxjid −+−+−= . The constant parameters K and are
propositional parameters, and are used to balance the spring force and
repulsion force. In DPSM, according to the user requirement of a “nice”
layout and other aesthetic criteria, these two parameters need to be
predefined in the initialization stage. It is possible that the algorithm in
the process of layout can adjust these parameters automatically.

s rK

 23

Chapter 4

Application to 3D-PP

4.1 Three Dimensional Pictorial Programming

4.1.1 Visual Programming System

Visual Programming System (VPS) provides the user with a new type of
developing environment where pictorial objects are used to represent a
paragraph of programs or applications. It is entirely different from the
traditional programming technique in which the source is written in text
form. In the visual programming environment, writing source code is
replaced by managing some pictorial elements that make the programs
friendly and easy to “write”. Expressions of the structure of programs by
pictorial elements become more clear, intuitive and easy to understand.

4.1.2 Three Dimensional Visual Programming System

Based on two-dimensional visual programming systems, such as PP [22],
ViewPP and others [23,24,25], 3D-PP [7,26,27] is our three-dimensional
visual programming system that is extended from two-dimensional space.
3D-PP is the abbreviation of “Three Dimensional Pictorial Programming”
which is one of our current research projects. Compared to two-
dimensional VPS, 3D-PP can provide more pictorial objects or elements in
the same limited area of display. That is also the essential difference
between the three-dimensional visual programming systems and those in
two-dimensional space.

3D-PP is designed for the parallel logic programming language GHC [28]
which is one of the high level declarative programming languages. On one
hand, a declarative programming language is suitable for visualization
because visual programming is also declarative. On the other hand, a
logic programming language requires comparatively fewer numbers of
programming elements than a procedural language. Therefore, GHC is
more suitable to be used in a visual programming language.

 24

The clause of GHC is structured as follows:

predicates(arguments, …) : - guard | body.

In GHC, the basic program elements include atoms, lists, input data,
output data, goals and built-in goals. Two or more goals can be contained
in both body and guard. 3D-PP is built by using some pictorial
programming elements. These pictorial programming elements are only
the basic elements defined in GHC and expressed by some types of three-
dimensional objects. The combination of these pictorial programming
elements can be structured to express clauses in a GHC program as a
graph. Programming is done to create or edit a graph by manipulating
various types of three-dimensional pictorial programming elements in
3D-PP. These manipulations of 3D objects are equivalent to editing
source codes in traditional programming systems. In other words, a graph
in 3D-PP represents the visualization of a program and these 3D objects
are just the visualization of basic programming elements of the program.

4.2 Implementation of DPSMA in 3D-PP

In 3D-PP, programs are expressed as graphs. Making a program has been
transformed into manipulating a graph. From the point of view of
programmers, the VPS of 3D-PP make the programming and editing
programs more easy and intuitive. With the editing, modifying of graph,
the positions of nodes represent the pictorial programming elements in
the graph and the relationships among these nodes have to be changed
accordingly. Thus after editing or modifying the program, both the nodes
and the graph need to be redrawn and the relationships among the graph
need to be maintained. The process of redrawing, in fact, is just a process
of automatic graph layout.

The Spring Modeling Algorithm has been applied in 3D-PP to obtain the
graph layout automatically. But for the problems mentioned, in many
cases the Spring Modeling Algorithm restricts the visualization of
programs in 3D-PP. Therefore in 3D-PP we use the DPSMA to replace the
Spring Modeling Algorithm to make the automatic graph layout.

In 3D-PP, all pictorial elements are treated comparably although these
pictorial elements represent different basic program elements in GHC
clauses. The DPSMA has been given in Section 3.4.3, and we have
pointed out that there are four requirements in the initializations steps:

 25

A) Compute all pairs of shortest path ;),(ifsp

B) Initialize all positions of nodes;

C) Initialize all parameters;

D) Initialize stop conditions.

In 3D-PP, all the edges are regarded as springs with the same physical
characteristics and all edges are supposed to have same weight. Therefore,
to fulfill the first requirement (A) in the initialization steps of DPSMA,
we compute all pairs of shortest path by the algorithm with the same
weights. The algorithm has been given in Section 3.4.1. To fulfill the
requirement (B), the initializations of all positions of nodes, we use the
real values of coordinates of every node in the three-dimension orthogonal
coordinates reference frame. To fulfill the requirement (C), the
initializations of all parameters, we use different values in different cases.

 and constant parameters K and are not fixed in 3D-PP, but there
are already some basic rules that can be used to define these parameters.
For example, we usually use a smaller C for a complicated graph
because we need to put many nodes in a limited space. In addition, K
and must be a pair of proportional parameters. To fulfill the
requirement (D), the initialization of stop conditions, we define a constant,
force threshold, as the stop condition. When the biggest resultant force
among all nodes in the graph becomes smaller than the predefined force
threshold, we think that the layout has reached its stable state and the
computations should stop.

dC s rK

d

s

rK

In addition, the fixed node is unique among all nodes and is selected by
the user. In 3D-PP, the user can use the mouse to specify the fixed node
by moving the mouse over a node.

By the application of DPSMA in 3D-PP, the graphs (GHC programs)
become meaningful and understandable. Programmers can create, edit
and modify the programs more easily. The vibrations phenomena when
using the Spring Modeling Algorithm no longer appear. As far as the VPS
of 3D-PP is concerned, the speed of automatic layout becomes much
quicker than that of the Spring Modeling Algorithm.

 26

Chapter 5

Application and Performance Evaluation

5.1 Properties of DPSM and Applications

5.1.1 Properties of DPSM

Because DPSM is a modified, improved spring model that is a best-known
Force-Directed method, DPSM is also a Force-directed method. Therefore
some common properties for Force-Directed Methods are all contained in
DPSMA. Essentially, DPSM is still a force system defined by the vertices
and edges, which provides a physical model for the graph. DPSMA is an
algorithm based on a technique for finding the equilibrium state of the
force system, that is, a position for each vertex, such that the total force
on every vertex is zero [3]. An important property is the aesthetic criteria
of automatic graph layout. Four basic aesthetic criteria still exist in
DPSM: 1) Ensuring that edge lengths are uniform, 2) Minimizing edge
crossings, 3) Revealing symmetry and 4) Distributing vertices evenly.

These same or similar properties decide that the DPSM and DPSMA have
the same or similar applications. On one hand, the DPSMA is a method of
generating an automatic graph layout. On the other hand, it represents a
method of graph drawing. Users can get the result of layout for a given
graph and can also observe the process of the automatic graph layout. On
top of these common properties, DPSMA has some properties of itself.

3) Stability.

4) High speed

In DPSMA, we solve the problem of appearance of vibration phenomena.
This ensures the stability of DPSM algorithm. Using dynamic parameters
speeds up the process of layout and that makes the DPSMA a rapid
algorithm.

5.1.2 Applications and Examples

 27

The properties of DPSM show that the DPSMA can be largely applied in
many fields. It can be used not only in scientific research but also in
visualization of information.

To demonstrate the use of DPSMA, we show some steps in laying out a
pentagonal shape in Figure 5.1. The process of layout is illustrated in
Figures 5.1(1) to (6).

1 2

 4

3

5 6

Figure 5.1 An example of laying out a graph automatically

 28

For different types of undirected graphs, some examples are given to
show the results of applications of DPSMA as follows (Figure 5.2). The
most natural and aesthetic results from DPSMA are those obtained from
symmetric graphs. Figure 5.2 illustrates some planar symmetric graphs.

Figure 5.2 Layout of symmetric planar graph

Some examples of trees are represented by the DPSMA. Figure 5.3(a) shows a
simple binary tree where Figure 5.3(b) illustrates a complicated binary tree.

(a)

 29

(b)

Figure 5.3 Representations of trees

We present in the following some examples of cubes. The layouts of these cubes are
generated by the two-dimensional version of DPSMA and appear to be three-
dimensional when laid out. In Figure 5.4, (a) represents one cube and (b) represents
twin-cubes.

(b)(a)

Figure 5.4 Cube and twin-cubes are laid out by the two-dimensional version of DPSMA

5.2 Performance Evaluations

 30

We made some experiments to evaluate the performance of DPSMA.
Because the improvements of the algorithm focus on its speed and
stability (the problem of vibration phenomenon), these experiments are
designed to evaluate the DPSMA in two respects:

1) Evaluate the speed of algorithms;

2) Determine whether or not vibrations phenomena appear.

For the first evaluation object, we use 5 undirected graphs with different
complexity to compare the speed of layout between DPSMA and SMA.
Considering the property of automatic graph layout, the comparisons
include the comparison of speed in real running time and the comparison
of number of layout iterations.

We made the same initialization settings for DPSMA and SMA to make
the experiments. The force thresholds are defined as stop conditions of
automatic layout. We defined a constant as the force threshold for a given
graph in the initialization stage. When the biggest resultant forces among
all nodes in the graph become smaller than the predefined force threshold,
it means that the layout has reached its stable state and the computation
should be stopped. This is the stop condition of the layout for a given
graph.

In experiments, the force thresholds are set to 0.01(Newton), 0.05,0.1 and
0.5 respectively to evaluate the performance of DPSMA under different
force threshold conditions. The parameters K and are set to be the
same with the initialization parameters C and in the SMA
respectively. Table 5.1 shows the basic data of 5 graphs in experiments.

s rK

s rC

Graph 1 2 3 4 5
Nodes 3 8 27 64 125
Edges 3 12 54 142 294

Table 5.1 Graph data

At first, we compare the number of iterations. In the same environment,
we obtained the following results in Table 5.2.

 31

No. of graphForce threshold 0.5 0.1 0.05 0.01

SMA 41 45 47 52

1 DPSMA 29 34 36 41

DPSMA/ SMA 70.7% 75.6% 76.6% 78.8%
SMA 45 64 72 93

2 DPSMA 34 51 53 74

DPSMA/ SMA 75.6% 79.7% 73.6% 79.6%
SMA 127 176 199 261

3 DPSMA 89 149 169 222

DPSMA/ SMA 70.1% 84.7% 84.9% 85.1%
SMA 247 336 384 507

4 DPSMA 176 264 311 386

DPSMA/ SMA 71.3% 78.6% 81.0% 76.1%
SMA 278 479 575 801

5 DPSMA 193 367 432 637
DPSMA/ SMA 69.4% 76.6% 75.1% 79.5%

Table 5.2 Comparison of number of iterations

Figure 5.5 shows the comparison of number of iterations in the case of 4
different force thresholds as stop conditions. The x-axis is the number of
graph and the y-axis is number of the iterations.

0
50
100
150
200
250
300
350
400
450
500

Iterations
times

1 2 3 4 5

(force threshold =0.1)

SMA

DPSMA

0

50

100

150

200

250

300

Iterations
times

1 2 3 4 5

(force threshold =0.5)

SMA

DPSMA

0

100

200

300

400

500

600

700

800
900

Iterations
times

1 2 3 4 5

(force threshold =0.01)

SMA

DPSMA

0

100

200

300

400

500

600

Iterations
times

1 2 3 4 5

(force threshold =0.05)

SMA

DPSMA

Figure 5.5 Comparison of number of iterations

 32

We observe from Figure 5.5 that the number of iterations of automatic
layout for a given graph by DPSMA is smaller than that obtained by SMA.
The results also show that the DPSMA is more effective than SMA when
the graph is complex, with many nodes and edges.

We also compare the real running time between DPSMA and SMA. In
this experiment, the same 5 graphs are used to compare the performance.
Because there are many factors that influence the real running time,
such as the algorithm itself, optimizations of algorithm, real environment
and others, we make the same experiments many times and use the
average values as results.

Table 5.3 shows the results of experiments in the case of the 5 given
graphs used previously.

No. of graphForce threshold 0.5 0.1 0.05 0.01

SMA 118 125 141 138
1 DPSMA 74 84 125 127
DPSMA/SMA 62.7% 67.2% 88.7% 92.0%
SMA 132 177 229 335

2 DPSMA 117 167 206 302
DPSMA/SMA 88.6% 94.4% 90.0% 90.1%
SMA 179 216 267 367

3 DPSMA 157 189 234 313
DPSMA/SMA 87.7% 87.5% 87.6% 85.3%
SMA 3178 4407 4889 6139

4 DPSMA 2834 3910 4319 5401
DPSMA/SMA 89.2% 88.7% 88.3% 88.0%
SMA 38412 61340 71049 96324

5 DPSMA 30132 43987 52987 71980
DPSMA/SMA 78.4% 71.7% 74.6% 74.7%

Table 5.3 Comparison of real running time

(Unit: milliseconds.)

Figure 5.6 shows the comparisons of real running time in the case of
different force thresholds as stop conditions for graph 4 and graph 5.

 33

0
10000
20000
30000
40000
50000
60000
70000
80000
90000
100000

millisecs.

0.5 0.1 0.05 0.01

Graph 5
125nodes,294 edages

SMA

DPSMA

0

1000

2000

3000
4000

5000

6000

7000

millisecs.

0.5 0.1 0.05 0.01

Graph 4
64 nodes,142 edages

SMA

DPSMA

Figure 5.6 Comparison of real running time

From the comparison of speed in real running time, the DPSMA proves to
be better than SMA. Because in DPSMA the computations of dynamic
parameter and all-pairs of shortest path occupy real running time in
every step of layout, the results are not so effective as in the comparison
of number of iterations. The results also show that the DPSMA is more
effective in the case of complex graphs.

These two groups of experiments show that the DPSMA is more effective
than SMA with respect to both real running time and number of
iterations.

We also made some experiments to evaluate the stability of DPSMA. No
vibration phenomena are found in the experiments, and this shows that
DPSMA is stable. When using the same data, in some cases the vibration
phenomena are found in the process of layout in the case of SMA. This
shows that SMA is not stable enough.

As for automatic layout for undirected graph, many experiments show
that DPSMA is faster and more stable than SMA. For different types of
undirected graphs, the efficiency of DPSMA is different. The efficiency in
case of complex graphs is higher than that for simple graphs; the
efficiency of low-precision graphs is higher than that of high-precision
graphs.

 34

Chapter 6

Conclusions

An improved spring model, the Dynamic Parameter Spring Model, which
is applied in automatic graph layout for general undirected graphs has
been proposed, and its corresponding algorithm, the Dynamic Parameter
Spring Modeling Algorithm, has been implemented. The new improved
model is based on the well-known Spring Model as the representation of
force-directed approach to automatic graph layout. In the original Spring
Model while trying to speed up the layout, the vibration phenomenon may
appear and this can lead to an unstable algorithm.

Our model solves the existing problem in the original Spring Model and
speeds up the process of automatic graph layout while avoiding the
appearance of vibration phenomenon.

Using the new improved algorithm, a quick and stable automatic graph
layout is provided and the user can understand the information in the
given graph easily and intuitively. Our approach can also be used in
various applications of information visualization.

 35

Acknowledgements

I wish to have this opportunity to express my heartfelt thanks and
profound gratitude to my supervisor Dr. Jiro Tanaka, Professor,
University of Tsukuba, for his invaluable guidance, advice, supervision
and constant encouragement during the course of the present study. It
would not have been possible to complete the study without his generous
training.

I am highly obliged to Dr. Buntarou Shizuki; Dr. Motoki Miura of
Tsukuba University for their guidance and great deal of helpful advice for
my research work.

I thank Mr. Tohru Ogawa; Mr. Kazuhisa Iizuka for their constructive and
valuable advices and comments for my research work and all other
members of VS group, Mr. Hideto Yamada; Mr. Okamura Toshiyuki; Mr.
Masakazu Kanda for useful discussions for my research work.

I am grateful to all the reviewers who critically read my thesis and their
comments improved the quality of this work.

Special thanks to Ms. Simona Mirela Vasilache; Mr. Iftikhar Azim Niaz;
Ms. XiaoPing Ying, Mr. Hiroya Itoga and all other members of IPLAB,
University of Tsukuba, for useful discussions, constructive criticism and
timely help.

I wish to express my thanks to all my friends in China and Japan for
their encouragement and helps.

 36

Bibliography

[1] N. Quinn and M. Breur. A Force Directed Component Placement Procedure for

Printed Circuit Boards. IEEE Transactions of Circuits and Systems, 26(6): 377-
388, 1979.

[2] P. Eades. A Heuristic for Graph Drawing. Congressus Numerantium 42, 149-160,

1984.

[3] T. Fruchterman and E. Reingold. Graph Drawing by Force-Directed Placement.

Software – Practice and Experience 21, 1129-1164, 1991.

[4] T. Kamada. Visualizing Abstract Objects and Relations, World Scientific, 1989.

[5] T. Kamada and S. Kawai. An Algorithm for Drawing General Undirected Graph.

Information Processing letters, 31(1): 7-15, 1989.

[6] K. Sugiyama and K. Misue. Graph Drawing by Magnetic-Spring Model, Res.

Rep. ISIS-RR-94-14E, Inst. Social Information Science, Fujitsu Labs Ltd., 1994.

[7] T. Miyashita and J. Tanaka. Integrating Three-dimensional Spring Model and

Augmented Directed Manipulation technique. Transactions of IPSJ, 42(3): 565-
576, 2001(in Japanese).

[8] C. Ware, G. Frank, M. Parkhi, T. Dudley. Layout for Visualizing Large Software

Structures in 3D. Proceedings of VISUAL’97, 215-223, 1997.

[9] X. Liu, B. Shizuki and J. Tanaka. Dynamic Parameter Spring Modeling

Algorithm for Graph Drawing, Proceedings of the International Symposium on
Future Software Technology (ISFST 2001), ZhengZhou, China, Nov. 5-8, 52-57,
2001.

[10] K. Sugiyama. Automatic graph drawing methods and their applications, The

Society of Instrument and Control Engineers, 1993.

[11] C. Wetherell and A. Shannon. Tidy Drawing of Trees. IEEE Transaction on

Software Engineering, SE-5(5): 514-520, 1979.

 37

[12] E. Reingold and J. Tilford. Tidier Drawing of Trees, IEEE Transaction on

Software Engineering, SE-7(2): 223-228, 1981.

[13] P. Eades, T.Lin, and X. Lin. Two Tree Drawing Conventions, International

Journal of Computational Geometry and Applications, 3(2): 133-153, 1993.

[14] A. Lempel, S. Even and I. Cederbaum. An Algorithm for Planarity Testing of

Graphs, Theory of Graphs: Internae Symposium, Rome, 215-232, 1967.

[15] G.D. Battista and R. Tamassia. Algorithms for Plane Representations of Acyclic

Digraphs, Theoretical Computer Science, 61: 175-198, 1988.

[16] K.Sugiyama, S.Tagawa and M. Toda. Method for Visual Understanding of

Hierarchical System Structures, IEEE Trans. Syst. Man Cybern, 11(2): 109-125,
1981.

[17] K.Sugiyama. A Cognitive Approach for Graph Drawing. Cyberrerics and

Systems, 18(6): 447-488, 1987.

[18] A. Frick, A. Ludwig and H. Mehldau. A Fast Adaptive Layout Algorithm for

Undirected Graphs. Proceedings of the Symposium on Graph Drawing GD’95,
Springer-Verlag, 389-403, 1994.

[19] J. Nagumo and J. Tanaka. Introducing Fisheye-view into Graph Drawing

Algorithm, Transactions of IEICE, 82-D-II(6): 1042-1048, 1999 (in Japanese).

[20] G.D. Battista, P. Eades, R. Tamassia and I.G. Tollis. Graph Drawing Algorithm

for the Visualization of Graphs. Prentice-Hall, Inc, 1999.

[21] T.H. Corman., C.E. Leiserson. and R.L. Rivest, Introduction to Algorithm, MIT

Press, 558-562, 1990.

[22] J. Tanaka. PP: Visual Programming System for Parallel Logic Programming

Language GHC, Parallel and Distributed Computing and Network’97, 188-193,
1997.

[23] P.T. Cox, F.R. Glies and T. Pietrzykowski. Prograph: A Step towards Liberating

Programming form Textual Conditioning, IEEE Workshop on Visual Language,
Rome, 150-156, 1989.

 38

 39

[24] K. Kahm. ToolTalk – An Animated Programming Environment for Children,
Journal of Visual Languages and Computing, 197-217, 1986.

[25] M. Toyoda, B. Shizuki, S. Takahashi, S. Matsuoka and E. shibayama. Supporting

Design Patterns in a Visual Parallel Data-flow Programming Environment,
Proceeding of 1997 IEEE Symposium on Visual Language (VL’97), 1997.

[26] K. Miyagi, T. Oshiba and J. Tanaka. Three-Dimensional Visual Programming

System 3D-PP, 15th Conference Proceedings Japan Society for Software Science
and Technology, 125-128, 1998 (in Japanese).

[27] T. Oshiba and J. Tanaka. “3D-PP”: Three-Dimensional Visual Programming

System, Proceeding of 1999 IEEE Computer Society Press, Tokyo, Japan, 1999.

[28] K. Ueda. Guarded Horn Clauses, ICOT Technical Report, TR-103, Institute for

New Generation Computer Technology, 1985.

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Automatic Graph Layout and Algorithms
	Graph Classification
	Graph Drawing and Automatic Graph Layout
	Spring Model and Algorithm
	Spring Model
	Definition of Forces in Spring Model
	Spring Modeling Algorithm

	Dynamic Parameter Spring Model and Algorithm
	Problems in Spring Model
	User Requirements
	Trade-off between Speed and Vibrations

	Dynamic Parameter Spring Model
	Expected Position of Node
	Dynamic Parameters
	Definition of Force Model

	Dynamic Parameters and Avoiding Vibrations
	Vibration Phenomena
	Avoiding Vibrations in DPSM

	Algorithms
	All Pairs of Shortest Path
	Dynamic Parameter Adjusting
	Dynamic Parameter Spring Modeling Algorithm

	Application to 3D-PP
	Three Dimensional Pictorial Programming
	Visual Programming System
	Three Dimensional Visual Programming System

	Implementation of DPSMA in 3D-PP

	Application and Performance Evaluation
	Properties of DPSM and Applications
	Properties of DPSM
	Applications and Examples

	Performance Evaluations

	Conclusions
	Acknowledgements
	Bibliography

