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Abstract 
 
 
A multitude of data presentation problems require the drawing or 
display of graphs. A graph drawing algorithm takes a graph as an 
input and computes a layout of the graph. The layout should be 
“aesthetically nice” and “easy to understand”. The Spring Model and 
the corresponding Spring Modeling Algorithm are well known for 
automatic graph layout and have been widely applied in many fields of 
information visualization.  
 
In the Spring Model, the speed of layout is increased at the cost of the 
appearance of vibration phenomenon, which influences the stability of 
the algorithm and results in failure to finish the automatic graph 
layout. This problem of trade-off between speeding up the layout and 
avoiding vibration phenomenon restricts the applications of the Spring 
Model. 
 
In the present work, an attempt is made to find methods to speed up 
the process of automatic graph layout and to avoid the existing 
problem. An improved spring model and its corresponding algorithm 
are proposed to solve the trade-off in the Spring Model. The improved 
model is called Dynamic Parameter Spring Model. In the proposed 
approach, dynamic parameters are introduced to improve the physical 
model. The corresponding algorithm is implemented.  
 
We conduct performance evaluations to compare our algorithm with 
the Spring Modeling Algorithm. The results of evaluations show that 
the Dynamic Parameter Spring Model makes the process of automatic 
graph layout faster and more stable.  
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Chapter 1  
 
 

Introduction 
 
 
Recent developments in computer science and its applications have made 
the visualization of complex conceptual data increasingly important. In 
this respect, graphs, as a simple, yet powerful and elegant data 
abstraction, are widely used to represent information that can be modeled 
as objects and connections among them. Graph drawing makes 
information more readable and understandable to the users. 
 
In information visualization, graph drawing addresses the problem of 
visualizing structural information. Automatic graph layout raises the 
problem of how to get an intuitive and readable layout for a given graph. 
Hence, automatic graph layout algorithms are commonly used when 
displaying graphs because they provide a “nice” drawing of the graph 
without user intervention. Without automatic graph layout, the 
information visualization would be meaningless. 
 
Many models and algorithms for graph layout have been proposed in 
recent years [1,2,3,4,5,6]. Different systems need different algorithms 
according to the requirements of system and application. Originally, these 
algorithms were designed and applied for graph drawing and automatic 
graph layout in the two-dimensional space. Recently, some algorithms 
have been designed for the three-dimensional space [7,8]. 
 
For visual presentation of undirected graphs, in these automatic layout 
algorithms, one of the most important issues focuses on the speed of 
layout. Particularly for a huge graph with a complex structure containing 
many nodes or vertices, the workload of computation becomes much 
larger and the algorithm looks heavier. As a classical and well-known 
Force-Directed Method, the Spring Modeling Algorithm [2] is a heuristic 
approach of graph drawing. It is widely applied in automatic graph layout, 
especially in some cases where the graph is in the status of editing. But 
on account of the restriction, there is a big trade-off between the speed of 
graph layout and the appearance of vibrations phenomenon. Based on 
this trade-off, in our research, we analyzed the relationship between the 
speed of layout and the parameters, as well as the relationship between 
vibrations of nodes and parameters defined in the Spring Model. The 

 1



Dynamic Parameter Spring Model and The Dynamic Parameter Spring 
Modeling Algorithm [9] are used to speed up the process of graph layout, 
in which the vibration phenomenon can be avoided to ensure the stability 
of the algorithm. 
 
This thesis is organized as follows. Chapter 2 gives the fundamental 
knowledge and definitions of the concepts used in this work. Chapter 3 
discusses the existing problem in Spring Model. The improved model, 
Dynamic Parameter Spring Model and corresponding algorithm are also 
described here. Chapter 4 describes the application of the Dynamic 
Spring Model to 3D-PP project. In Chapter 5 a discussion about the 
proposed approach is given. Finally, Chapter 6 presents the conclusions. 
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Chapter 2   
 
 

Automatic Graph Layout and Algorithms 
 
 
2.1 Graph Classification 
 
 
As basic drawing objects, graphs can be classified as follows: trees, 
directed graphs, undirected graphs, etc. Each class of graphs can also be 
divided into various subclasses. There are several methods for graph 
classification in terms of different graphic standards. Figure 2.1 shows 
the graph classification by Sugiyama [10]. 
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Figure 2.1 Graph classification 

 
Among all the graphs, undirected graphs are the most generic graphs and 
are widely used in many areas of application. 
 
 
2.2 Graph Drawing and Automatic Graph Layout  
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Graph drawing addresses the problem of visualizing structural 
information. More specifically, it is concerned with the construction of 
geometric representations of graphs and related combined structures. 
 
Graph drawing is generally used to represent relational structures that 
consist of a set of entities and relationships. Such structures are modeled 
as graphs: the entities are vertices, and the relationships are edges. 
Visualization means using graphs to model the objects with the data and 
the dependencies between modules. A module is represented as a vertex 
in a graph and the dependency is represented as an edge. Visualizations 
of relational structures are useful to transmit the associated information 
to the user. Different types of graphs can be used to represent different 
types of structures in visualization. 
 
Automatic graph layout (an important area of research in computer 
science technologies) addresses the problem of getting an intuitive and 
readable layout for a given graph that helps the user understand and 
remember the information easily. There is a wide range of applications 
including data structures, software engineering, database design, 
network design, VLSI, visual programming systems and various 
engineering applications. 
 
 
 

 (b) After automatic layout  (a) Before automatic layout 

 
 
 
 
 
 
 
 
  
 
 

Figure 2.2 Automatic graph layout 

 
As an example, Figure 2.2 shows the difference in visualization before 
and after the automatic layout. After the automatic layout, the 
information is more intuitive and easy to understand. 
 
Various methods and algorithms have been proposed to layout a graph 
automatically, such as [11,12,13] for the layout of trees, [14,15] for the 
layout of planar graphs, [16,17] for the layout of hierarchical directed 
graphs. Algorithms to draw the undirected graph automatically have also 
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been proposed. In this last category, Force-Directed Methods occupy an 
important position. 
 
Force-Directed Method is a well-known technique for automatically 
laying out generic undirected graphs. Many models and algorithms have 
been proposed for the Force-Directed Methods, such as Spring Model by 
Eades [2], magnetic spring model by Sugiyama [6], and others 
[3,4,5,18,19].  
 
For visual presentations of undirected graphs, one of the most important 
issues focuses on the speed of layout. Especially for a huge graph with a 
complicated structure with many nodes or vertices, the workload of 
computation becomes larger and the algorithm looks heavier. Therefore, 
the improvement of existing algorithms becomes more and more 
important, especially for the popular algorithm, the Spring Modeling 
Algorithm for automatic undirected graph layout.  
 
 
2.3 Spring Model and Algorithm 
 
 
2.3.1 Spring Model 
 
The Spring Model uses a physical analogy to draw graphs. A graph is 
viewed as a system of bodies with forces acting between them. The 
algorithm for the automatic layout of graph consists of seeking a 
configuration of the bodies with locally minimal energy, that is a position 
for each body, such that the value of resultant forces on each body is zero 
[20].  
 
In the Spring Model, vertices of graph are replaced with steel rings and 
each edge is replaced with a spring to form a mechanical system; 
repulsive and attractive forces are defined among rings. For example, 
Figure 2.3(a) shows a graph expressed by the Spring Model in its 
initialization configuration. After the action of repulsive and attractive 
forces, an equilibrium configuration is finally obtained as in Figure 2.3(b). 
Figures 2.3(c) and 2.3(d) show the corresponding straight-line drawing of 
the graph. For an undirected graph, the automatic graph layout is a 
process from initialization configuration to equilibrium configuration.  
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Figure 2.3 Automatic graph layout by the Spring Model 

 

Fs

In the Spring Model, two types of forces are defined. The spring force acts 
on each pair of vertices (nodes) connected by spring directly. Experience 
shows that Hookes Law (linear) Springs are too strong when the nodes 
are far apart, therefore the logarithmic force are used to represents the 
spring force. The repulsion force is the force acting on each pair of 
vertices (nodes) without a direct connection. The two forces are illustrated 
in Figure 2.4. 
 
 
 Fs 
 
 Fr Fs
 
 Fr Fs
 
 
 

Figure 2.4 The Spring Model 
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In the figure above,  represents the spring force and F represents the 
repulsion force. 

sF r

 
As a method of force-directed placement approach, the Spring Model has 
accepted four aesthetic criteria [3]. 
 
 A1. Ensuring (almost) the same length for all edges. 
 
 A2. Minimizing edge crossings. 
 
 A3. Revealing symmetry. 
 
 A4. Distributing vertices evenly. 
 
These aesthetic criteria ensure that a given generic undirected graph has 
a “nice” layout after the automatic layout by the Spring Model.  
 
 
2.3.2  Definition of Forces in Spring Model 
 
 
z Spring force 

 
Spring force F  is acting on each pair of nodes connected directly in 
the graph. It behaves as an attractive spring force or as a repulsive 
spring force according to the length of spring (the distance between 
two nodes).  
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Figure 2.5 Spring force 
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Parameter  represents the natural (zero energy) length of spring. 
Parameter  and parameter  in the definition of repulsion force 
are two constant parameters in the Spring Model used to balance the 
influence of spring force and repulsive force. Fig. 2.5 shows the spring 
force. 

dC

sC rC

 
 

z Repulsion force  
 
Repulsion force F  is acting on each pair of nodes without a direct 
connection by spring.  It is given by 

r

 
),2.2.....(................................................../ 2dCF rr = 

 
 
where  denotes the distance between a pair of nodes. Figure 2.6 

shows the repulsion force as follows. 
d

 

d
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Figure 2.6 Repulsion force 

 
For every node i in the graph, the acting resultant of forces is the sum of 
all spring forces and all repulsion forces acting on i. 
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2.3.3  Spring Modeling Algorithm 
 
Based on the Spring Model, the Spring Modeling Algorithm for automatic 
graph layout is given as follows:  
 
Algorithm: 
 
Initialize all positions of nodes in the graph 
Initialize all constant parameters 
Set the stop condition. 
 
While (stop condition not reached) 
{ 
   for v=1 to (number of nodes) 
    { 
 for w=1 to (number of nodes) 
 { 

        if ( node v and node w are a pair of nodes connected directly) 
     { 
           compute the spring force  acting on the node v by node w; )(vFs

          ; )()()( vFvFvF s+=
     } 
       else 

{ 
 compute the repulsion force  acting on the node v by node w )(vFr

         ; )()()( vFvFvF r+=
     } 
 } 
  
 compute the movement )(vFδ of node v;  
    } 
    move all nodes; 
} 
 
 
The Spring Modeling Algorithm is a heuristic method for automatic graph 
layout in which positions of all nodes cannot be decided immediately. The 
process of layout is a simulation of force model. The simulation consists of 
computing the displacement of nodes by computing the resultant of force 
acting on nodes and moving all nodes to new positions.  
 
Thus, in the same iteration of computing and moving, all nodes will reach 
their appropriate position until the graph reaches the stop condition. The 
stop condition needs to be set in the initialization stage according to the 
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requirements of the user. This process represents the process of 
automatic layout for a specified graph. 

 10



 
 
 
 
Chapter 3  
 
 
Dynamic Parameter Spring Model and 
Algorithm 
 
 
3.1  Problems in Spring Model 
 
 
As a Force-Directed Method, the Spring Model is very suitable for 
automatic undirected graph layout. In real applications though, we found 
that there are some problems that restrict the application of algorithm. 
 
 
3.1.1  User Requirements 
 
When the Spring Modeling Algorithm is applied to layout a given graph 
automatically, the main desire of a user is to get a “nice” and stable 
configuration of the graph in a short time. In fact, this desire emphasizes 
two fundamental and important requirements: 
 

1. The algorithm must be stable. 
 
2. The algorithm must be quick. 

 
In some cases, the Spring Modeling Algorithm described in Section 2.3.3 
cannot fulfill these two requirements.  
 
 
3.1.2  Trade-off between Speed and Vibrations  
 
From the definition of spring forces and repulsion forces in Section 2.3.1, 
we know that there are two constant parameters C  and  which will 
influence the result of computation of spring forces and repulsion forces 
directly. This influence will result in different values of displacement and 
movement for nodes in the graph and will ultimately determine the speed 
of layout. 

s rC
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Apparently, the bigger parameters C  and are, the higher the speed of 
automatic graph layout is. In fact, through experiments, we obtained the 
same results. We hope to increase the speed of layout by giving two 
parameters C  and C  large enough to speed up the procedure of layout. 
Unfortunately, this idea succeeds only occasionally. In most cases, this 
will result in a new problem appearing that is the vibrations phenomenon. 
We will describe the vibration phenomenon and the relationship between 
parameters and vibration phenomenon in detail in Section 3.3.1. Here we 
will explain it briefly. Vibration of nodes is a phenomenon that appears in 
the process of layout. Under the action of resultant forces, nodes in the 
graph should move closer and closer towards the stable position and the 
graph should change its configuration closer to the equilibrium 
configuration according to the algorithm. In fact, in some cases, because 
of the vibration, the nodes look like a reciprocator. This leads to a 
situation where the automatic graph layout cannot be finished 
successfully. In other words, the vibration phenomenon of nodes will 
influence the stability of the Spring Modeling Algorithm. Through 
experiments, we found that vibration appears not only when the values of 
parameters C  and C  are too big, but also when they are too small. 

s rC

s

s

r

r

  
Therefore, the vibration phenomenon of nodes restricts the application of 
the Spring Modeling Algorithm. Because the reason of appearance of 
vibration phenomenon is that parameters C  and are too big or too 
small, the problem of vibration phenomena is not only a drawback of the 
Spring Modeling Algorithm; essentially, it is the drawback of the Spring 
Model.  

s rC

 
When using the Spring Modeling Algorithm, in fact, user can avoid the 
vibration phenomenon by giving appropriate initialization settings and 
stop conditions. But in consideration of the speed, apparently the 
vibration phenomena and the speed of layout is a trade-off in the Spring 
Model. In a sense, if this trade-off can be solved, the two requirements 
mentioned in Section 3.1.1 can also be fulfilled. 
 
Aiming at solving the trade-off between appearance of vibration 
phenomenon and the speed of automatic layout in the Spring Model, in 
the next chapter, we give our approach: the Dynamic Parameter Spring 
Modeling Algorithm, a modified spring modeling algorithm in which the 
basic aesthetic criteria existing in Spring Model mentioned in Section 3.1 
continue to be maintained. 
 
 
3.2 Dynamic Parameter Spring Model 
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3.2.1 Expected Position of Node 
 
After the process of layout is finished, every node in the graph will move 
to a stable position called final stable position. If we know the final stable 
position for every node or a position close to the final stable position 
before laying out the graph, we can quickly move every node towards that 
position. However, before the layout, the user has no means to tell where 
the final stable position for every node will be.  
 
According to the properties of spring, after layout, the distance between 
each pair of nodes connected by a spring will be close to the length of 
spring. In a graph, if two nodes are not connected directly, but the 
shortest path between them can be found, we can imagine that after 
layout, the real distance between these two nodes will be close to the 
shortest path multiplied by the spring length.  
 
Therefore, the concept of expected position of a node can be used in the 
algorithm to speed up the process of layout. In the physical model, we can 
provide a mechanism that drives every node towards its expected position, 
and thus increase the speed of layout.  
 
We make some experiments to test the validity of assuming the expected 
position of a node. We are more concerned with the validity of the 
assumption rather than its rationality. Through experiments, we found 
that by using the expected position, the algorithm is more effective for 
various types of undirected graphs.  
 
In general, for a given graph, the assumptions for the majority of nodes 
are fairly precise. Only when large numbers of connection loops exist in a 
connected graph, our assumptions are not precise enough. However this 
lack of precision does not influence the stability of the algorithm; it has 
an indirect, slight influence on the final layout. This has also been proved 
by our experiments. 
 
 
3.2.2 Dynamic Parameters 
 
 
After the discussion based on the expected position of a node, we apply 
the concept of expected position to the new spring model. In the Spring 
Model, all the parameters are constant parameters, and this leads to the 
trade-off we mentioned before. If we want to solve the trade-off, we have 
to adjust these parameters. Therefore, in our approach, we redefine all 
the parameters and apply these new definitions of parameters to solve 
the trade-off. 
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At first, let us make an analysis of all parameters in the Spring Model at 
first. In Section 2.3, the definitions of forces are given in formulas (2.1) 
and (2.2). 
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rr

dss
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According to the definition of spring forces and repulsion forces in the 
Spring Model, C  determines the spring forces and C  determines the 
repulsion forces. C  represents the natural length of spring used in the 
Spring Model. The user needs to define these parameters before the 
layout. How to define these fixed parameters is still decided by the 
structure of graph and what types of layout the user wants to make. For 
example, the user can put a large graph in a small space by giving a small 
parameter  to increase the density; At the same time, he also needs to 
think about the consistency among these three parameters. Therefore the 
user finds it difficult  to set the parameters in the Spring Model. 

s r

d

dC

 
In general, parameters C  and  represent a pair of related and 
proportional parameters in terms of the balance between spring forces 
and repulsion forces acting on every node in the system. In our approach, 
we give a similar definition.  

s rC

 
In Section 3.2.1, we discussed how different nodes have different relative 
positions in a given graph and how these relative positions can be 
calculated by the concept of shortest path. Our proposal is to give every 
node in the graph a group of independent and irrelative parameters, 
which are called dynamic parameters. Thus we can adjust every 
parameter of the node in terms of the relative position in the graph and 
obtain the automatic layout in a short interval of time.  
 
To be specific, we give each node i  a group of independent parameters 

 and with corresponding definitions for C  and  in the original 
Spring Model. The variable i  in and  expresses that these two 
private parameters are related only to node i . This is the difference 
between the definitions of parameters in our approach and that in the 
original Spring Model where parameters have the same value for all 
nodes and they are constant throughout the process of layout. 

)(iCs )(iCr s rC
)(iCs )(iCr

  
 
3.2.3 Definition of Force Model 
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Figure 3.1 shows the Dynamic Parameter Spring Model in three-
dimensional space. Due to the fact that graphs in real applications have 
become more complex, many of them are drawn in 3D space, not only in 
2D space. Therefore we give the improved spring model in three-
dimensional space. The model can be used in automatic graph layout in 
two-dimensional space as well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 The Dynamic Parameter Spring Model 

 
For every node i  in the graph, the force acting on it should be calculated 
using the parameters of the node itself. For any node i  in the graph, the 
spring force acting on it by the spring connected with node j  is 
represented by F .  The repulsion force acting on the node i  connected 
with node  is represented by . ,  have the same meaning 
with  and C  in the original Spring Model respectively. C  and C  
are defined only for the node i , not for the whole system. The variable 

 is the real distance between node i  and node , and has the same 
definition as in the original Spring Model. Formulas (3.1) and (3.2) give 
the definitions of spring force and repulsion forces, and (3.3) shows the 
formula for the resultant of forces.  
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After defining the forces, our next concern is how to define the dynamic 
parameters and how to calculate them. In subsection 3.2.1, we discussed 
the expected position of nodes. We can use the expected position for every 
node to replace the final position and to define the dynamic parameters 
based on this assumption. Thus we can make every node move quickly 
towards the expected position to increase the speed of layout. 
 
In terms of different positions for a given node, we consider that two 
different groups of formulas will be used to compute the dynamic 
parameters C and C of every node. )(is )(ir

 
If the real distance between the fixed node and node i  is larger than the 
distance between the fixed node and its expected position, for every node 
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respectively, where  and  are constant parameters predefined in the 
initialization stage of program running. C  is the common constant 
parameter of the system.  and  represent the shortest path and 
distance between the fixed node and every node i  respectively. The fixed 
node is a unique node that is chosen by the user from all nodes of the 
graph before the procedure of layout.   
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If the real distance between the fixed node and node i  is smaller than the 
distance between the fixed node and the expected position of node i , C  
and C will be 
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For these two situations, we use the maximum of the two ratios to adjust 
these parameters and speed up the computation. Based on the definition 
of dynamic parameters, we give the general formulas (3.8) and (3.9) for 
the Dynamic Parameter Spring Model. 
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Figure 3.2 shows a simple example and we can use it to illustrate the defined formula. 
The dotted circles represent the expected stable position of node i and node . Node 

 is further from the fixed node than the expected position of i . Therefore the 

parameter will be 

j
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d
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than its expected position, and therefore we use the following formula: 
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Figure 3.2 An example of DPSM graph 

 
 
3.3 Dynamic Parameters and Avoiding Vibrations 
 
 
3.3.1  Vibration Phenomena 
 
Vibration phenomena can be found everywhere around us. Speaking of 
vibration, most people will imagine that two objects connected by a spring 
and these objects will make a rapid linear motion around an equilibrium 
position under the spring force. People take for granted that the vibration 
in the Spring Model is the same as the generic vibration we mentioned.  
 
The truth is entirely different. The vibration phenomenon we mentioned 
in the Spring Model is a special state in the automatic graph layout. In 
the process of automatic layout, certain forces are computed and nodes 
are moved. The computations and movements are done several times 
without any interference from the user and each time a new layout is 
obtained until certain conditions are satisfied. In other words, the 
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automatic layout is not obtained in only one step, but in many steps and 
their number cannot be estimated. The description above corresponds to a 
successful automatic graph layout. 
 
Sometimes the process of layout cannot be finished successfully. If we 
observe every step of layout, we will find that the same graphs appear 
after different layouts. This phenomenon gives the illusion that makes it 
look like an object (or a particle) appears in the same place many times. 
The same graph can appear after some consecutive layouts or not. In the 
Spring Model, if this type of phenomenon appears, in most cases we have 
consecutive layouts. The phenomenon makes it appear as some nodes are 
vibrating around some special equilibrium positions. We call this 
vibration phenomenon of nodes. 
 
In the Spring Model, why does this type of phenomenon appear? The 
answer to this question can also give us a solution for the question of 
avoiding it in our DPSM.  
 
Let us analyze a simple example. 
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Figure 3.3 Vibration phenomenon 

 
 
In this example (Figure 3.3), we observe a vibrating node in the graph. 
We assume that the left red circle represents the position after the (  
layout. In the next layout, the resultant of force F  including both the 
spring force F  and the repulsion force  will drive the node towards 
the next position, the position of the right red circle in Figure 3.3. After 
the  layout but before the (  layout, the node in the right position 
will move towards the left position under a similar force, Therefore the 
node will move between left position and right position and a stable state 
will never be reached, the process of automatic layout will never end. 

thk )1−

)(k

)(ks )(krF

thk thk )1+
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3.3.2  Avoiding Vibrations in DPSM 
 
 
Since we know why the vibration phenomenon appears, we should make 
this phenomenon disappear to ensure that the automatic graph layout 
can continue successfully. Because parameters in the original Spring 
Model need to be predefined, these parameters cannot be changed in the 
process of layout. Therefore, the force between two nodes is determined 
only by the distance between them.  
In the DPSM, every node has a group of private parameters. In the 
process of layout, these parameters can be changed to be suitable for the 
status of the graph at that time. For a node far away from its expected 
position, private parameters will be assigned a bigger value to make the 
acting force bigger.  Thus every node tends to move to its expected 
position.  
The dynamic parameters also stop all nodes from moving away from their 
expected position. In real experiments, the dynamic parameters are 
effective in decreasing the possibility of appearance of vibration 
phenomenon.  
 
In order to remove the influence of vibration phenomena entirely, another 
detecting algorithm has been added to the DPSM. Considering that the 
influence to the whole graph caused by each node is different, we only 
search the node with the biggest displacement in the graph and judge 
whether the node is in vibration or not to do the detection. After the 
detection, we examine 3 consecutive steps of layout. We consider the node 
vibrating if after the third step of layout, the node moves back to a place 
close to the position corresponding to the first step of layout. If a node is 
found in vibration, we need to:  
 

1) set the position of the node after the second layout as the 
position for next step of layout and 

 
2) decrease the constant parameters K  and  to decrease the 

probability of appearance of vibration in subsequent layouts. 
s rK

 
Figure 3.4 shows the detection of vibrations. If the distance S is 
much smaller than the distance S  or which correspond to two 
consecutive layouts, we think there must be a vibration. 

)1,1( +− kk
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Figure 3.4 Vibration phenomenon detection 

 
As far as vibrations of nodes are concerned, the important thing is to 
decrease the influence of vibration and not to avoid them completely. This 
is exactly what we achieve in DPSM. 
 
 
3.4 Algorithms 
 
 
Based on the definition of DPSM, this section will give the corresponding 
algorithm, the Dynamic Parameter Spring Modeling Algorithm (DPSMA). 
Section 3.4.1 will introduce a traditional algorithm to compute the 
shortest path for a given graph. The algorithm for dynamic parameter 
computing and adjusting will be introduced in section 3.4.2. DPSMA is 
given in section 3.4.3 
 
3.4.1  All Pairs of Shortest Path 
 
The concept of shortest path means finding the shortest path in the graph 
from one node to another node. The algorithm will become different if the 
edges have different weights. Figure 3.5 shows a small example of 
shortest path. In this graph, if the weights of all edges are the same, the 
shortest path between node a  and node  is equal to 2, and the shortest 
path between node b  and node  is 3. 

d
h
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Figure 3.5 An example of shortest path 
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In DPSMA, for a given graph, all pairs of shortest path for the graph need 
to be computed before layout, and just once. Therefore the influence over 
the system of the computations of all pairs of shortest path is very small. 
As for the DPSMA, in order to compute all pairs of shortest path 

between the fixed node and any node i , we use the Floyd-Wars Hall 
algorithm [21]. The input to the algorithm is d , which represents the 
distance between node i  and node  (in the following code, d[i][j]) that is 
the shortest path between all pairs of nodes.  

),( ifsp

ij

j

 
 
Algorithm: 
 
Input adjacency matrix of graph with n nodes, W[0.. n-1][0..n-1]. Initialize 
shortest path matrix, d[0..n][0..n]; 
for i=0 to n (number of nodes) 
{ 

for j=0 to n 
   d[i][j]=W[i][j]; 

} 
 

for k=0 to n 
{ 
   for i=0 to n 
      for j=0 to n 
         d[i][j] =min (d[i][j], d[i][k]+d[k][j]); 

} 
 
 
3.4.2  Dynamic Parameter Adjusting 
 
The definitions of dynamic parameters C and C  have been given in 
section 3.2.3. In the process of automatic graph layout, parameters need 
to be recomputed in every step of layout and readjusted to be suitable for 
the next steps. 

)(is )(ir

 
Algorithm: 

Compute all pairs of shortest path for every node; ),( ifsp

Initialize const parameters  and ; sK rK
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for i=0 to n (number of nodes)  
{     

compute ;      ),( ifd

if ( ) // two separate cases are needed  ),(),( ifspifd <

{ 

( )dss CifspifdKiC ),(/),()( = ; 

( )drr CifspifdKiC ),(/),()( = ; 

} 
else 
{ 

( ) ),(/),()( ifdCifspKiC dss = ; 

( ) ),(/),()( ifdCifspKiC drr = ; 

} 
} 

 
 
3.4.3  Dynamic Parameter Spring Modeling Algorithm  
 
The Dynamic Parameter Spring Modeling Algorithm is based on the 
proposed Dynamic Parameter Spring Model that has been described in 
detail in Section 3.2. The following give the frame of the algorithm: 
 
Algorithm: 
 
Compute all pairs of shortest path sp ; ),( if
Initialize all positions of nodes; 
Initialize all parameters; 
Initialize stop condition; 
 
While ( graph does not reach stop condition) 
{ 

for i=1 to n (number of nodes) 
   { 
  Initialize the F  )(i
  Compute dynamic parameters C )(is

and C )(ir
 

  for j =1 to n 
  { compute the distance d ; 
   if( node i  and node is is connected directly) j
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{ )log)( ),(
),( 







=
dC

jidisCsKF jis
; 

),()()( jisFiFiF += ; 

} 
else 
{ ),(/)( 2

),( jidirCrKF jir = ; 

 ; 
),()()( jirFiFiF +=

} 
} 

  compute displacement )(iFδ  of every node i ; 
   
 } 
 modify positions of all nodes; 
 
 if( vibration phenomena existing) 
          { 
   Adjusting parameter 

sK and 
rK ; 

  Adjusting the positions of vibrating nodes; 
} 

          compute the stop condition; 
} 
 
 
In the algorithm, in order to compute the distance d , we have two 
different formulas that are used in two-dimensional space and three-
dimensional space respectively. In two-dimensional space, we use 

22 )()(),( jiji yyxxjid −+−=  to compute the distance between node i and . 
In three-dimensional space, the formula is 

j

222 )()()(),( jijiji zzyyxxjid −+−+−= . The constant parameters K and  are 
propositional parameters, and are used to balance the spring force and 
repulsion force. In DPSM, according to the user requirement of a “nice” 
layout and other aesthetic criteria, these two parameters need to be 
predefined in the initialization stage. It is possible that the algorithm in 
the process of layout can adjust these parameters automatically.  

s rK

 23



 
 
 
 

Chapter 4   
 
 

Application to 3D-PP 
 
 
4.1 Three Dimensional Pictorial Programming 
 
 
4.1.1 Visual Programming System 
 
Visual Programming System (VPS) provides the user with a new type of 
developing environment where pictorial objects are used to represent a 
paragraph of programs or applications. It is entirely different from the 
traditional programming technique in which the source is written in text 
form. In the visual programming environment, writing source code is 
replaced by managing some pictorial elements that make the programs 
friendly and easy to “write”. Expressions of the structure of programs by 
pictorial elements become more clear, intuitive and easy to understand.  
 
 
4.1.2 Three Dimensional Visual Programming System 
 
Based on two-dimensional visual programming systems, such as PP [22], 
ViewPP and others [23,24,25], 3D-PP [7,26,27] is our three-dimensional 
visual programming system that is extended from two-dimensional space. 
3D-PP is the abbreviation of “Three Dimensional Pictorial Programming” 
which is one of our current research projects. Compared to two-
dimensional VPS, 3D-PP can provide more pictorial objects or elements in 
the same limited area of display. That is also the essential difference 
between the three-dimensional visual programming systems and those in 
two-dimensional space.  
 
3D-PP is designed for the parallel logic programming language GHC [28] 
which is one of the high level declarative programming languages. On one 
hand, a declarative programming language is suitable for visualization 
because visual programming is also declarative. On the other hand, a 
logic programming language requires comparatively fewer numbers of 
programming elements than a procedural language.  Therefore, GHC is 
more suitable to be used in a visual programming language. 
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The clause of GHC is structured as follows: 
 

predicates(arguments, …) : - guard | body. 
 
In GHC, the basic program elements include atoms, lists, input data, 
output data, goals and built-in goals. Two or more goals can be contained 
in both body and guard.  3D-PP is built by using some pictorial 
programming elements. These pictorial programming elements are only 
the basic elements defined in GHC and expressed by some types of three-
dimensional objects. The combination of these pictorial programming 
elements can be structured to express clauses in a GHC program as a 
graph. Programming is done to create or edit a graph by manipulating 
various types of three-dimensional pictorial programming elements in 
3D-PP.  These manipulations of 3D objects are equivalent to editing 
source codes in traditional programming systems. In other words, a graph 
in 3D-PP represents the visualization of a program and these 3D objects 
are just the visualization of basic programming elements of the program.  
 
  
4.2 Implementation of DPSMA in 3D-PP 
 
 
In 3D-PP, programs are expressed as graphs. Making a program has been 
transformed into manipulating a graph. From the point of view of 
programmers, the VPS of 3D-PP make the programming and editing 
programs more easy and intuitive. With the editing, modifying of graph, 
the positions of nodes represent the pictorial programming elements in 
the graph and the relationships among these nodes have to be changed 
accordingly. Thus after editing or modifying the program, both the nodes 
and the graph need to be redrawn and the relationships among the graph 
need to be maintained. The process of redrawing, in fact, is just a process 
of automatic graph layout.  
 
The Spring Modeling Algorithm has been applied in 3D-PP to obtain the 
graph layout automatically. But for the problems mentioned, in many 
cases the Spring Modeling Algorithm restricts the visualization of 
programs in 3D-PP. Therefore in 3D-PP we use the DPSMA to replace the 
Spring Modeling Algorithm to make the automatic graph layout.  
 
In 3D-PP, all pictorial elements are treated comparably although these 
pictorial elements represent different basic program elements in GHC 
clauses. The DPSMA has been given in Section 3.4.3, and we have 
pointed out that there are four requirements in the initializations steps:  
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A) Compute all pairs of shortest path ; ),( ifsp

 
B) Initialize all positions of nodes; 
 
C) Initialize all parameters; 

 
D) Initialize stop conditions. 

 
In 3D-PP, all the edges are regarded as springs with the same physical 
characteristics and all edges are supposed to have same weight. Therefore, 
to fulfill the first requirement (A) in the initialization steps of DPSMA, 
we compute all pairs of shortest path by the algorithm with the same 
weights. The algorithm has been given in Section 3.4.1. To fulfill the 
requirement (B), the initializations of all positions of nodes, we use the 
real values of coordinates of every node in the three-dimension orthogonal 
coordinates reference frame. To fulfill the requirement (C), the 
initializations of all parameters, we use different values in different cases. 

 and constant parameters K  and are not fixed in 3D-PP, but there 
are already some basic rules that can be used to define these parameters. 
For example, we usually use a smaller C  for a complicated graph 
because we need to put many nodes in a limited space.  In addition, K  
and must be a pair of proportional parameters. To fulfill the 
requirement (D), the initialization of stop conditions, we define a constant, 
force threshold, as the stop condition. When the biggest resultant force 
among all nodes in the graph becomes smaller than the predefined force 
threshold, we think that the layout has reached its stable state and the 
computations should stop.  

dC s rK

d

s

rK

 
In addition, the fixed node is unique among all nodes and is selected by 
the user. In 3D-PP, the user can use the mouse to specify the fixed node 
by moving the mouse over a node.  
 
By the application of DPSMA in 3D-PP, the graphs (GHC programs) 
become meaningful and understandable. Programmers can create, edit 
and modify the programs more easily. The vibrations phenomena when 
using the Spring Modeling Algorithm no longer appear. As far as the VPS 
of 3D-PP is concerned, the speed of automatic layout becomes much 
quicker than that of the Spring Modeling Algorithm.  
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Chapter 5   
 
 
Application and Performance Evaluation 
 
 
5.1 Properties of DPSM and Applications 
 
 
5.1.1 Properties of DPSM 
 
Because DPSM is a modified, improved spring model that is a best-known 
Force-Directed method, DPSM is also a Force-directed method. Therefore 
some common properties for Force-Directed Methods are all contained in 
DPSMA. Essentially, DPSM is still a force system defined by the vertices 
and edges, which provides a physical model for the graph.  DPSMA is an 
algorithm based on a technique for finding the equilibrium state of the 
force system, that is, a position for each vertex, such that the total force 
on every vertex is zero [3]. An important property is the aesthetic criteria 
of automatic graph layout. Four basic aesthetic criteria still exist in 
DPSM: 1) Ensuring that edge lengths are uniform, 2) Minimizing edge 
crossings, 3) Revealing symmetry and 4) Distributing vertices evenly.  
 
These same or similar properties decide that the DPSM and DPSMA have 
the same or similar applications. On one hand, the DPSMA is a method of 
generating an automatic graph layout.  On the other hand, it represents a 
method of graph drawing. Users can get the result of layout for a given 
graph and can also observe the process of the automatic graph layout. On 
top of these common properties, DPSMA has some properties of itself.  
  

3) Stability. 
 
4) High speed 

 
In DPSMA, we solve the problem of appearance of vibration phenomena. 
This ensures the stability of DPSM algorithm. Using dynamic parameters 
speeds up the process of layout and that makes the DPSMA a rapid 
algorithm. 
 
5.1.2 Applications and Examples 
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The properties of DPSM show that the DPSMA can be largely applied in 
many fields. It can be used not only in scientific research but also in 
visualization of information. 
 
To demonstrate the use of DPSMA, we show some steps in laying out a 
pentagonal shape in Figure 5.1. The process of layout is illustrated in 
Figures 5.1(1) to (6). 
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Figure 5.1 An example of laying out a graph automatically 
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For different types of undirected graphs, some examples are given to 
show the results of applications of DPSMA as follows (Figure 5.2). The 
most natural and aesthetic results from DPSMA are those obtained from 
symmetric graphs. Figure 5.2 illustrates some planar symmetric graphs.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2 Layout of symmetric planar graph 

 
 
Some examples of trees are represented by the DPSMA. Figure 5.3(a) shows a 
simple binary tree where Figure 5.3(b) illustrates a complicated binary tree. 
 
 

( a ) 
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( b )

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3 Representations of trees 

 
We present in the following some examples of cubes. The layouts of these cubes are 
generated by the two-dimensional version of DPSMA and appear to be three-
dimensional when laid out. In Figure 5.4, (a) represents one cube and (b) represents 
twin-cubes. 
 
 
 

( b )( a )

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4 Cube and twin-cubes are laid out by the two-dimensional version of DPSMA 

 
 
5.2 Performance Evaluations 
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We made some experiments to evaluate the performance of DPSMA.  
Because the improvements of the algorithm focus on its speed and 
stability (the problem of vibration phenomenon), these experiments are 
designed to evaluate the DPSMA in two respects:  
 
1) Evaluate the speed of algorithms;  
 
2) Determine whether or not vibrations phenomena appear. 
 
 
For the first evaluation object, we use 5 undirected graphs with different 
complexity to compare the speed of layout between DPSMA and SMA. 
Considering the property of automatic graph layout, the comparisons 
include the comparison of speed in real running time and the comparison 
of number of layout iterations. 
 
We made the same initialization settings for DPSMA and SMA to make 
the experiments. The force thresholds are defined as stop conditions of 
automatic layout. We defined a constant as the force threshold for a given 
graph in the initialization stage. When the biggest resultant forces among 
all nodes in the graph become smaller than the predefined force threshold, 
it means that the layout has reached its stable state and the computation 
should be stopped. This is the stop condition of the layout for a given 
graph. 
 
In experiments, the force thresholds are set to 0.01(Newton), 0.05,0.1 and 
0.5 respectively to evaluate the performance of DPSMA under different 
force threshold conditions. The parameters K  and  are set to be the 
same with the initialization parameters C and  in the SMA 
respectively. Table 5.1 shows the basic data of 5 graphs in experiments. 

s rK

s rC

 
 

Graph 1 2 3 4 5 
Nodes 3 8 27 64 125 
Edges 3 12 54 142 294 

Table 5.1 Graph data 

 
At first, we compare the number of iterations. In the same environment, 
we obtained the following results in Table 5.2. 
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No. of graphForce threshold 0.5 0.1 0.05 0.01

SMA 41 45 47 52

1 DPSMA 29 34 36 41

DPSMA/ SMA 70.7% 75.6% 76.6% 78.8%
SMA 45 64 72 93

2 DPSMA 34 51 53 74

DPSMA/ SMA 75.6% 79.7% 73.6% 79.6%
SMA 127 176 199 261

3 DPSMA 89 149 169 222

DPSMA/ SMA 70.1% 84.7% 84.9% 85.1%
SMA 247 336 384 507

4 DPSMA 176 264 311 386

DPSMA/ SMA 71.3% 78.6% 81.0% 76.1%
SMA 278 479 575 801

5 DPSMA 193 367 432 637
DPSMA/ SMA 69.4% 76.6% 75.1% 79.5%

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5.2 Comparison of number of iterations 

Figure 5.5 shows the comparison of number of iterations in the case of 4 
different force thresholds as stop conditions. The x-axis is the number of 
graph and the y-axis is number of the iterations.  
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Figure 5.5 Comparison of number of iterations 
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We observe from Figure 5.5 that the number of iterations of automatic 
layout for a given graph by DPSMA is smaller than that obtained by SMA. 
The results also show that the DPSMA is more effective than SMA when 
the graph is complex, with many nodes and edges.  
 
We also compare the real running time between DPSMA and SMA. In 
this experiment, the same 5 graphs are used to compare the performance. 
Because there are many factors that influence the real running time, 
such as the algorithm itself, optimizations of algorithm, real environment 
and others, we make the same experiments many times and use the 
average values as results. 
 
Table 5.3 shows the results of experiments in the case of the 5 given 
graphs used previously. 
 
 
 
No. of graphForce threshold 0.5 0.1 0.05 0.01

SMA 118 125 141 138
1 DPSMA 74 84 125 127
DPSMA/SMA 62.7% 67.2% 88.7% 92.0%
SMA 132 177 229 335

2 DPSMA 117 167 206 302
DPSMA/SMA 88.6% 94.4% 90.0% 90.1%
SMA 179 216 267 367

3 DPSMA 157 189 234 313
DPSMA/SMA 87.7% 87.5% 87.6% 85.3%
SMA 3178 4407 4889 6139

4 DPSMA 2834 3910 4319 5401
DPSMA/SMA 89.2% 88.7% 88.3% 88.0%
SMA 38412 61340 71049 96324

5 DPSMA 30132 43987 52987 71980
DPSMA/SMA 78.4% 71.7% 74.6% 74.7%  

 
Table 5.3 Comparison of real running time 

(Unit: milliseconds.) 
 
 
 

 
Figure 5.6 shows the comparisons of real running time in the case of 
different force thresholds as stop conditions for graph 4 and graph 5. 
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Figure 5.6 Comparison of real running time 

 
From the comparison of speed in real running time, the DPSMA proves to 
be better than SMA. Because in DPSMA the computations of dynamic 
parameter and all-pairs of shortest path occupy real running time in 
every step of layout, the results are not so effective as in the comparison 
of number of iterations. The results also show that the DPSMA is more 
effective in the case of complex graphs. 
 
These two groups of experiments show that the DPSMA is more effective 
than SMA with respect to both real running time and number of 
iterations. 
 
We also made some experiments to evaluate the stability of DPSMA. No 
vibration phenomena are found in the experiments, and this shows that 
DPSMA is stable. When using the same data, in some cases the vibration 
phenomena are found in the process of layout in the case of SMA. This 
shows that SMA is not stable enough.  
 
As for automatic layout for undirected graph, many experiments show 
that DPSMA is faster and more stable than SMA. For different types of 
undirected graphs, the efficiency of DPSMA is different. The efficiency in 
case of complex graphs is higher than that for simple graphs; the 
efficiency of low-precision graphs is higher than that of high-precision 
graphs. 
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Chapter 6   
 
 

Conclusions 
 
 
An improved spring model, the Dynamic Parameter Spring Model, which 
is applied in automatic graph layout for general undirected graphs has 
been proposed, and its corresponding algorithm, the Dynamic Parameter 
Spring Modeling Algorithm, has been implemented. The new improved 
model is based on the well-known Spring Model as the representation of 
force-directed approach to automatic graph layout. In the original Spring 
Model while trying to speed up the layout, the vibration phenomenon may 
appear and this can lead to an unstable algorithm. 
 
Our model solves the existing problem in the original Spring Model and 
speeds up the process of automatic graph layout while avoiding the 
appearance of vibration phenomenon. 
 
Using the new improved algorithm, a quick and stable automatic graph 
layout is provided and the user can understand the information in the 
given graph easily and intuitively. Our approach can also be used in 
various applications of information visualization. 
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