

 Synthesis of State Machines from

Multiple Interrelated Scenarios Using Dependency Diagrams

Simona VASILACHE
 Department of Computer Science, University of Tsukuba

Tsukuba, Ibaraki 305-8573, Japan

and

Jiro TANAKA
Department of Computer Science, University of Tsukuba

Tsukuba, Ibaraki 305-8573, Japan

ABSTRACT

Requirements specification is one of the most important phases
in developing a software application. In defining the behavior
of a system, requirements specifications make use of a number
of scenarios that are interrelated in many ways. Most of the
current approaches, even though giving directions on how to
translate them into state machines, treat each scenario
separately. Because different relationships between scenarios
result in different state machines, we believe it is significant to
emphasize and represent these relationships. In order to
illustrate them we propose a new type of diagrams named
dependency diagrams. We offer a set of rules and steps for the
synthesis of state machines from multiple inter-related
scenarios, based on the initial scenarios and on the newly
introduced dependency diagrams, as a means to describe the
requirements specifications and to offer support during the
design and implementation phases of developing a system.

Keywords: requirements specification, dynamic modeling,
scenarios, state machines.

1. INTRODUCTION

Requirements analysis represents a crucial phase in the
software development process. The main task of the
requirements analysis is to generate specifications that describe
the behavior of a system unambiguously, consistently and
completely [1]. Several object-oriented methodologies and
notations (like OMT [2], UML [23]) make use of scenarios as a
means of capturing requirements specifications, as well as a
means of communication between users and software
developers. A scenario is a sequence of events that occurs
during one particular execution of a system [1], it is one
particular “story” of using a system.
During the recent years, scenarios have gained considerable
popularity. However, we believe that they have not yet
received the attention they actually deserve and they have not
been used up to their entire potential. Their usefulness lies not
only in the ability to capture requirements, but also in their
applicability when used in conjunction with other models. We
specifically refer to what is called "behavior models", that is
models that describe the behavior of a system.
State machines (particularly statecharts, originally introduced
by D. Harel [3]), represent a compact and elegant way of
describing the aspects concerning the behavior of a system.

They can be used not only for behavioral requirements
specifications, but also for detailed design models close to
implementation [4].
While scenarios represent a single trace of behavior of a
complete set of objects, state machines represent the complete
behavior of a single object. Together, they provide an
orthogonal view of a system. By transforming scenarios into
state machines, we can take advantage of the benefits offered
by both of these concepts.
Scenarios are generally not independent of each other; various
relationships and dependencies connect them. We make a
classification of these relationships and in order to represent
them we propose a new type of diagrams. We call these
diagrams dependency diagrams.
Based on these dependency diagrams and on the given
scenarios, we give rules and steps of synthesis of state
machines from multiple interrelated scenarios. We will
describe in this paper the newly introduced diagrams and our
method of synthesis.
The remainder of the paper is organized as follows: section 2
offers an overview of scenarios and state machines. In section 3
we make a classification of the relationships that can exist
between various scenarios and we describe the dependency
diagrams. Section 4 illustrates the synthesis of state machines
from multiple scenarios. Section 5 discusses several issues,
while section 6 deals with related work and is followed by
conclusions in section 7.

2. SEQUENCE DIAGRAMS AND STATE MACHINE
DIAGRAMS

Scenarios as sequence diagrams
In UML, scenarios are represented as sequence diagrams.
Sequence diagrams illustrate how objects interact with each
other. They focus on showing the sequence of messages sent
between objects, that is the interaction between objects from a
temporal point of view.
Sequence diagrams have two axes: the vertical axis shows time
and the horizontal axis shows a set of objects. An object is
represented by a rectangle and a vertical bar called the object's
lifeline. Objects communicate by exchanging messages,
represented by horizontal arrows drawn from the message
sender to the message recipient. The message sending order in
a sequence diagram is indicated by the position of the message
on the vertical axis.

State machine diagrams
State machine diagrams represent state machines from the
perspective of states and transitions. The representation used in
UML’s state diagrams is inspired from Harel's statecharts [3].
State diagrams describe what states an object can have during
its life cycle and the behavior in those states, along with what
events cause the states to change. All objects have a state; the
state is a result of previous activities performed by the object.
An object changes state when something happens, which is
called an event.
State diagrams may have a starting point and several end points.
A state is represented as a rounded rectangle; between states
there are state transitions, shown as a line with an arrow from
one state to another. The state transitions may be labeled with
the event causing the state transition. When the event happens,
the transition from one state to another is performed (the
transition is "triggered"). This means that the system leaves its
current state, initiates the actions specified for the transition
and enters a new state. A state transition normally has an event
attached to it, but not necessarily. If an event is attached to a
state transition, the transition will be performed when the event
occurs. If a state transition does not have an event specified, the
attached state will change when the internal actions in the
source state are executed. Therefore, when all the actions in a
state are performed, a transition without an event will
automatically be triggered.
State machine diagrams have proved their usefulness in the
dynamic description of the behavior of a system. Moreover,
they can be used for generating code directly from them, since
each of them describes the complete behavior of one object.

3. RELATIONSHIPS BETWEEN SCENARIOS;
DEPENDENCY DIAGRAMS

Classification of relationships
Since a scenario represents a particular “story” of the execution
of a system, in order to describe a system completely, we need
to know all the possible scenarios. Depending on the
application, the number of scenarios varies; however small the
number of all possible scenarios is, relationships, dependencies
exist between them. Sometimes, one scenario follows another
scenario or is conditioned by another one. Many times the
order and the timing of their execution are not arbitrary.

To illustrate our point, let us consider a simplified example of
an ATM (Automated Teller Machine). A consortium of banks
shares the ATMs. Each ATM accepts a cash card, interacts
with the user, communicates with the central system to carry
out the transaction, dispenses cash and prints receipts. We will
use (simplified) typical scenarios for user interaction with an
ATM machine, where the user performs operations like
inserting or removing a card, entering a password, deciding
upon a certain type of transaction (withdrawal, deposit or
transfer) and so on.
For example, if we consider the scenario depicting the action of
withdrawing cash, this can be executed only in the situation of
the user possessing a valid card. The scenario of the user
applying for a card with a bank must precede the scenarios
involving transactions with the bank in the user’s name.
Therefore we consider that, in order to be able to understand
and describe the whole system, we need to take into account
not only the scenarios themselves, but also the interrelations
between them. Based on [11], we make a classification of the
relationships and dependencies between scenarios as follows:

- time dependencies;
- cause-effect dependencies;
- generalization dependencies.

A time dependency signifies the fact that one scenario has to be
executed at an earlier/later moment in time than another
scenario. Only after the scenario that has to be executed first
has finished its transitions, the second one can start its
execution. It can also mean that two (or more) scenarios must
be executed at the same time. For instance, as described above,
a user must first prepare a card and only then (s)he can perform
transactions through the ATM. Therefore, the scenario of
creating a card precedes the scenario of withdrawing cash and
the two scenarios are in a time dependency.
A cause-effect dependency reflects the fact that the execution
of a scenario can take place only the moment certain conditions
(established in another scenario) become valid. For example, an
ATM can satisfy the user’s request for withdrawing cash only
if it has been previously provided with a number of bills/coins.
The scenario of withdrawing cash depends on the scenario of
the ATM machine being ”loaded” with a sufficient amount of
cash (considered to cover the maximum amount that could be
withdrawn during a whole day). The condition “being able to
provide enough cash” is established in a different scenario from
the one where the transaction itself takes place.
A generalization dependency emerges when one scenario is a
constituent part of another one or a variant of it. As a rough
example, we can consider that the scenario of withdrawing cash
is very similar to the scenario of depositing money. They can
be generalized under one scenario, ”cash operations”, for
example, where we have 2 variants with slight differences
between them (in the case of deposit: the user selects ”deposit”
and inserts the money in the special slot in the ATM; in the
case of withdrawal: the user selects ”withdrawal” and the
money is ejected through the same slot).
One could argue that time dependencies and cause-effect
dependencies are equivalent, but we believe that it is important
to emphasize when the dependency arises from a specific time
sequence (like having to insert the card and password first, and
only after that being able to perform a transaction) and when a
dependency arises from certain conditions that are not
explicitly time-related (at least, not necessarily). As we
described above, a user could withdraw cash only if the ATM
has been provided with bills and coins. In this case, we believe
it is not so important to emphasize the time sequence
(supplying bills first and then being able to satisfy the user’s
request for cash), as it is important to emphasize that having the
bills is a necessary condition, which if it is not met, the
operation cannot take place.

When we deal with time (as well as cause-effect)
interdependent scenarios, the execution order of the scenarios
defines, in most cases, these dependencies. The execution
order of a number of scenarios falls into one of the following
categories:
- succession (one scenario follows another one);
- disjunction (at a certain moment in time either one of the

scenarios is executed);
- conjunction (the scenarios are executed simultaneously);
- recurrence (a scenario is executed a certain number of

times).

Introducing dependency diagrams
When trying to synthesize state machines from scenarios,
different relationships between scenarios result in different

state machine structures. It is because of this that we need to
represent exactly how the given scenarios are related to each
other. In order to be able to represent and make use of these
relationships, we introduce a new kind of diagrams, named
dependency diagrams. The notation used in these diagrams is
based on the notation used in Message Sequence Charts [5].
One scenario is represented as a rounded rectangle, with
connectors for start point and end point (corresponding to entry
and exit points). The positioning in space of different scenarios
shows the order of execution. The basic notation used in our
dependency diagrams has been described in [14].
A simple example of a dependency diagram is shown in Fig.1.
It is based on the same example of ATM, where we consider
Scenario start the initial scenario (where the user approaches
the ATM, inserts the card, the card is validated and the main
options screen is displayed). From this point, the user can select
any of the three operations of withdrawing cash, depositing
cash or transferring cash, meaning that (s)he can select either
Sc. withdraw or Sc. deposit or Sc. transfer. We also suppose
that when the user changes his(her) password (Sc. chg. pass.),
the scenario Sc. videotape takes place simultaneously (that is,
the user is videotaped during the operation of changing the
password).

Fig.1 illustrates three alternative scenarios (any of them can be
executed after Scenario start), as well as the concurrency of
two scenarios, Scenario chg. pass. and Scenario videotape.
Several constraints must be kept in mind when representing the
dependency diagrams. Some of them are mentioned in the
following. The dependency diagram must have a single start
point (but can have several end points). The return of a loop
can only be linked to a connection node. The end of
synchronization point forces the flow of control to wait until
the end of each of the concurrent scenarios before continuing.
One block containing these concurrent scenarios is considered
as one entity, so no derivation and loops are possible before the
resynchronization point.

Fig. 1 Dependency diagram for several scenarios
of an ATM system

By introducing dependency diagrams, we can ensure that the
requirements of the system are completely described; by
knowing the dependencies that exist between scenarios, we can
create state machines that show the complete behavior of
objects, according to the requirements specification
information contained in the scenarios.
Furthermore, by representing the relationships between various
scenarios, we can easily tell what other scenarios would be
affected if one scenario were changed. This contributes
considerably to the enhancement of traceability. Also, we
beneficiate of an improved readability; by seeing how the
different scenarios are related to each other, we can have a
better overview of the requirements of the system. Last, but not
least, by carefully representing all the possible relationships,
we can easily generate a multitude of test cases.

4. SYNTHESIS OF STATE MACHINES FROM
MULTIPLE SCENARIOS

In a scenario, more exactly in its representation as a sequence
diagram, there are a number of messages exchanged between
objects. Each such message is a tuple (Mijk, N, W), where:

- Mijk depicts a message originating in object i and going to
object j; there can be more messages exchanged between the
same objects, so k is used to denote these different messages;

- N is the name attached to the message;
- W is the type of message, and it can have one of the

following values: 0, 1 or 2 (corresponding to a simple message,
a synchronous message and an asynchronous message
respectively).
Therefore a scenario will be a matrix of tuples including all the
messages exchanged between all objects part of that scenario.
For example, if we consider the ATM system, let us assume a
scenario (represented in Fig.2) where 4 objects are involved:
User, ATM, Consortium and Bank. (We will consider these
objects as O1, O2, O3 and O4.)
The messages exchanged in our example are: displaying the
main screen (from the ATM to the user), inserting a card (from
the user to the ATM), requesting the password (from the ATM
to the user), entering the password (from the user to the ATM),
and so on. In this scenario, after the user enters the card and
then the password, the ATM verifies the card with the
consortium, which, in turn, verifies it with the bank. The bank
sends a bad bank account event to the consortium, and the
consortium sends a bad account event to the ATM. The ATM,
in turn, sends a bad account message event to the user. In the
end, a receipt is issued, the card is ejected and the user is
requested to take the card back.
Our scenario S1 will therefore have the following matrix:

 M211, Display_main_screen, 1
 M121, Insert_card, 1
 M212, Request_password, 1
 M122, Enter_password, 1
 M231, Verify_account, 1
 M341, Verify_card_with_bank, 1
 M431, Bad_bank_account, 1

S1 = M321, Bad_account, 1
M213, Bad_account_message, 1
M214, Print_receipt, 1
M215, Eject_card, 1
M216, Request_take_card, 1

 M123, Take_card, 1
 M217, Display_main_screen, 1

Fig. 2 Sequence diagram (scenario) of an ATM system

There are 4 objects involved in this scenario; from this scenario
only, we can obtain 4 state machine diagrams, one for each
object.

In a complete description of this system, there are N scenarios,
with a total number of P objects. We will have N matrices
including all the transitions between objects.
The total number of state machine diagrams will be equal to the
number of objects in all scenarios. We will therefore have a
number of P state machine diagrams.

Algorithm of synthesis
In order to synthesize the state machine diagrams for all objects,
our methodology proposes the following phases:
- identify and represent (as sequence diagrams) all single

scenarios;
- identify and represent (as dependency diagrams) the

relationships between all scenarios;
- synthesize the state machines diagrams, based on the

information acquired in the previous two phases.
The synthesis of the state machine diagrams involves two steps,
for each object in the system:
1. creating one initial state machine diagram for each

scenario where the object appears;
2. synthesizing the final state machine diagram from all the

initial state machine diagrams, based on the information in
the dependency diagrams.

Creation of initial state machines
The creation of the initial state machines represents the basis
for the synthesis of the final state machine. In the following, we
are going to describe briefly how to obtain these state machines.
State machines are the ones that relate events and states. When
an event is received, the next state depends on the current state
as well as the event. A change of state caused by an event is
called a transition. When a transition is triggered, the system
leaves its current state, initiates the actions specified for the
transition and enters a new state.
A state machine diagram is a graph whose nodes are states and
whose directed arcs are transitions (labeled by event names).
One state machine diagram describes the behavior of a single
class of objects. The sequence of events in a sequence diagram
corresponds to paths through the state machine diagrams of the
corresponding objects [6]. In order to construct a state machine

for a class of objects, we have to consider the vertical line that
corresponds to the objects of that class.
Based on [6], we can define the basic rules for generating state
machines from single scenarios:

 For an object in a sequence diagram, incoming arrows
represent events received by the object and they become
transitions. Outgoing arrows are actions and they become
actions of the transitions leading to the states. The
intervals between events become states. Before receiving
any event, the object is in the default state.

The number of initial state machines for an object Oi will be
equal to the number of scenarios in which the object Oi is
involved.
Sequentially, the steps of creating initial state machines are the
following:
1. create empty state machine diagrams, one for each scenario
where the object appears;
2. for each state diagram, create all events (corresponding to
transitions to the object);
3. for all transitions from the object, create actions that will
lead to states and create the respective states;
4. set the right time sequence for the transitions.

Fig.3. State machine diagram for object ATM

Specifically, step 1 creates a state machine diagram for every
distinct scenario involving our object. Considering that we
focus on the object ATM and since in our example we
presented only one scenario, the one in Fig.1, step 1 will create
only one empty state machine diagram. (After obtaining the
final state machine diagram for ATM, we proceed in the same
manner for the other objects, User, Consortium and Bank).
Step 2 creates all events corresponding to transitions to the
object. In our example, it creates Insert card, Enter password,
Bad account, and Take card.

In step 3 the actions that lead to states are created, that is
Display main screen, Request password, Verify account, Bad
account msg., Print receipt, Eject card and Request take card.
States with the same names are created at this moment as well.
During this step the default state has to be specified; in our case,
it is Display main screen.
At this point, the transitions are not set into the right time
sequence. This is the task of step 4, where - for all transitions -
the source and the destination are identified, so all transitions
will be associated a starting point and an end point.
Fig.3 illustrates the state machine diagram corresponding to the
ATM object in the scenario given as example in Fig.2.
(The default state must be set; in this case, it is Display main
screen.)

Synthesis of final state machines
In order to obtain the final state machines, we need to combine
all the initial state machines, making use of the information in
the dependency diagrams.
As described before, the dependency diagrams show the
possible relationships existing between scenarios. Based on the
classification of relationships between scenarios, there are
several rules that need to be followed:

 In a succession of two scenarios, the resulting state
machine diagram merges the two basic corresponding
state machine diagrams.

 If a transition is common to 2 scenarios, it will be taken
only once in the final state machine.

 For two scenarios related with a disjunction relationship,
their corresponding state machines should be combined
with OR.

 If two scenarios are executed at the same time, their
corresponding state machines must be combined with
AND.

 In the final phase, the state machine diagrams should be
refined, with respect to aggregation of states and
generalization of states.

To illustrate our point, let us consider three scenarios of using
the ATM: one for withdrawing cash, one for depositing cash
and one for transferring money (Scenario_withdraw,
Scenario_deposit and Scenario_transfer). They are all
preceded by a common scenario, that is the scenario where the
user inserts the card and password and they are validated by the
bank (Scenario_start). The preceding common scenario
appears in Fig. 4, while the other three scenarios appear in
Fig.5.

Fig.4. Scenario Scenario_start for ATM system

While scenario Scenario_start precedes the other three
scenarios, Scenario_withdraw, Scenario_deposit and
Scenario_transfer, these are related by disjunction (only one of
them can take place at a certain time). The dependency diagram
showing the relationships existing between these 4 scenarios
appears in Fig.6.

Fig.5. Scenarios Scenario_withdraw, Scenario_deposit and
Scenario_transfer for ATM system

Fig.6. Dependency diagram for ATM system

We want to obtain the state machine corresponding to object
ATM. This object appears in all 4 scenarios; we will therefore
have 4 initial state machines for it, depicted in Fig.7.

Fig.7. Initial state machines for object ATM, each
corresponding to one scenario

Based on the given scenarios and on the dependency diagram
above, illustrating the relationships between them, we will
obtain the state machine diagram in Fig.8.

Summarizing, if we have a total number N of scenarios, with a
total number P of objects, for each of these objects, the number
of initial state machines will be less than or equal to N (since
each object does not necessarily appear in all scenarios). After
the synthesis of the final state machines, one such state
machine will exist for each object. Therefore, there will be a
total number P of final state machines.

Fig.8. State machine diagram for object ATM

5. DISCUSSION

Refining the final state machines
A synthesized final state machine contains all the information
regarding the behavior of the object considered. However, it
can be refined with the purpose of obtaining a more compact
and/or readable state machine.
A complete state machine does not have to be extremely
complex. At any level, details can be omitted and can be
modeled in separate lower level diagrams. The concept of state
hierarchy is very useful and can be used to decrease the number
of transitions in a state machine diagram.
Hierarchy involves the existence of a superstate – a transition
from and to a superstate is inherited by each of its substates. In
case several states have the same transition, a superstate having
the respective transition can be introduced. The above states
will become substates of this superstate and the common
transition will be removed from these substates.

Introducing pseudostates can also help in obtaining a more
readable state machine. According to their definition, junction
pseudostates allow the merging or splitting of multiple
transitions. One junction can have one or more incoming
transitions and one or more outgoing transitions. Depending on
a condition, a transition can be split into multiple outgoing
transitions; a conditional branch is realized this way. Using
such pseudostates can help in offering a better overview of the
behaviour of the state machine. (This represents what is called
a “static” conditional branch, as opposed to a “dynamic”
conditional branch, which appears in the case of a choice
pseudostate).
Furthermore, several states can be combined into a single one,
in case there are no events triggered in between them, and
therefore no possibility of altering the succession of these states.
In the case of our ATM example in section 4, in the state
machine in Fig. 7, we notice that the states Eject card and
Request take card/cash can be merged into a single one, since
there are no events in between these states. (We will name this
state Eject card & Request take card/cash.) Also, we notice
that the states Eject card, Request take card/cash, Display main
screen, as well as the transition labeled Take cash/card, are
common in the three branches corresponding to the three
alternative scenarios. We are therefore going to include them
only once in our final state machine. Also, we notice that Take
cash/card takes us back to the initial state Display main screen.
All these observations considered, we obtain a refined state
machine as the one in Fig.9.

Fig.9. Refined state machine diagram for object ATM

Scenario overlapping
The steps and rules above apply to disjoint scenarios only,
because the states of the component scenarios must be disjoint
for proper composition. However, it is possible that some
scenarios overlap. Most of the times, this happens when the
scenarios describe variants of the same portion of the process.
The overlapping must be treated before the composition. There
are two choices for this: the scenarios that overlap can be
decomposed into mutually disjoint scenarios (subscenarios) or
they can be merged into a single, more complex scenario. We
consider the first option more appropriate, since it allows an
easier synthesis of the state machines.

Consistency between scenarios and state machines
The process of synthesis does not end with applying the
algorithm and the rules defined. Before we can say that we
obtained a correct and complete final state machine diagram for
each object, we need to address the issue of consistency
between the state machines and the scenarios. We have to make
sure that the behavior of the final state machine diagrams
reflects the information contained in the scenarios, so that we
respect the requirements specifications. There are several issues
that we need to consider, like the detection of implied scenarios,
the external messages exchanged between different scenarios,
and the possible conflicts that might arise. Only after solving
these problems the process of synthesis can reach its end.

Using the synthesized state machines
The synthesized state machines can be used during the design
and the implementation phases. They offer a dynamic view of
the system, while a static view can be found in the class
diagram of the system. Attached to this class diagram, the state
machine diagrams can express the design model of the system
and can facilitate the code generation. Several tools and
research papers (like [21] and [22]) deal with generating code
from state machine diagrams.

6. RELATED WORK

Several papers deal with the transformation of scenario type
models into behavior models. SCED [8] is a tool for automatic
generation of statecharts from single scenarios. In [9], an
algorithm for generating UML statecharts from sequence
diagrams is given, but the relationships between the sequence
diagrams (as representations of scenarios) are limited to the
introduction of hierarchy.
Schonberger et. al [10] describe an algorithm for model
transformation, more precisely an algorithm for transforming
collaboration diagrams into state diagrams. Collaboration
diagrams describe the interaction among objects, with the focus
on space. This means that the links among objects in space are
of particular interest and explicitly shown in the diagram.
Sequence diagrams (as representation of scenarios) on the other
hand, although they also describe how objects interact and
communicate with each other, focus on time. Although the two
kinds of diagrams are similar, we believe that sequence
diagrams are more suited for use in the analysis phase, as they
allow an easier representation of the requirements (when we
think of scenarios in the usage of a system, it seems more
natural and it requires less effort to focus on the time flow in
the development of events).
Ryser and Glinz introduced in [11] a new kind of chart,
dependency chart, and a new notation to model the
dependencies between scenarios. However, the charts only

show the dependencies between various scenarios, without
giving directions about the way they could be used for
translation into state machine diagrams.
Actually, we can observe that most work in progress related to
object-oriented software development produces models that are
only loosely coupled. Most methods describe how to specify
models, yet do not sufficiently guide the developer in the task
of transforming one model type into another.

7. CONCLUSIONS

We describe a method of synthesizing state machine diagrams
from multiple scenarios, with regard to the relationships
between them. We introduce dependency diagrams for showing
all the relationships between scenarios. We offer steps and
rules for the synthesis of state machines from multiple
interrelated scenarios, based on the initial scenarios and on the
newly introduced dependency diagrams. Our approach offers
complete requirements specifications, an accurate design, and
helps during the implementation.

8. REFERENCES

[1] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, C.

Chen, “Formal approach to scenario analysis”, IEEE
Software, 11(2), 1994, pp. 33-41.

[2] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W.
Lorensen, Object-oriented modeling and design, Prentice
Hall, 1991.

[3] D. Harel, “Statecharts: A visual formalism for complex
systems”, Science of Computer Programming, 8(3), 1987,
pp. 231-274.

[4] M. Mutz, M. Huhn, “Automated Statechart Analysis for
User-defined Design Rules”, Informatik-Bericht Nr. 2003-
10, 2003.

[5] L. Helouet, C. Jard, “La manipulation formelle de
scenarios”, Modelisation des systemes reactifs, Vol. 0,
2001.

[6] J. Ali and J. Tanaka, “Constructing statecharts from event
trace diagrams”, Technical report of IEICE, KBSE98-33,
1998, pp. 41-47.

[7] J. Ali and J. Tanaka, “Implementing the dynamic behaviour
represented as multiple state diagrams and activity
diagrams”, Journal of Computer Science and
Information Management (JCSIM), 2(1), 2001, pp. 22-
34.

[8] K. Koskimies, T. Mannisto, T. Systa, J. Tuomi, “Automatic
support for dynamic modeling of object-oriented software”,
IEEE Software, 15(1), 1998, pp. 87-94.

[9] J. Whittle and J. Schumann, “Generating statechart designs
from scenarios”, Proceedings of International Conference
on Software Engineering (ICSE2000), Limerick, Ireland,
2000, pp. 314-323.

[10] S. Schonberger, R. K. Keller, I. Khriss, “Algorithmic
support for model transformation in object-oriented
software development”, Concurrency and Computation:
Practice and Experience, 13(5), 2001, pp. 351-383.

[11] J. Ryser, and M. Glinz, “Using dependency charts to
improve scenario-based testing”, Proceedings of the 17th
International Conference on Testing Computer Software
(TCS2000), Washington D.C., 2000.

[12] J. C. S. P. Leite, G. D. S. Hadad, J. H. Doorn, G. N.
Kaplan, “A scenario construction process”, Requirements
Engineering, 5, 2000, pp. 38-61.

[13] S. Vasilache and J. Tanaka, “Synthesizing statecharts from
multiple interrelated scenarios”, Proceedings of the
International Symposium for Future Software Technology
ISFST2001, ZhengZhou, China, 2001, pp. 158-163.

[14] S. Vasilache and J. Tanaka, “Using dependency diagrams
in dynamic modelling of object-oriented systems”,
Proceedings of the 7th IASTED Conference on Software
Engineering and Applications SEA2003, Marina del Rey,
USA, 2003, pp. 277-283.

[15] H. Muccini, “An approach for detecting implied
scenarios”, Scenarios and state machines: models,
algorithms, and tools, ICSE2002 Workshop, Orlando,
Florida, USA, 2002.

[16] M. Glinz, “Improving the quality of requirements with
scenarios”, Proceedings of the 2nd World Congress on
Software Quality, Yokohama, 2000; pp. 55-60.

[17] I. Jacobson, Object-oriented software engineering: A
use case driven approach, Addison Wesley, Reading,
Massachusetts, 1992.

[18] R. J.A. Buhr, R. S. Casselman, Use case maps for object-
oriented systems, Prentice Hall, 1996.

[19] F. Bordeleau, J. P. Corriveau, “On the need for "state
machine implementation" design patterns”, Scenarios and
state machines: models, algorithms, and tools, ICSE2002
Workshop, Orlando, Florida, USA, 2002.

[20] Craig Larman, Applying UML and patterns, Prentice
Hall, 2002.

[21] A. Knapp and S. Merz, “Model Checking and Code
Generation for UML State Machines and Collaborations”,
in Proc. 5th Workshop on Tools for System Design and
Verification, Reisenburg, Germany, 2002, pp. 59-64.

[22] I. A. Niaz and J. Tanaka, "Mapping UML Statecharts to
Java Code", Proceedings of the IASTED International
Conference on Software Engineering (ICSE 2004),
Innsbruck, Austria, February 17-19, 2004, pp. 111-116.

[23] UML Resource Page, http://www.uml.org/.
[24] Object Management Group, http://www.omg.org/

