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ABSTRACT 
 

Requirements specification is one of the most important phases 
in developing a software application. In defining the behavior 
of a system, requirements specifications make use of a number 
of scenarios that are interrelated in many ways. Most of the 
current approaches, even though giving directions on how to 
translate them into state machines, treat each scenario 
separately. Because different relationships between scenarios 
result in different state machines, we believe it is significant to 
emphasize and represent these relationships. In order to 
illustrate them we propose a new type of diagrams named 
dependency diagrams. We offer a set of rules and steps for the 
synthesis of state machines from multiple inter-related 
scenarios, based on the initial scenarios and on the newly 
introduced dependency diagrams, as a means to describe the 
requirements specifications and to offer support during the 
design and implementation phases of developing a system. 
 
Keywords: requirements specification, dynamic modeling, 
scenarios, state machines. 
 
 

1. INTRODUCTION 
 
Requirements analysis represents a crucial phase in the 
software development process. The main task of the 
requirements analysis is to generate specifications that describe 
the behavior of a system unambiguously, consistently and 
completely [1]. Several object-oriented methodologies and 
notations (like OMT [2], UML [23]) make use of scenarios as a 
means of capturing requirements specifications, as well as a 
means of communication between users and software 
developers. A scenario is a sequence of events that occurs 
during one particular execution of a system [1], it is one 
particular “story” of using a system.  
During the recent years, scenarios have gained considerable 
popularity. However, we believe that they have not yet 
received the attention they actually deserve and they have not 
been used up to their entire potential. Their usefulness lies not 
only in the ability to capture requirements, but also in their 
applicability when used in conjunction with other models. We 
specifically refer to what is called "behavior models", that is 
models that describe the behavior of a system.  
State machines (particularly statecharts, originally introduced 
by D. Harel [3]), represent a compact and elegant way of 
describing the aspects concerning the behavior of a system. 

They can be used not only for behavioral requirements 
specifications, but also for detailed design models close to 
implementation [4]. 
While scenarios represent a single trace of behavior of a 
complete set of objects, state machines represent the complete 
behavior of a single object. Together, they provide an 
orthogonal view of a system. By transforming scenarios into 
state machines, we can take advantage of the benefits offered 
by both of these concepts.  
Scenarios are generally not independent of each other; various 
relationships and dependencies connect them. We make a 
classification of these relationships and in order to represent 
them we propose a new type of diagrams. We call these 
diagrams dependency diagrams.  
Based on these dependency diagrams and on the given 
scenarios, we give rules and steps of synthesis of state 
machines from multiple interrelated scenarios. We will 
describe in this paper the newly introduced diagrams and our 
method of synthesis. 
The remainder of the paper is organized as follows: section 2 
offers an overview of scenarios and state machines. In section 3 
we make a classification of the relationships that can exist 
between various scenarios and we describe the dependency 
diagrams. Section 4 illustrates the synthesis of state machines 
from multiple scenarios. Section 5 discusses several issues, 
while section 6 deals with related work and is followed by 
conclusions in section 7.  

 
 

2. SEQUENCE DIAGRAMS AND STATE MACHINE 
DIAGRAMS 

 
Scenarios as sequence diagrams 
In UML, scenarios are represented as sequence diagrams. 
Sequence diagrams illustrate how objects interact with each 
other. They focus on showing the sequence of messages sent 
between objects, that is the interaction between objects from a 
temporal point of view. 
Sequence diagrams have two axes: the vertical axis shows time 
and the horizontal axis shows a set of objects. An object is 
represented by a rectangle and a vertical bar called the object's 
lifeline. Objects communicate by exchanging messages, 
represented by horizontal arrows drawn from the message 
sender to the message recipient. The message sending order in 
a sequence diagram is indicated by the position of the message 
on the vertical axis. 
 



State machine diagrams 
State machine diagrams represent state machines from the 
perspective of states and transitions. The representation used in 
UML’s state diagrams is inspired from Harel's statecharts [3]. 
State diagrams describe what states an object can have during 
its life cycle and the behavior in those states, along with what 
events cause the states to change. All objects have a state; the 
state is a result of previous activities performed by the object. 
An object changes state when something happens, which is 
called an event. 
State diagrams may have a starting point and several end points. 
A state is represented as a rounded rectangle; between states 
there are state transitions, shown as a line with an arrow from 
one state to another. The state transitions may be labeled with 
the event causing the state transition. When the event happens, 
the transition from one state to another is performed (the 
transition is "triggered"). This means that the system leaves its 
current state, initiates the actions specified for the transition 
and enters a new state. A state transition normally has an event 
attached to it, but not necessarily. If an event is attached to a 
state transition, the transition will be performed when the event 
occurs. If a state transition does not have an event specified, the 
attached state will change when the internal actions in the 
source state are executed. Therefore, when all the actions in a 
state are performed, a transition without an event will 
automatically be triggered.  
State machine diagrams have proved their usefulness in the 
dynamic description of the behavior of a system. Moreover, 
they can be used for generating code directly from them, since 
each of them describes the complete behavior of one object. 
 
 

3. RELATIONSHIPS BETWEEN SCENARIOS; 
DEPENDENCY DIAGRAMS 

 
Classification of relationships 
Since a scenario represents a particular “story” of the execution 
of a system, in order to describe a system completely, we need 
to know all the possible scenarios. Depending on the 
application, the number of scenarios varies; however small the 
number of all possible scenarios is, relationships, dependencies 
exist between them. Sometimes, one scenario follows another 
scenario or is conditioned by another one. Many times the 
order and the timing of their execution are not arbitrary.  
 
To illustrate our point, let us consider a simplified example of 
an ATM (Automated Teller Machine). A consortium of banks 
shares the ATMs. Each ATM accepts a cash card, interacts 
with the user, communicates with the central system to carry 
out the transaction, dispenses cash and prints receipts. We will 
use (simplified) typical scenarios for user interaction with an 
ATM machine, where the user performs operations like 
inserting or removing a card, entering a password, deciding 
upon a certain type of transaction (withdrawal, deposit or 
transfer) and so on. 
For example, if we consider the scenario depicting the action of 
withdrawing cash, this can be executed only in the situation of 
the user possessing a valid card.  The scenario of the user 
applying for a card with a bank must precede the scenarios 
involving transactions with the bank in the user’s name. 
Therefore we consider that, in order to be able to understand 
and describe the whole system, we need to take into account 
not only the scenarios themselves, but also the interrelations 
between them. Based on [11], we make a classification of the 
relationships and dependencies between scenarios as follows: 

-  time dependencies; 
-  cause-effect dependencies; 
-  generalization dependencies. 
 
A time dependency signifies the fact that one scenario has to be 
executed at an earlier/later moment in time than another 
scenario. Only after the scenario that has to be executed first 
has finished its transitions, the second one can start its 
execution. It can also mean that two (or more) scenarios must 
be executed at the same time. For instance, as described above, 
a user must first prepare a card and only then (s)he can perform 
transactions through the ATM. Therefore, the scenario of 
creating a card precedes the scenario of withdrawing cash and 
the two scenarios are in a time dependency. 
A cause-effect dependency reflects the fact that the execution 
of a scenario can take place only the moment certain conditions 
(established in another scenario) become valid. For example, an 
ATM can satisfy the user’s request for withdrawing cash only 
if it has been previously provided with a number of bills/coins. 
The scenario of withdrawing cash depends on the scenario of 
the ATM machine being ”loaded” with a sufficient amount of 
cash (considered to cover the maximum amount that could be 
withdrawn during a whole day). The condition “being able to 
provide enough cash” is established in a different scenario from 
the one where the transaction itself takes place. 
A generalization dependency emerges when one scenario is a 
constituent part of another one or a variant of it. As a rough 
example, we can consider that the scenario of withdrawing cash 
is very similar to the scenario of depositing money. They can 
be generalized under one scenario, ”cash operations”, for 
example, where we have 2 variants with slight differences 
between them (in the case of deposit: the user selects ”deposit” 
and inserts the money in the special slot in the ATM; in the 
case of withdrawal: the user selects ”withdrawal” and the 
money is ejected through the same slot). 
One could argue that time dependencies and cause-effect 
dependencies are equivalent, but we believe that it is important 
to emphasize when the dependency arises from a specific time 
sequence (like having to insert the card and password first, and 
only after that being able to perform a transaction) and when a 
dependency arises from certain conditions that are not 
explicitly time-related (at least, not necessarily). As we 
described above, a user could withdraw cash only if the ATM 
has been provided with bills and coins. In this case, we believe 
it is not so important to emphasize the time sequence 
(supplying bills first and then being able to satisfy the user’s 
request for cash), as it is important to emphasize that having the 
bills is a necessary condition, which if it is not met, the 
operation cannot take place. 
 
When we deal with time (as well as cause-effect) 
interdependent scenarios, the execution order of the scenarios 
defines, in most cases, these dependencies. The execution 
order of a number of scenarios falls into one of the following 
categories: 
- succession (one scenario follows another one); 
- disjunction (at a certain moment in time either one of the 

scenarios is executed); 
- conjunction (the scenarios are executed simultaneously); 
- recurrence (a scenario is executed a certain number of 

times). 
  
Introducing dependency diagrams 
When trying to synthesize state machines from scenarios, 
different relationships between scenarios result in different 



state machine structures. It is because of this that we need to 
represent exactly how the given scenarios are related to each 
other. In order to be able to represent and make use of these 
relationships, we introduce a new kind of diagrams, named 
dependency diagrams. The notation used in these diagrams is 
based on the notation used in Message Sequence Charts [5]. 
One scenario is represented as a rounded rectangle, with 
connectors for start point and end point (corresponding to entry 
and exit points). The positioning in space of different scenarios 
shows the order of execution. The basic notation used in our 
dependency diagrams has been described in [14]. 
A simple example of a dependency diagram is shown in Fig.1. 
It is based on the same example of ATM, where we consider 
Scenario start the initial scenario (where the user approaches 
the ATM, inserts the card, the card is validated and the main 
options screen is displayed). From this point, the user can select 
any of the three operations of withdrawing cash, depositing 
cash or transferring cash, meaning that (s)he can select either 
Sc. withdraw or  Sc. deposit or Sc. transfer. We also suppose 
that when the user changes his(her) password (Sc. chg. pass.), 
the scenario Sc. videotape takes place simultaneously (that is, 
the user is videotaped during the operation of changing the 
password). 
 
Fig.1 illustrates three alternative scenarios (any of them can be 
executed after Scenario start), as well as the concurrency of 
two scenarios, Scenario chg. pass. and Scenario videotape.  
Several constraints must be kept in mind when representing the 
dependency diagrams. Some of them are mentioned in the 
following. The dependency diagram must have a single start 
point (but can have several end points). The return of a loop 
can only be linked to a connection node. The end of 
synchronization point forces the flow of control to wait until 
the end of each of the concurrent scenarios before continuing. 
One block containing these concurrent scenarios is considered 
as one entity, so no derivation and loops are possible before the 
resynchronization point. 
 
 

 
 

Fig. 1 Dependency diagram for several scenarios 
of an ATM system 

 

By introducing dependency diagrams, we can ensure that the 
requirements of the system are completely described; by 
knowing the dependencies that exist between scenarios, we can 
create state machines that show the complete behavior of 
objects, according to the requirements specification 
information contained in the scenarios.  
Furthermore, by representing the relationships between various 
scenarios, we can easily tell what other scenarios would be 
affected if one scenario were changed. This contributes 
considerably to the enhancement of traceability. Also, we 
beneficiate of an improved readability; by seeing how the 
different scenarios are related to each other, we can have a 
better overview of the requirements of the system. Last, but not 
least, by carefully representing all the possible relationships, 
we can easily generate a multitude of test cases.  
 
 

4. SYNTHESIS OF STATE MACHINES FROM 
MULTIPLE SCENARIOS 

 
In a scenario, more exactly in its representation as a sequence 
diagram, there are a number of messages exchanged between 
objects. Each such message is a tuple (Mijk, N, W), where:  

- Mijk depicts a message originating in object i and going to 
object j; there can be more messages exchanged between the 
same objects, so k is used to denote these different messages; 

- N is the name attached to the message; 
- W is the type of message, and it can have one of the 

following values: 0, 1 or 2 (corresponding to a simple message, 
a synchronous message and an asynchronous message 
respectively). 
Therefore a scenario will be a matrix of tuples including all the 
messages exchanged between all objects part of that scenario. 
For example, if we consider the ATM system, let us assume a 
scenario (represented in Fig.2) where 4 objects are involved: 
User, ATM, Consortium and Bank. (We will consider these 
objects as O1, O2, O3 and O4.)  
The messages exchanged in our example are: displaying the 
main screen (from the ATM to the user), inserting a card (from 
the user to the ATM), requesting the password (from the ATM 
to the user), entering the password (from the user to the ATM), 
and so on. In this scenario, after the user enters the card and 
then the password, the ATM verifies the card with the 
consortium, which, in turn, verifies it with the bank. The bank 
sends a bad bank account event to the consortium, and the 
consortium sends a bad account event to the ATM. The ATM, 
in turn, sends a bad account message event to the user. In the 
end, a receipt is issued, the card is ejected and the user is 
requested to take the card back. 
Our scenario S1 will therefore have the following matrix: 
 
 M211, Display_main_screen, 1  
 M121, Insert_card, 1 
 M212, Request_password, 1 
 M122, Enter_password, 1 
 M231, Verify_account, 1 
 M341, Verify_card_with_bank, 1 
 M431, Bad_bank_account, 1 

S1 =  M321, Bad_account, 1 
M213, Bad_account_message, 1 
M214, Print_receipt, 1 
M215, Eject_card, 1 
M216, Request_take_card, 1 

 M123, Take_card, 1 
 M217, Display_main_screen, 1 



 
 

Fig. 2 Sequence diagram (scenario) of an ATM system 
 
 
There are 4 objects involved in this scenario; from this scenario 
only, we can obtain 4 state machine diagrams, one for each 
object. 
 
In a complete description of this system, there are N scenarios, 
with a total number of P objects. We will have N matrices 
including all the transitions between objects. 
The total number of state machine diagrams will be equal to the 
number of objects in all scenarios. We will therefore have a 
number of P state machine diagrams. 
 
Algorithm of synthesis 
In order to synthesize the state machine diagrams for all objects, 
our methodology proposes the following phases: 
- identify and represent (as sequence diagrams) all single 

scenarios; 
- identify and represent (as dependency diagrams) the 

relationships between all scenarios; 
- synthesize the state machines diagrams, based on the 

information acquired in the previous two phases. 
The synthesis of the state machine diagrams involves two steps, 
for each object in the system: 
1. creating one initial state machine diagram for each 

scenario where the object appears; 
2. synthesizing the final state machine diagram from all the 

initial state machine diagrams, based on the information in 
the dependency diagrams. 

 
Creation of initial state machines 
The creation of the initial state machines represents the basis 
for the synthesis of the final state machine. In the following, we 
are going to describe briefly how to obtain these state machines. 
State machines are the ones that relate events and states. When 
an event is received, the next state depends on the current state 
as well as the event. A change of state caused by an event is 
called a transition. When a transition is triggered, the system 
leaves its current state, initiates the actions specified for the 
transition and enters a new state. 
A state machine diagram is a graph whose nodes are states and 
whose directed arcs are transitions (labeled by event names).  
One state machine diagram describes the behavior of a single 
class of objects. The sequence of events in a sequence diagram 
corresponds to paths through the state machine diagrams of the 
corresponding objects [6]. In order to construct a state machine 

for a class of objects, we have to consider the vertical line that 
corresponds to the objects of that class.  
Based on [6], we can define the basic rules for generating state 
machines from single scenarios: 

 For an object in a sequence diagram, incoming arrows 
represent events received by the object and they become 
transitions. Outgoing arrows are actions and they become 
actions of the transitions leading to the states. The 
intervals between events become states.  Before receiving 
any event, the object is in the default state. 

 
The number of initial state machines for an object Oi will be 
equal to the number of scenarios in which the object Oi is 
involved.  
Sequentially, the steps of creating initial state machines are the 
following: 
1. create empty state machine diagrams, one for each scenario 
where the object appears; 
2. for each state diagram, create all events (corresponding to 
transitions to the object); 
3. for all transitions from the object, create actions that will 
lead to states and create the respective states; 
4. set the right time sequence for the transitions. 
 

 
 

Fig.3. State machine diagram for object ATM 
 

 
Specifically, step 1 creates a state machine diagram for every 
distinct scenario involving our object. Considering that we 
focus on the object ATM and since in our example we 
presented only one scenario, the one in Fig.1, step 1 will create 
only one empty state machine diagram. (After obtaining the 
final state machine diagram for ATM, we proceed in the same 
manner for the other objects, User, Consortium and Bank). 
Step 2 creates all events corresponding to transitions to the 
object. In our example, it creates Insert card, Enter password, 
Bad account, and Take card.  



In step 3 the actions that lead to states are created, that is 
Display main screen, Request password, Verify account, Bad 
account msg., Print receipt, Eject card and Request take card. 
States with the same names are created at this moment as well.  
During this step the default state has to be specified; in our case, 
it is Display main screen.  
At this point, the transitions are not set into the right time 
sequence. This is the task of step 4, where - for all transitions - 
the source and the destination are identified, so all transitions 
will be associated a starting point and an end point.  
Fig.3 illustrates the state machine diagram corresponding to the 
ATM object in the scenario given as example in Fig.2.  
(The default state must be set; in this case, it is Display main 
screen.) 
 
Synthesis of final state machines 
In order to obtain the final state machines, we need to combine 
all the initial state machines, making use of the information in 
the dependency diagrams. 
As described before, the dependency diagrams show the 
possible relationships existing between scenarios. Based on the 
classification of relationships between scenarios, there are 
several rules that need to be followed: 

 In a succession of two scenarios, the resulting state 
machine diagram merges the two basic corresponding 
state machine diagrams. 

 If a transition is common to 2 scenarios, it will be taken 
only once in the final state machine. 

 For two scenarios related with a disjunction relationship, 
their corresponding state machines should be combined 
with OR. 

 If two scenarios are executed at the same time, their 
corresponding state machines must be combined with 
AND. 

 In the final phase, the state machine diagrams should be 
refined, with respect to aggregation of states and 
generalization of states. 

 
To illustrate our point, let us consider three scenarios of using 
the ATM: one for withdrawing cash, one for depositing cash 
and one for transferring money (Scenario_withdraw, 
Scenario_deposit and Scenario_transfer). They are all 
preceded by a common scenario, that is the scenario where the 
user inserts the card and password and they are validated by the 
bank (Scenario_start). The preceding common scenario 
appears in Fig. 4, while the other three scenarios appear in 
Fig.5. 
 
 

 
 

Fig.4. Scenario Scenario_start for ATM system 
 
 

While scenario Scenario_start precedes the other three 
scenarios, Scenario_withdraw, Scenario_deposit and 
Scenario_transfer, these are related by disjunction (only one of 
them can take place at a certain time). The dependency diagram 
showing the relationships existing between these 4 scenarios 
appears in Fig.6. 
 
 

  
 
 

 
 

Fig.5. Scenarios Scenario_withdraw, Scenario_deposit and 
Scenario_transfer for ATM system 

 
 
 
 

 
 
 

Fig.6. Dependency diagram for ATM system 
 
 



We want to obtain the state machine corresponding to object 
ATM. This object appears in all 4 scenarios; we will therefore 
have 4 initial state machines for it, depicted in Fig.7. 
 

 
 

                
 

Fig.7. Initial state machines for object ATM, each 
corresponding to one scenario 

 
 
Based on the given scenarios and on the dependency diagram 
above, illustrating the relationships between them, we will 
obtain the state machine diagram in Fig.8. 
 
Summarizing, if we have a total number N of scenarios, with a 
total number P of objects, for each of these objects, the number 
of initial state machines will be less than or equal to N (since 
each object does not necessarily appear in all scenarios). After 
the synthesis of the final state machines, one such state 
machine will exist for each object. Therefore, there will be a 
total number P of final state machines. 
 

 
 

Fig.8. State machine diagram for object ATM 
 
 

5.  DISCUSSION 
 

Refining the final state machines 
A synthesized final state machine contains all the information 
regarding the behavior of the object considered. However, it 
can be refined with the purpose of obtaining a more compact 
and/or readable state machine.  
A complete state machine does not have to be extremely 
complex. At any level, details can be omitted and can be 
modeled in separate lower level diagrams. The concept of state 
hierarchy is very useful and can be used to decrease the number 
of transitions in a state machine diagram. 
Hierarchy involves the existence of a superstate – a transition 
from and to a superstate is inherited by each of its substates. In 
case several states have the same transition, a superstate having 
the respective transition can be introduced. The above states 
will become substates of this superstate and the common 
transition will be removed from these substates. 



Introducing pseudostates can also help in obtaining a more 
readable state machine. According to their definition, junction 
pseudostates allow the merging or splitting of multiple 
transitions.  One junction can have one or more incoming 
transitions and one or more outgoing transitions. Depending on 
a condition, a transition can be split into multiple outgoing 
transitions; a conditional branch is realized this way. Using 
such pseudostates can help in offering a better overview of the 
behaviour of the state machine. (This represents what is called 
a “static” conditional branch, as opposed to a “dynamic” 
conditional branch, which appears in the case of a choice 
pseudostate).  
Furthermore, several states can be combined into a single one, 
in case there are no events triggered in between them, and 
therefore no possibility of altering the succession of these states.  
In the case of our ATM example in section 4, in the state 
machine in Fig. 7, we notice that the states Eject card and 
Request take card/cash can be merged into a single one, since 
there are no events in between these states. (We will name this 
state Eject card & Request take card/cash.) Also, we notice 
that the states Eject card, Request take card/cash, Display main 
screen, as well as the transition labeled Take cash/card, are 
common in the three branches corresponding to the three 
alternative scenarios. We are therefore going to include them 
only once in our final state machine. Also, we notice that Take 
cash/card takes us back to the initial state Display main screen. 
All these observations considered, we obtain a refined state 
machine as the one in Fig.9. 
 

 
 

Fig.9. Refined state machine diagram for object ATM 

Scenario overlapping 
The steps and rules above apply to disjoint scenarios only, 
because the states of the component scenarios must be disjoint 
for proper composition. However, it is possible that some 
scenarios overlap. Most of the times, this happens when the 
scenarios describe variants of the same portion of the process. 
The overlapping must be treated before the composition. There 
are two choices for this: the scenarios that overlap can be 
decomposed into mutually disjoint scenarios (subscenarios) or 
they can be merged into a single, more complex scenario. We 
consider the first option more appropriate, since it allows an 
easier synthesis of the state machines.  
 
Consistency between scenarios and state machines 
The process of synthesis does not end with applying the 
algorithm and the rules defined. Before we can say that we 
obtained a correct and complete final state machine diagram for 
each object, we need to address the issue of consistency 
between the state machines and the scenarios. We have to make 
sure that the behavior of the final state machine diagrams 
reflects the information contained in the scenarios, so that we 
respect the requirements specifications. There are several issues 
that we need to consider, like the detection of implied scenarios, 
the external messages exchanged between different scenarios, 
and the possible conflicts that might arise. Only after solving 
these problems the process of synthesis can reach its end. 
 
Using the synthesized state machines 
The synthesized state machines can be used during the design 
and the implementation phases. They offer a dynamic view of 
the system, while a static view can be found in the class 
diagram of the system. Attached to this class diagram, the state 
machine diagrams can express the design model of the system 
and can facilitate the code generation. Several tools and 
research papers (like [21] and [22]) deal with generating code 
from state machine diagrams. 

 
 

6.  RELATED WORK 
 

Several papers deal with the transformation of scenario type 
models into behavior models. SCED [8] is a tool for automatic 
generation of statecharts from single scenarios. In [9], an 
algorithm for generating UML statecharts from sequence 
diagrams is given, but the relationships between the sequence 
diagrams (as representations of scenarios) are limited to the 
introduction of hierarchy.  
Schonberger et. al [10] describe an algorithm for model 
transformation, more precisely an algorithm for transforming 
collaboration diagrams into state diagrams. Collaboration 
diagrams describe the interaction among objects, with the focus 
on space. This means that the links among objects in space are 
of particular interest and explicitly shown in the diagram. 
Sequence diagrams (as representation of scenarios) on the other 
hand, although they also describe how objects interact and 
communicate with each other, focus on time. Although the two 
kinds of diagrams are similar, we believe that sequence 
diagrams are more suited for use in the analysis phase, as they 
allow an easier representation of the requirements (when we 
think of scenarios in the usage of a system, it seems more 
natural and it requires less effort to focus on the time flow in 
the development of events). 
Ryser and Glinz introduced in [11] a new kind of chart, 
dependency chart, and a new notation to model the 
dependencies between scenarios. However, the charts only 



show the dependencies between various scenarios, without 
giving directions about the way they could be used for 
translation into state machine diagrams.  
Actually, we can observe that most work in progress related to 
object-oriented software development produces models that are 
only loosely coupled. Most methods describe how to specify 
models, yet do not sufficiently guide the developer in the task 
of transforming one model type into another. 
 
 

7.  CONCLUSIONS 
 
We describe a method of synthesizing state machine diagrams 
from multiple scenarios, with regard to the relationships 
between them. We introduce dependency diagrams for showing 
all the relationships between scenarios. We offer steps and 
rules for the synthesis of state machines from multiple 
interrelated scenarios, based on the initial scenarios and on the 
newly introduced dependency diagrams. Our approach offers 
complete requirements specifications, an accurate design, and 
helps during the implementation. 
 
 

8.  REFERENCES 
 
[1] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, C. 

Chen, “Formal approach to scenario analysis”, IEEE 
Software, 11(2), 1994, pp. 33-41. 

[2] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. 
Lorensen, Object-oriented modeling and design, Prentice 
Hall, 1991. 

[3] D. Harel, “Statecharts: A visual formalism for complex 
systems”, Science of Computer Programming, 8(3), 1987, 
pp. 231-274. 

[4] M. Mutz, M. Huhn, “Automated Statechart Analysis for 
User-defined Design Rules”, Informatik-Bericht Nr. 2003-
10, 2003. 

[5] L. Helouet, C. Jard, “La manipulation formelle de 
scenarios”, Modelisation des systemes reactifs, Vol. 0, 
2001. 

[6] J. Ali and J. Tanaka, “Constructing statecharts from event 
trace diagrams”, Technical report of IEICE, KBSE98-33, 
1998, pp. 41-47. 

[7] J. Ali and J. Tanaka, “Implementing the dynamic behaviour 
represented as multiple state diagrams and activity 
diagrams”, Journal of Computer Science and 
Information Management (JCSIM), 2(1), 2001, pp. 22-
34. 

[8] K. Koskimies, T. Mannisto, T. Systa, J. Tuomi, “Automatic 
support for dynamic modeling of object-oriented software”, 
IEEE Software, 15(1), 1998, pp. 87-94. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

[9] J. Whittle and J. Schumann, “Generating statechart designs 
from scenarios”, Proceedings of International Conference 
on Software Engineering (ICSE2000), Limerick, Ireland, 
2000, pp. 314-323. 

[10] S. Schonberger, R. K. Keller, I. Khriss, “Algorithmic 
support for model transformation in object-oriented 
software development”, Concurrency and Computation: 
Practice and Experience, 13(5), 2001, pp. 351-383. 

[11] J. Ryser, and M. Glinz, “Using dependency charts to 
improve scenario-based testing”, Proceedings of the 17th 
International Conference on Testing Computer Software 
(TCS2000), Washington D.C., 2000. 

[12] J. C. S. P. Leite, G. D. S. Hadad, J. H. Doorn, G. N. 
Kaplan, “A scenario construction process”, Requirements 
Engineering, 5, 2000, pp. 38-61. 

[13] S. Vasilache and J. Tanaka, “Synthesizing statecharts from 
multiple interrelated scenarios”, Proceedings of the 
International Symposium for Future Software Technology 
ISFST2001, ZhengZhou, China, 2001, pp. 158-163.  

[14] S. Vasilache and J. Tanaka, “Using dependency diagrams 
in dynamic modelling of object-oriented systems”, 
Proceedings of the 7th IASTED Conference on Software 
Engineering and Applications SEA2003, Marina del Rey, 
USA, 2003, pp. 277-283.  

[15] H. Muccini, “An approach for detecting implied 
scenarios”, Scenarios and state machines: models, 
algorithms, and tools, ICSE2002 Workshop, Orlando, 
Florida, USA, 2002. 

[16] M. Glinz, “Improving the quality of requirements with 
scenarios”, Proceedings of the 2nd World Congress on 
Software Quality, Yokohama, 2000; pp. 55-60. 

[17] I. Jacobson, Object-oriented software engineering: A 
use case driven approach, Addison Wesley, Reading, 
Massachusetts, 1992. 

[18] R. J.A. Buhr, R. S. Casselman, Use case maps for object-
oriented systems, Prentice Hall, 1996. 

[19] F. Bordeleau, J. P. Corriveau, “On the need for "state 
machine implementation" design patterns”, Scenarios and 
state machines: models, algorithms, and tools, ICSE2002 
Workshop, Orlando, Florida, USA, 2002.  

[20] Craig Larman, Applying UML and patterns, Prentice 
Hall, 2002. 

[21] A. Knapp and S. Merz, “Model Checking and Code 
Generation for UML State Machines and Collaborations”, 
in Proc. 5th Workshop on Tools for System Design and 
Verification, Reisenburg, Germany, 2002, pp. 59-64. 

[22] I. A. Niaz and J. Tanaka, "Mapping UML Statecharts to 
Java Code",  Proceedings of the IASTED International 
Conference on Software Engineering (ICSE 2004), 
Innsbruck, Austria, February 17-19, 2004, pp. 111-116. 

[23] UML Resource Page, http://www.uml.org/. 
[24] Object Management Group, http://www.omg.org/ 
 


