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Abstract 
 
     The Unified Modeling Language (UML) statechart 
diagram is used for modeling the dynamic behavior of a 
system. This paper describes an object-oriented (OO) 
approach to generate compact and efficient Java code from 
UML statechart diagrams. The states are represented as 
objects and all the behavior associated with a state is 
contained in one object. This localizes the state-specific 
behavior and partitions behavior for different states. 
Introducing separate objects for different states makes the 
transitions more explicit. We have implemented the 
statechart diagram having sequential and concurrent 
substates by extending the state design pattern using the 
concept of object composition and delegation. The method 
has been successfully implemented in our automatic code 
generating system, JCode, which generates Java code after 
reading the specifications of the UML statechart diagram. 
The paper also presents the results of the experiment in 
which the code generated by JCode is compared to that of 
Rhapsody and OCode. The results show that the code 
generated by JCode is 68% more efficient and four times 
more compact than that of Rhapsody and 50% more 
efficient than that of OCode. 
 
Keywords: Code generation, object-oriented analysis and 
design, CASE, statecharts, object composition, Java. 
 
1. Introduction 
 
     The UML [1] is a general-purpose visual modeling 
language that is used to specify, visualize, construct and 
document the artifacts of a software system. The emergence 
of UML as an industry standard for modeling systems has 
encouraged the use of automated software tools that 
facilitate the development process from analysis through 
coding. It provides several diagram types that can be used to 
view and model the software system from different 
perspectives and/or at different levels of abstraction. In 
UML based OO design, behavioral modeling aims at 
describing the behavior of objects using state machines. A 
state machine is a behavior that specifies the sequence of 
states an object goes through during its lifetime in response 
to  events [2].  A  state  machine  models  the   possible   life  
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histories of an object of a class. State machines are used for 
specifying the full dynamic behavior of a single class of 
objects. The UML statechart diagram visualizes a state 
machine [2]. A statechart diagram contains states, 
transitions, events and activities. Statechart diagrams 
address the dynamic view of a system. They are especially 
important in modeling the behavior of a class and emphasize 
the event-ordered behavior of an object, which is 
particularly useful in modeling reactive systems. A 
statechart attached to a class specifies all behavioral aspects 
of the objects in that class. The semantics and notations used 
in UML statecharts mainly follow Harel’s statecharts [3] 
with extensions to make them OO [1]. 
 
     The OO software is a collection of interacting objects. 
Benefits of high-level modeling and analysis are 
significantly enhanced if code can be generated 
automatically from a model such that the correspondence 
between the model and code is precisely understood. Model-
based code generation produces application code 
automatically from graphical models of system objects and 
behavior. Development tools are moving to model-based 
development to raise the level of abstraction at which 
developers can work. OO methods help developers analyze 
and understand a system, but the Achilles' heel of analysis 
and design methods has been the transition to code. Most of 
the OO methodologies [4, 5, 6, 7] describe in sufficient 
detail the steps to be followed during the analysis and 
design phase, but fail to describe how the analysis and 
design models of a system shall be converted into 
implementation code. A big problem in the development of 
a system through OO methodologies is that even after 
having created good models, it is difficult for a large 
fraction of programmers to convert the models into 
executable code.  
 
     There are two major approaches used for OO model-
based code generation, namely structural and behavioral. 
The structural approach is based on using models of object 
structure (static relationships). It generates code frames 
(such as class interface specifications) from models of static 
relationships among objects. Class diagrams concepts can 
be implemented in a programming language supporting 
concepts like classes and objects, composition and 
inheritance. Based on the partial models of object dynamics, 
developers then explicitly program object behavior and 
communications in the target language. Many OO CASE 
tools (ArgoUML [8], Poseidon [9], Metamill [10], etc.) 
generate limited skeleton code from such models. The main 
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drawback of this approach is that there is no code generation 
for object behavior and thus the code generated is not 
complete. 
 
     The behavioral approach extends the techniques used in 
structural approach. It can generate complete code using 
additional state machine models and action specifications in 
a high-level language. With models of both object structure 
and state machines, this approach enables the tools to 
generate code for the entire application model. 
 
     Our approach for code generation is a behavioral 
approach. The objective of the current study is to find a 
method to generate efficient code from the UML class and 
statechart diagram in an OO programming language. 
Through mapping between UML and Java, we are able to 
generate low-level Java code directly from the class and 
statechart diagram. Code generated from our approach is 
intended to be complete and covers all the information from 
the input models. The proposed implementation techniques 
are valuable in that they raise the level of abstraction and 
allow for straightforward mapping of UML statecharts to 
compact and efficient code. 
 
     Our code generation approach for implementing 
statecharts is motivated by [18] and is based on [19], [20] 
and State pattern [15]. In [18], an implementation model is 
presented to convert UML statecharts to Java code. The 
concept of helper object is introduced which handles all 
state-specific requests forwarded to it by the multi-state 
domain object. The helper object represents the current state 
of the domain object. When the state of the of the domain 
object changes, a new helper object, implementing the 
behavior specific to the new state, replaces the old one. The 
proposed model generates code only for the class with 
which the statechart is attached and other classes of the 
application model are not considered. The generated code is 
incomplete and the model is not implemented in any code 
generating system.  
 
     In [19] and [20], we use a different approach. Instead of 
using helper object, we adapt the idea of State pattern [15] 
for representing states as objects and provide support for 
hierarchy, concurrency and the dynamic parts of the 
statecharts. State pattern puts all the behavior associated 
with a particular state into one class. The object with state 
behavior is split into context and a state. The context object 
contains the common elements of the object’s state and 
delegates events for processing to its current state object. 
The state object contains state-specific attributes and 
implementation for state-dependent behavior. The 
implementation for the history state and fork is not 
encapsulated rather it is distributed among the context class, 
state class and the composite state class. In this approach, 
the code is generated only for the class with which the 
statechart is associated and the code generation for the other 
classes  in  the  application   model  is  not   considered.  The  

generated code is incomplete. 
 
     In this paper, we have used the behavioral approach 
which is different from the approach of [19] and [20]. This 
paper focuses on the complete code generation for the entire 
application model including the class diagram and the 
statechart diagram. The code generation for some of the 
statechart features such as history states and fork, is 
encapsulated in the composite state class to generate 
complete and more efficient code. The JCode system is 
developed, which automatically generates the executable 
Java code using our approach. The results of the experiment, 
in which the code generated by JCode is compared with the 
code generated by Rhapsody [14] and OCode [16, 17], is 
presented in section 7. 
 
    The remainder of this paper is organized as follows. In 
the next section, we present an overview of the features and 
semantics of the state machine and statechart diagram. 
Section 3 provides background about various approaches to 
implement statecharts. Section 4 explains our code 
generation approach to implement statecharts. In section 5 
an air conditioner system example is given to explain our 
approach. In section 6, we explain our automatic code 
generating system, JCode. In section 7, code generated by 
JCode is compared with that of Rhapsody and OCode. 
Section 8 overviews the related work. Finally, in section 9, 
we summarize and conclude. 
 
2. State Machines and Statechart Diagrams 
 
     A state machine is a graph of states and transitions that 
describes the response of an object to the receipts of events. 
State machines are used for specifying the full dynamic 
behavior of a single class of objects. The diagrammatic 
presentation of a state machine is a statechart diagram. 
Figure 1 shows a sample statechart diagram. 
 
     Each state models a period of time during the life of an 
object during which it satisfies certain conditions, performs 
some action, or waits for some event. A state becomes 
active when it is entered as a result of some transition and 
becomes inactive if it is exited as a result of a transition. A 
transition is a directed relationship between a source state 
and a target state indicating that an instance in the source 
state will enter the target state and performs certain actions 
when a specified event occurs provided that certain 
specified conditions are satisfied [2]. On such a change of 
state, the transition is said to “fire”. The trigger for a 
transition is the occurrence of the event labeling the 
transition. The event may have parameters, which are 
accessible by the actions specified on the transition as well 
as in the corresponding exit and entry actions associated 
with the source and target states respectively. When an 
event occurs, it may cause the firing of transition that takes 
the object to a new state.  Events are processed one at a time. 
If an  event  does  not  trigger  any  transition it is  discarded. 
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Figure 1.  A statechart diagram 
 
 
A guard condition can be attached to a transition. A guard 
condition is a Boolean expression that defines conditions 
under which the transition is able to fire. The guard 
condition must be true for the transition to be fired. The 
condition is evaluated at the time the event is dispatched. 
When a transition fires, an action attached to the transition is 
executed. The action must be executed entirely before any 
other actions are considered. A completion transition does 
not have an explicit trigger event, although it may have a 
guard defined. It causes an automatic state change 
immediately after the actions of the source state have been 
executed. 
 
     A state may have, among other features, entry and exit 
actions, internal activity and internal transitions. Whenever 
a state is entered, it executes its entry action before any 
other action is executed. Conversely, whenever a state is 
exited, it executes its exit action as the final step prior to 
leaving the state. If defined, the activity (do–activity) 
associated with the state is forked as a concurrent activity at 
the instant when the entry action of a state is completed. 
Upon exit, the activity is terminated before the exit action is 
executed. A state may also have internal transitions. An 
internal transition has an event trigger that causes an 
execution of an action. Firing of an internal transition does 
not cause a change of state. Therefore, the entry and exit 
actions of the state are not executed. There are two special 
states that may be defined for an object’s state machine, 
namely initial state and the final state. The initial state 
indicates the default starting place for the state machine or 
substate. An initial state is shown as a small solid circle. 
The final state indicates that the execution of the state 

machine or the enclosing state has been completed. A final 
state is represented as a filled black circle surrounded by an 
unfilled circle. 
 
     A statechart may also have composite states. A 
composite state is a state that contains other states. Any state 
enclosed within a composite state is called a substate of that 
composite state. A composite state may contain either 
concurrent (orthogonal) or sequential (disjoint) substates. 
Given a set of disjoint substates in the context of an 
enclosing composite state, the object is said to be in the 
composite state and in only one of those substates at a time. 
Therefore, sequential substates partition the state space of 
the composite state into disjoint states. Substates may be 
nested to any level. A transition may target the composite 
state or it may target a substate. If its target is the composite 
state, the nested state machine must include an initial state, 
to which control passes after entering the composite state 
and after dispatching its entry action. An initial state is 
shown as a small solid filled circle. If its target is the nested 
state, control passes to the nested state after dispatching the 
entry action (if any) of the composite state and then the 
entry action (if any) of the substate. A transition leading out 
of a composite state may have as its source the composite 
state or a substate. In either case, control first leaves the 
nested state and its exit action (if any) is executed, then it 
leaves the composite state and its exit action (if any) is 
executed. A composite state may contain history state 
shown as a small circle containing an “H”. A history state 
allows a composite state that contains sequential substates to 
remember the last substate that was active in it prior to the 
transition from the composite state. 
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     The orthogonal regions represent the parallel 
composition of sub machines. These substates specify two 
or more state machines that execute in parallel in the context 
of the enclosing object. Fork and join pseudostates 
synchronize transitions entering or leaving orthogonal 
regions. Whenever there is a transition to a composite state 
decomposed into concurrent substates, control forks into as 
many concurrent flows as there are concurrent substates. 
Similarly, whenever there is a transition from a composite 
state, control joins back into one. This holds true in all cases. 
A nested concurrent state machine does not have an initial, 
final or history state. However, the sequential substates that 
compose a concurrent state may have these features.  
 
3. Common Approaches to Implement Statecharts 
 
     The UML behavior diagrams include many concepts that 
are not present in most popular programming languages, 
like C++ or Java, e.g. events, states, history states etc. This 
means there is not a one-to-one mapping between a 
statechart and its implementation. A model enables the 
modeler to work at a higher level of abstraction. The 
progression from the model to an implemented system is not 
truly a seamless transition, mainly due to a gap. A model-
system gap exists primarily due to the different levels of 
abstraction. UML is a modeling language, which consists of 
semantics and graphical notation. For every element of its 
graphical notation there is a specification that provides a 
textual statement of syntax and semantics. Implementing the 
semantics correctly is a challenging task, as the 
programming languages do not directly support them. The 
OO programming languages do not deal with abstract 
behavior.  
 
     We observed that states can be represented as scalar 
variables or they can be represented as objects. Events can 
be represented as objects or as methods. Ran [11] examined 
the relation between states and classes. Sane and Campbell 
[12] proposed that states could be represented as classes and 
events as operations. Some model elements, like history 
states, can be implemented in many different ways. This 
clearly contrasts with class diagrams that often can be 
implemented directly in a programming language supported 
concepts like classes and objects, composition and 
inheritance. We will now discuss some of the common 
approaches to implement statecharts. 
 
3.1 Switch Statement 
 
     The most common technique to implement statechart is 
to provide a single scalar variable called a state variable and 
use this as a discriminator in the switch statement inside 
each event method of the context class [2]. Each case clause 
in the switch statement can implement the various actions 
and activities. This technique works well for classical “flat” 
state machines. The nested states are implemented via many 
flat states or nested switch statements [13]. The substates 

are used as a discriminator in the second level of switch 
statement. All the behavior of the statechart is put in one 
class. The conditional statements are monolithic and tend to 
make code less explicit. There is a lot of code duplication 
and reuse of code is very difficult. Manual coding of entry 
/exit actions and nested states is, however, cumbersome, 
mainly because code pertaining to one state becomes 
distributed and repeated in many places. This makes it 
difficult to modify and maintain when the topology of state 
machine changes. It does not provide explicit means for 
reflecting the transition structure, state hierarchy and 
entry/exit actions associated to states. Implementing and 
maintaining the code generated by following this approach 
is error-prone and labor intensive, but usable in automatic 
code generators where the code maintenance is substituted 
by forward engineering. I-Logix’s Rhapsody [14] follows an 
approach similar to this pattern with major enhancements. 
 
3.2 Helper Object  
 
     In [18], the concept of a helper object is introduced, 
which handles all the state-specific requests forwarded to it 
by the multi-state object. Multi-state object respond 
differently to each external message depending upon its 
current state. The helper object encapsulates all the state-
specific behavior of the multi-state domain object. The 
helper object represents the current state of the domain 
object and implements the behavior specific to the current 
state. The domain object delegates all external messages to 
its helper object and the helper objects responds to the 
message on behalf of the domain object. When the state of 
the domain object changes, a new helper object, 
implementing the behavior specific to the new state, 
replaces the old one. Helper object puts the behavior 
associated with a particular state into one object. Events 
become methods and state hierarchy is implemented by 
inheritance. Helper object has some similarity with the State 
design pattern as both represents state as classes and events 
as methods, but the State pattern neither addresses the state 
hierarchy nor does it address the concurrency within the 
statecharts. The implementation of some of the statechart 
features such as history state and fork is not encapsulated in 
the composite state rather it is distributed among state 
objects and the domain object.  
 
3.3 State Design Pattern  
 
     By using object orientation, the use of switch statement 
can be avoided through the use of dynamic binding. State 
design pattern [15] is the OO replacement of switch 
statements. Each case becomes a state class and the correct 
case is selected by looking at the current state. Each state is 
represented as a separate class. This makes the object’s state 
as an object in its own right that can vary independently 
from other objects. States are represented as descendents of 
a common interface class (each method in this interface 
corresponds to an event) that declares handler functions for 



International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005 

all events possibly received by the context class. A context 
class delegates events for processing to the current state 
object. Transition searching is performed by polymorphism. 
State transitions are accomplished by changing the current 
state object. This pattern groups behavior, which is 
associated to the specific states of the object, into different 
classes, enabling in this way the separation of concerns in an 
elegant and efficient way. State pattern facilitates reuse in 
subclasses because often subclasses that are changed need to 
be modified. Thus the changes are better encapsulated. The 
most important weakness of this approach is that it does not 
provide any means for implementing the dynamic parts of 
the model. The action chain to be performed on state 
transitions as defined by UML behavioral model must be 
coded in the event handler functions. There is no explicit 
support for hierarchy, history and concurrency.  
 
4. Code Generation Approach 
 
     The switch statement solution is not scalable. The code is 
difficult to read and maintain when the number of states 
increases. The state pattern does provide a better and 
scalable solution than switch statement but it still has 
problems for implementing composite states and other 
dynamic features of the statechart. The state pattern 
provides a structural mechanism and the implementation 
strategy of individual states and sub-statemachines is left 
open. It provides a general solution and it is not specifically 
meant for a particular application domain such as 
implementing the statechart diagram. OCode [16, 17] 
provided solutions to some of these problems. OCode is a 
tool for generating code from Object Modeling Technique 
(OMT) [5] object and dynamic models. OMT state 
transition diagram is the predecessor of the UML statechart 
diagram. OCode provides support for implementing 
composite states but it does not provide support for new 
features of UML statechart diagram, which are not present 
in OMT state transition diagram, e.g. history states, fork and 
join, time events etc.  
 
     Our code generation approach is a behavioral approach 
and it focuses on complete code generation for the entire 
application model including the class diagram and the 
statechart diagram. A number of class diagram elements are 
supported by the Java language, so the translation from class 
diagram to Java code is relatively straightforward. In 
contrast, implementing statechart diagram is a challenging 
task as many concepts are not directly supported by Java. 
 
     In our approach, one main application class is generated 
with a main() method that acts as an entry point of the 
whole application. All the instances of the classes of the 
class diagram are declared and initialized here. All classes 
and interfaces within the class diagram are transformed into 
code. The generated code will contain all the class 
definitions of name, attributes and methods. Relationships 
between classes are identified and transformed into code. To 

implements the association between classes, reference 
attributes with public visibility are defined in both the 
classes. If a statechart is attached with a class then the code 
for implementing the statechart is defined in the 
corresponding class. 
 
     In our approach for implementing statechart diagram, the 
context class, whose behavior is represented by the 
statechart, becomes the super context class and defines the 
interface to clients. An abstract state class is used for 
defining the interface for encapsulating the behavior 
associated with a particular state of the context. The abstract 
state class declares an interface common to all state classes 
and its purpose is to make all the state classes able to accept 
every event of the statechart. The interface for internal 
events and entry /exit actions are also declared in this 
abstract class. Each state in the statechart diagram becomes 
a class and is derived from the abstract state class. All the 
behavior associated with a particular state is put in this state 
class. Each transition from a state becomes a method in the 
corresponding state class in order to provide a uniform and 
convenient way of invoking some services on the context 
object. If-then statement will be used to check whether the 
guard condition is satisfied. All the state-specific code 
resides in one class. The logic that determines the state 
transitions is partitioned between the state classes. Methods 
in the state do not need conditional analysis and have no 
concern for processing in other states. Encapsulating each 
state transition in a class elevates the idea of an execution 
state to full object status. Introducing separate objects for 
different states makes the transitions more explicit. That 
imposes structure on the code and makes its intent clear. 
The actions in the transitions of a state machine perform 
operations on data in the system. We consider actions as 
messages so each action of the statechart becomes a method 
in the context class. Internal transitions and entry/exit 
actions are owned by their containing states so they are 
implemented as methods in the corresponding state class.  
 
     The context object maintains references of all the state 
objects and they are created once in the constructor of the 
context object. The context object also holds the reference 
of the current active state in the state object, which is 
initialized to default state in the constructor of the context. 
The context has a method for each event of the statechart. 
Instead of implementing the event method, the context 
delegates all requests (events) for processing to the current 
state object. The transition searching is performed using 
polymorphism. Separating behavior into disparate objects 
makes sense when the separation takes advantage of 
polymorphism. Polymorphism allows two objects to be 
treated identically, even though the objects implement these 
methods in quite different ways. State transitions are 
accomplished by changing the current state object. On 
handling the transitions, the current state object first 
executes the associated action with the transition followed 
by the exit action of the current state and then calls the 
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setState() method of the context to set the new state. In the 
setState() method, the entry action of the new state is also 
executed. The state object is responsible for specifying the 
successor state. Decentralizing the transition logic in this 
way makes it easy to modify or extend the logic by defining 
new state subclasses. The abstract state class has an 
association with the context so it contains a reference to the 
context object. The state objects inherit this reference to 
access the methods of the context object.  
 
     A composite state is decomposed into two or more 
concurrent (orthogonal or AND) substates (regions) or into 
mutually exclusive disjoint (sequential) substates. When a 
hierarchical composite state containing sequential substates 
is active, exactly one of its sequential substates is active. 
Whenever a concurrent composite state becomes active, 
each one of its concurrent regions also becomes active. The 
concurrent substates show two or more nested state 
machines that execute in parallel in the context of the 
enclosing composite state. This leads us to implement the 
hierarchical composite state and concurrent composite state 
by extending the state design pattern with the concept of 
object composition and delegation. Object composition is 
defined dynamically at runtime through objects acquiring 
references to other objects. New functionality is obtained by 
composing objects to get more complex functionality. 
Object composition keeps each class encapsulated and there 
are substantially fewer dependencies. Any object can be 
replaced at run-time by another as long as it has the same 
type. Delegation is a way of making object composition 
powerful for reuse. The main advantage of delegation is that 
it makes it easy to compose behavior at run-time and to 
change the way they are composed. 
 
     The concurrent composite state becomes the context for 
all the concurrent regions and maintains references of the 
current active substates within each concurrent region. 
Abstract state classes are defined for each concurrent region. 
Each abstract state class defines an interface for 
encapsulating the behavior associated with a particular 
concurrent region of the composite state. The interface for 
internal events and entry /exit actions are also declared in 
these abstract classes. Each abstract state class also contains 
two references, one for the composite state and the other for 
the super context object to access the action methods of the 
context object. Each substate in the concurrent region 
becomes a class and is derived from the abstract state class 
of the corresponding concurrent region. All the behavior 
associated with a particular substate is put in this substate 
class. Each transition from a substate becomes a method in 
the corresponding substate class. All the substate specific 
code resides in one class. Internal transitions and entry/exit 
actions are owned by their containing states so they are 
implemented as methods in the corresponding substate class. 
 
     Whenever a concurrent composite state becomes active, 
each one of its concurrent regions also becomes active. If 

the concurrent regions contain history states then the 
composite state will also maintain references for each 
history state. These references store the most recent active 
substate that was active prior to the transition from the 
composite state. The history reference is updated in the exit 
action method of the composite object. The current active 
substates are set in the entry method of the composite object. 
If the composite state is entered for the first time then 
default substates are set as active substates. In the other case 
the history references are used to set the most recent active 
substate. The implementation of the history state and the 
fork is encapsulated in the composite state class. The 
composite state object delegates the incoming requests 
(events), on which there are transitions within the 
concurrent region to the corresponding component substate 
objects. On handling the transitions, the active substate 
object first executes the associated action with the transition 
followed by the exit action of the current substate and then 
calls the setSub() method of the composite state object to set 
the new substate. In the setSub() method, the entry action of 
the new substate is also executed. The substate object is 
responsible for specifying the successor substate. For 
transitions that are going out of the composite state or for 
the internal transitions of the composite state, the composite 
state object provides the implementation code and does not 
forward them to the active substate objects. On handling 
transitions that are going out of the composite state, the 
composite state object first executes the exit actions of the 
current active substates, followed by its own exit action and 
finally the action associated with the transition is executed.  
 
     In the case of hierarchical composite state, the composite 
state will become the context for the nested statechart and 
will maintain a reference of the current active sequential 
substate. A composite abstract state class is generated for 
defining interface for encapsulating the behavior associated 
with sequential substates. The composite abstract state class 
contains two references, one for the hierarchical composite 
state and the other for the super context class. The 
sequential substates become the concrete substate classes 
and are derived from the composite abstract state class. The 
history state implementation is encapsulated in the 
hierarchical composite class. The composite class keeps the 
control most of the time and delegates the events to 
substates for transitions specific to the substates. Our 
approach translates application model to implementation 
code and aims not to create excessive information nor result 
in loss of information during the translation of model to 
implementation code. 
 
5. Air Conditioner System 
 
     We present an example of an Air Conditioner System 
that will not only clarify the various terms mentioned so far, 
but will also simplify the coming explanation of our code 
generation system. Figure 2 shows the static structure of the 
Air Conditioner System.  
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Figure 2.  Class diagram of the air conditioner system 
 
 

 

Figure 3.  Statechart of AirCon class having concurrent states 
 
 
     The display interface contains four buttons namely, 
Power, Speed, Mode and Temp and a display area, which 
shows the current state of the air conditioner. The 
DisplayInterface class maintains one object instance of each 
of the four buttons PowerButton, SpeedButton, ModeButton 
and TempButton and is associated with the AirCon class. 
The AirCon class represents the behavior of the air 
conditioner. Whenever some button is pressed invoking 
some service of the air conditioner, the DisplayInterface 
sends the particular message to the AirCon class. 

DisplayInterface class acts as a client to the AirCon class. 
The response from the AirCon class depends on its current 
state. 
 
     The dynamic behavior of the AirCon class is specified in 
the statechart as shown in Figure 3. It has two top-level 
states Stop and Operating. These states are activated 
alternatively whenever a powerBut event occurs. A 
transition from a solid circle to a state shows that the state is 
the default state. Initially, the air conditioner is in the default 



International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005 

state Stop, where it accepts the powerBut event. The air 
conditioner reacts on such an event by switching from the 
Stop state to the Operating state. A state can have entry and 
exit actions, which are executed when a state is activated or 
deactivated. When the Operating state is activated the setOn 
action is executed and setOff action is executed when the 
Operating state is deactivated. A state can also have internal 
transitions. An internal transition has an event trigger that 
causes an execution of an action without causing a change 
in state. While in Operating state, if the tempPlusBut event 
occurs then only the tempUp action will be executed and the 
air conditioner will remain in the Operating state.  
 
     The Operating state is a composite state with two 
concurrent regions Mode and Speed. These regions become 
active at the same time whenever the Operating state gets 
activated. Each of the concurrent regions has a number of 
sequential substates. Only one of the sequential substates 
becomes active at a given time. While in Operating state, on 
modeBut event, the air conditioner switches to the next 
sequential substate in the mode region. Similarly, on 
speedBut event, the air conditioner switches to the next 

sequential substate in the speed region. On powerBut event, 
the air conditioner switches to the Stop state. Sending a 
powerBut event will reactivate the air conditioner. When the 
air conditioner is reactivated, it switches into the history 
states of the two concurrent regions of the Operating state 
and recalls the last active substates of the two regions. A 
statechart describes the dynamic aspects of an object whose 
current behavior depends on its past. A statechart in effect 
specifies the legal ordering of states an object goes through 
its lifetime. History state allows a composite state that 
contains sequential substates to remember the last substates 
that was active in it prior to the transition from the 
composite state.  
 
6. JCode 
 
     Using our approach, described in section 4, we have 
developed a system, JCode, which automatically generates 
Java code from the specifications of the UML class and 
statechart diagrams. First, the system interprets the model 
specifications and transforms them into a table and then it 
generates the actual Java code from the table.  

 
 
 
 
 

 
 
 

Figure 4. Overall structure of the JCode system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5:  Statechart specification of the Air Conditioner in DSL format 
 

Java code Intermediate 
Tables 

Transformed 
Tables 

DSL file 
 

Interpreter 
 

Transformer
Code 

generator 

OSTD (AirCon)[nodes{n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12},arcs{a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11}]; 

OSTDN(n1)[loc(25:20),size(20:20),ostdnAttr(name:START)]; 

OSTDN(n2)[loc(10:140),size(75:125),ostdnAttr(name:Stop)]; 

OSTDN(n3)[loc(125:160),size(10:100),ostdnAttr(name:FORK)]; 

OSTDN(n4)[loc(160:10),size(260:400),ostdnAttr(name:Operating,entry/setOn,exit/setOff,event(name:tempPlusBut)/te

mpUp,concurrent{n5,n9})]; 

OSTDN(n5)[loc(160:20),size(260:180),ostdnAttr(name:Mode,substates{n6,n7,n8})]; 

OSTDN(n6)[loc(190:150),size(30:25),ostdnAttr(name:HISTORY)]; 

OSTDN(n7)[loc(260:140),size(70:50),ostdnAttr(name:Cooler)]; 

…………………………………………. 

OSTDA(a1)[from(n1,side:BOTTOM,off:5),to(n2,side:TOP,off:40)]; 

OSTDA(a2)[from(n2,side:RIGHT,off:35),to(n3,side:LEFT,off:140),ostdaAttr(name:powerBut)]; 

……………………………………….. 
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     The input to the system is the model specifications in 
Design Schema List Language (DSL) [21]. The output from 
the system is the Java code. DSL is a specification language 
to represent class and statechart diagram in an 
understandable text format and to facilitate data exchanges 
among tools and members of the group. JCode is developed 
in Java and is basically composed of three modules: 
Interpreter, Transformer and Code Generator. Figure 4 
shows the overall structure of JCode. 
 
6.1 Interpreter 
 
     The interpreter module reads the specifications of the 
UML statechart diagram, given in DSL format and identifies 
various states, their substates, history states, transitions and 
internal events. It makes a nested table to properly record all 
the information, thus transforming the information from 
DSL format to a table format. The table is represented by an 
object structure. Figure 5 shows a part of the DSL 
representation of the statechart for AirCon class (Figure 3). 
In DSL, each statement is terminated by a semicolon. The 
first line declares the nodes and arcs, which compose a 
diagram. In the diagram, nodes mean states and arcs mean 
transitions. Each node is described by a separate statement 
starting with the string “OSTDN”, and similarly, each arc is 
described by a separate statement starting with “OSTDA”. 
Figure 6 shows the table created by the Interpreter module 
from the statechart diagram of the AirCon class (Figure 3). 
 
6.2 Transformer 
 
     This module transforms and organizes the table, created 
by the interpreter module, in such a way so that code can be 
easily generated from it. A pseudostate is an abstraction that 
encompasses different types of transient vertices in the 

statechart diagram. But DSL, being graphical oriented, 
treats it as a node like any other node. Transformer module 
removes the pseudostates (start state, history state, fork and 
join) from the table and adjusts the information for the 
affected states and transitions. It sorts the table so that 
superstates should always come before their substates and 
puts all the events and actions in the context class. The code 
generator module needs to know not only the events that are 
supposed to occur on a state but also the events that may 
occur on its substates. The transformer module also adds the 
substates events information to the composite state. Figure 7 
shows the state table after transformation performed by the 
transformer module. 
 
6.3 Code Generator 
 
     This module takes information from the table refined by 
the transformer module and generates the Java language 
code. It calls various methods, which generates code for the 
respective classes. Figure 8 shows part of the actual code 
generated from the air conditioner system of Figure 2. 
While generating code, the system follows our approach 
described in previous sections. The detailed rules for code 
generation are as follow: 
 
1. The main application class AirConditioner, is 

generated. The name of the class is derived from the 
project name specified in the input DSL file. All the 
instances of classes of the class diagram are declared 
and initialized in the constructor of this class. The 
AirConditioner class contains the main() method that 
serves as an entry point. The application object is 
created and initialized in the main() method. The 
initialization code is also defined here. 

 
 
 

Outgoing Transitions State 
ID 

State 
Name 

Substates 
ID Event Action Next 

State

Entry 
Action 

Exit 
Action 

Internal 
Event 

n1 START  a1   n2    
n2 Stop  a2 powerBut  n3    

a3   n6 n3 FORK  
a4   n10 

   

n4 Operating n5,n9 a5 powerBut  n2 setOn setOff tempPlusBut/
tempUp() 

n5 Mode n6,n7,n8        
n6 HISTORY  a6   n7    
n7 Cooler  a7 modeBut setHeater n8    
n8 Heater  a8 modeBut setCooler n7    
n9 Speed n10,n11,n12        
n10 HISTORY  a9   n11    
n11 Low  a10 speedBut setHigh n12    
n12 High  a11 speedBut setLow n11    

 
 

Figure 6:  Table created by the Interpreter module for the air conditioner statechart 
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Outgoing Transitions Stat
e ID 

State Name 
*=default 
+=history 

Substates 
ID Event Action Next 

State 

Entry 
Action

Exit 
Action 

Internal 
Event 

n2 Stop*  a2 PowerBut  n4    
n4 Operating n5,n9 a5 PowerBut  n2 setOn setOff tempPlusBut

/tempUp() 
n5 Mode+ n7,n8        
n7 Cooler*  a7 ModeBut setHeater n8    
n8 Heater  a8 ModeBut setCooler n7    
n9 Speed+ n11,n12        
n11 Low*  a10 SpeedBut setHigh n12    
n12 High  a11 SpeedBut setLow n11    

 
Figure 7:   State table after the Transformer module for the air conditioner statechart 

 
 
2. One Java class is created for each of the class in the 

class diagram. The generated code contains all the 
class definitions of name, attributes and methods. To 
implements the association between classes, reference 
attributes with public visibility are generated in both 
the classes. If a statechart is attached with a class then 
the code for implementing the statechart is also 
generated in the corresponding class. 

3. The context class AirCon, with which the statechart is 
attached, is generated. It contains an attribute state that 
holds the reference of the current active state of the 
statechart. All the state objects are also defined here 
and created once in the constructor of the AirCon class. 
For each event in the statechart diagram, a method is 
defined that delegates the event to the state object. For 
each action in the statechart diagram, a method is 
declared in this class. The user enters the body code for 
the action methods. The default state is also set in the 
constructor of the AirCon class. The setState() is also 
defined, which is used for setting the next state and 
also calling the entry action of the next state of the 
statechart 

4. To provide a common interface to all state classes, an 
abstract state class, AirConState, is defined. It contains 
an attribute for the context object and contains empty 
declarations for all the events in the statechart diagram. 
Each state class has implementation code for its own 
events. States in the statechart diagram may have entry 
and/or exit actions [2], which are executed whenever 
the corresponding state is entered or exited. Such 
actions are implemented as entry and exit methods in 
the corresponding state classes. AirConState provides 
empty declarations for the entry and exit operations. 

5. A class is defined for each state (we call such classes 
as state classes). The name of the class is derived from 
the name of the state. All the behavior associated with 
a state is put in the respective state class. The top-level 
state classes are derived from AirConState class and 
the substate classes are derived from the corresponding 
abstract composite state class. If a state has entry/exit 

actions, methods having the name entry and exit 
respectively, are defined in the class. Bodies of these 
methods contain a method-call to the corresponding 
entry/exit actions. 

6. If a state is a composite state (e.g. Operating in Figure 
3), the corresponding class contains as many objects as 
there are concurrent regions in the composite state. For 
each concurrent region, an attribute with private 
visibility is defined. If the composite state contains 
history states then attributes with private visibility are 
also defined for keeping the reference of the last active 
substate. The name and type of the attributes are 
derived from the concurrent region name. The 
implementation of the history state and fork is 
encapsulated in the concurrent composite state class. 
An entry method is defined, which sets the default 
state (if the composite is entered for the first time) or 
sets the last active substate (to implement history state). 
The entry actions of the active substates are also called 
here. The composite state class is responsible for 
implementing the fork. Also, an exit method is defined 
which contains a call to the exit action of the 
composite state. It also contains the code for storing 
the active substate in the history state attribute. For 
each event on the substates, a method is defined that 
delegates the event processing to the substate and calls 
the method(s) for that event defined in the class(es) for 
the substate(s). It also contains methods for setting the 
next substate and calling the entry action of the next 
substate. 

7. If the state is a concurrent region (e.g. Mode and Speed 
in Figure 3), the class becomes an abstract class and 
serves as an interface for its own subclasses. This class 
is not subclassed from any other class. In addition to 
the entry and exit operations, it contains empty 
declarations for operations corresponding to its 
substates. It also contains two objects, which provide 
references to the composite state class and to the 
context class for executing the actions associated with 
events. 
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class AirCon { // context class 
  public AirConState  state; // reference for state 
  public Stop stopState; 
  public Operating operatingState; 
  public Cooler  coolerState; 
  public Heater  heaterState; 
  public Low   lowState; 
  public High  highState; 
AirCon() {  //constructor 
  stopState = new Stop(this); 
  operatingState = new Operating(this); 
  coolerState = new Cooler(this,operatingState); 
  heaterState = new Heater(this,operatingState); 
  lowState = new Low(this,operatingState); 
  highState = new High(this,operatingState); 
  state = stopState // setting default state          } 
public void setState(AirConState st) { 
   state = st; 
  state.entry();  } 
public powerBut() { state.powerBut(); } 
public modeBut() {state.modeBut(); } 
…………………. 
public void setOff() {……} 
public void setCooler() {……} 
………} 
 
public AirConState { // abstract state class 
  public AirCon ac;  // context reference 
  public void entry() {}; 
  public void exit() {}; 
  public void powerBut() {}; 
  public void tempPlusBut() {}; 
………….. 
} 

class Operating extends AirConState{ // composite 
  private AbsModeState  modeState; 
  private AbsModeState  modeHistory; 
  private AbsSpeedState  speedState; 
  private AbsSpeedState  speedHistory; 
  int hist = 0; 
public void entry() { 
  if (hist > 0) {// last active substate 
   modeState = modeHistory; 
   speedState = speedHistory; } 
else {  // for first time entry 
  modeState = ac.coolerState; 
  speedState = ac.lowState; } 
modeState.entry(); speedState.entry(); ac.setOn(); } 
public void exit() { 
  ac.setOff; modeHistory = modeState; 
  speedHistory = speedState; } 
public void modeBut() { modeState.modeBut(); } 
public void speedBut() { speedState.speedBut(); 
public void powerBut() {modeState.exit(); 
 speedState.exit(); exit(); ac.setState(ac.stopState); }
public void setMode(AbsModeState subMode) { 
   modeState = subMode;   modeState.entry();  } 
…….} 
 
class AbsModeState {// abstract composite state 
  public AirCon m_context; 
  public Operating s_context; 
/* Empty declarations for entry(), exit() and all 
events methods of subclasses of AbsModeState*/ } 
class Cooler extends AbsModeState { 
 void modeBut() { m_context.setCooler(); exit(); 
  s_context.setMode(m_context.heaterState); }  } 
…………………………………. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Part of the generated code for the air conditioner system 
 
 

8. An event on any state becomes a method in the 
corresponding class. Body code for the method is also 
completely generated. If the event is an internal event, 
the body code contains a method-call, which executes 
the associated action. If the event has a transition, the 
body code also contains: (i) call to the exit operation of 
the current state, (ii) method-call for setting the next 
state and (iii) call to the entry operation of the new 
state.  

 
7. Comparison with Rhapsody and OCode 
 
     Rhapsody [14, 22],  which  is  a  successor  of 
STATEMATE [23], is a CASE tool that allows creating 
UML models for an application and then generates C, C++ 
or Java code for the application. Rhapsody uses Object 
eXecution Framework (OXF) [14]. The tool does not 
optimize the generated code and the dynamics of the model 
are defined in the framework classes and hard-coded in the 
code generator. The code generator automatically derives 

model classes from the framework classes based on the 
application classes.  
 
     OCode [16,17] is another tool for code generation from 
OMT object and dynamic models. OMT state transition 
diagram is the predecessor of UML statechart diagram. 
UML statechart diagram contains many features which are 
not present in OMT state transition diagram e.g. history 
states, fork and join, time events etc. 
 
7.1 Code Generated by Rhapsody 
 
     Rhapsody uses data values to represent states and the 
operations in the Reactive class (inner class within context 
class) check the data explicitly. Events are represented as 
classes and are derived from the framework class. The client 
class creates the event object and calls the gen method of the 
context class. The context class delegates it to Reactive class 
to consume the event. The state transitions are implemented 
as assignment to some variables and have no explicit 
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representation. The transition-searching is performed by 
executing a switch statement in the Reactive class. The 
hierarchical and concurrent substates are handled inside the 
switch statement. Each action is implemented as a simple 
statement. The designer user is forced to use target language 
syntax for defining actions on the transitions. If the action is 
a method call then no method header is generated, which 
gives an error while compiling the code.  
 
7.2 Code Generation by OCode 
 
     In OCode, states are represented as classes and events 
and actions as methods. The Controller class, which keeps 
the control of the entire system, contains a helper object to 
maintain a reference of current state object. The state 
hierarchy is implemented using the concept of inheritance. 
The super state of concurrent substates is implemented as a 
composite class that owns objects of other classes. The 
composite class maintains objects corresponding to each of 
the concurrent substates. When the superstate becomes 
active, the corresponding state class gets instantiated and it 
instantiates its own substate objects. The state objects are 
created each time an event is processed. The object creation 
is an expensive operation. As OMT state transition diagram 
does not contain history states and fork, we have rewritten 
the equivalent code for the air conditioner system example 
in order to have a fair comparison with the code generated 
by our approach. 
 
7.3 Code Generated by JCode 
 
     In the code generated by JCode, the class with which the 
statechart is attached becomes the context class. The states 
become classes (inherited from a common interface class). 
Each action is implemented as a method of the context class 
and the method header is generated. The user has to write 
the body code of the action. Hierarchical and concurrent 
substates are implemented by object composition and 
delegation. JCode converts each event into a method call 
and transition searching is performed by polymorphism. The 
transition code is put in separate methods in the 
corresponding state classes. All the states and transitions are 
thus made explicit without using any conditional statement. 
The context class maintains a reference to the current state 
object and delegates the event to the current active state. All 
the states objects are created only once in the constructor of 
the context class and this leads to faster execution of the 
event handling mechanism. The hierarchical and concurrent 
substates are implemented using the concept of object 
composition. The composite state becomes the context for 
the nested statechart and contains references for the current 
active substate. The event is first handled by the composite 
state. If the target of the event is a substate then it is 
delegated to the current active substate. 
 
 
 

7.4 Comparing the Code Generated by Rhapsody, 
OCode and JCode 
 
     We have used the same air conditioner system (Figure 2) 
example and compared the code generated by Rhapsody and 
OCode to that of JCode. Findings of the comparison are as 
follows: 
 
1. Code generated by JCode is more compact. The source 

code generated by Rhapsody is approximately four 
times longer than the code generated by JCode, as 
shown in Table 1. In addition, as the context class and 
events become subclasses of the OXF framework, the 
number of classes is much larger than that of JCode. 
The code generated by JCode is also 10% more 
compact than that of OCode. The OCode generates the 
same number of classes. 

 
2. Our code is more efficient. To compare the efficiency 

of the code generated by Rhapsody, OCode and JCode, 
we performed an experiment in which the same 
sequence of 4000 requests was sent to the AirCon 
(context) class that corresponds to the statechart 
diagram. Out of these 4000 events, 2250 caused 
transitions while the remaining 1750 events did not 
cause any transition and were ignored. For each event, 
the time taken to process the event was calculated. We 
made all the actions methods empty and concentrated 
on measuring the time taken while executing transitions, 
i.e. changing states. To have more accurate results, we 
repeated the experiment 20 times and calculated the 
average values. The experiment was performed on Sun 
SPARC workstation. According to the results of the 
experiment in Table 2, to process an event that has no 
transition, our code is 58.50% more efficient than 
Rhapsody and 15.10 % more efficient than OCode. For 
events having transitions, our code offers a 71.00% 
improvement over Rhapsody and 57.60% over OCode. 
The overall improvement that JCode offers for all type 
of events is 68.00% over Rhapsody and 49.90% over 
OCode . 

 
In Rhapsody, an object instance is created for each 
event by the client. Various framework classes are 
involved in the invocation of the actual event 
processing mechanism and finally the 
rootState_dispatchEvent method of the Reactive is 
called to process the event. This method contains a 
switch statement that finds if there is any transition on 
this event from the current state. If there is a transition, 
the corresponding method is executed, which updates 
the current state and also calls various methods to 
perform the entry and exit actions and also executes the 
associated action. If there is no transition, false value is 
returned to the calling method. When summed up, all 
this takes a considerable amount of time. 
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Table 1.  Comparing the compactness of code generated  
by Rhapsody, OCode and JCode 

 

 Rhapsody OCode JCode 

Source code: Number of lines 1025 303 273 

Source code: Number of bytes 29482 8569 7292 

Number of classes 26 10 10 

 
 

Table 2.  Comparing the efficiency of the code generated by Rhapsody and JCode 
 
 

 Rhapsody(x) 
(millisecs) 

OCode (y) 
(millisecs) 

JCode (z) 
(millisecs) 

Improvement 
over Rhapsody 

(x – z)/x*100 

Improvement 
over OCode 
(y – z)/y*100 

Total time for events 
without transitions (a) 8.80 4.30 3.65  

Average Time per 
event without 
transition (a / 1750)  

0.00501 0.00246 0.00208 58.50% 15.10%

Total time for events 
having transitions (b) 28.30 19.35 8.20  

Average Time per 
event having 
transition (b / 2250)  

0.01257 0.00860 0.00364 71.00% 57.60%

Total time for all 
events (a + b) 37.10 23.65 11.85  

Average Time per 
event  ((a + b) / 4000)  0.00928 0.00591 0.00296 68.00% 49.90%

 
 

In the case of OCode, the state object is created each 
time the event is handled. The object creation is an 
expensive operation and takes precious processor time. 
Even for transitions without events the state object gets 
instantiated. 
 
In JCode, on the occurrence of an event, the context 
class delegates it to the current active state. If there is 
no transition, then only the empty method of the 
abstract state class is executed, which is a fast operation 
and nothing more happens. But if the event has a 
transition, the method in the concrete state class gets 
executed, which sets the current state reference object 
of the context class to the new state. All the state 
objects are created only once in the constructor of the 
context class. There are no conditional structures in the 
code. That is why the time taken by our code is 
markedly short.  
 

3. Rhapsody code is less understandable. Rhapsody uses 
data values to represent states and implements events as 
classes. The event processing mechanism involves 

various OXF classes and their methods and is buried in 
the framework classes. It uses the switch statement for 
transition searching in each of the methods for a state in 
the Reactive class. This makes the code difficult to 
understand. Our code converts each event into a method 
call. The appropriate method is selected on the principle 
of polymorphism. The transition code is put in separate 
methods in the corresponding state classes. All the 
states and transitions are thus made explicit without 
using any conditional statements. This contributes to 
making the code more understandable.  

 
8. Related Work 
 
     Köhler et al. [24] presented a tool FUJABA [25] for code 
generation from statecharts. Their approach adapts the idea 
of generic array based state table [13] but uses an object–
oriented implementation of the state table at runtime. Events 
are implemented as methods. They use objects to represent 
states of the statechart and attributes to hold the entry and 
exit methods. These state objects are linked via transition 
objects that store the triggering event. Additional links and 
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attributes represent the nesting of complex states, history 
states etc. A library function is used to interpret the state-
table and to react on events. This function is also 
responsible for issuing appropriate action methods and 
switching to the resulting states. The state table approach is 
more complex and causes runtime overhead for table 
lookups and the interpretative style of event execution. The 
focus is more on implementing statechart features than 
efficiency. 
 
     Knapp and Merz [26] described a set of tools called 
Hugo for the code generation of UML statecharts. A generic 
set of Java classes provides a standard runtime component 
state for UML statecharts. Every state of a statechart is 
represented by a separate object, which provides methods 
for activation, deactivation, initialization and event handling. 
Events, guards and actions are also implemented as classes. 
A greedy algorithm performs transition searching. The event 
traverses the state hierarchy until one or more states are 
found that consume the event. Simple states determine 
whether to fire one of their transitions, whereas composite 
events first let their active substate(s) handle the event 
before trying to fire their own transitions. In the case of 
concurrent composite states, the orthogonal regions are 
traversed in a random permutation. In our approach the 
composite state first handles the transition and if the target 
of the transition is a substate then it will delegate it to the 
current active substate(s). Hugo code generation is 
interpretative in nature and is not producing the optimized 
code. The history states are also not implemented.  
 
     Gurp and Bosch [27] presented Finite State Machines 
(FSM) framework, which extends State pattern by modeling 
all the statechart elements as classes. Similar to the state 
pattern, there is an FSMContext component that has a 
reference to the current state and all state-specific data (in a 
repository). State is represented as a state object rather than 
a state subclass in the State pattern and is associated with a 
set of transitions. The FSM object receives the incoming 
events and responds to them by allocating an FSMContext 
instance. FSMContext object forwards the request to the 
current State object. The State maintains a list of transition-
event pairs. When an event is received the corresponding 
transition is located and then executed (triggered). The 
transition object has a reference to the target state and the 
corresponding FSMAction object. The Transition object 
knows which FSMAction to execute and resets the current 
state on the FSMContext object. A state transition in FSM 
framework is about twice as expensive as in the State 
pattern implementation for the simple transitions. Transition 
searching is done by a look up in a hashtable object. The 
hashtable object maps event names to transitions. FSM 
framework does not generate optimized code. History states 
are also not implemented. 
 
     Wasowski [28, 29] presented a hierarchical code 
generator called SCOPE [30]. SCOPE compiles a 

sublanguage of statecharts supported by visualSTATE [31] 
and produces C language code. The visualSTATE 
statecharts are subset of Harel’s statecharts [3] incorporating 
most of the original statechart language including 
concurrent states, history, internal transitions and other 
elements. These statecharts are similar to UML statecharts. 
SCOPE uses flattening in which hierarchical statecharts are 
converted into parallel Mealy machines and then code is 
generated. Abandoning the hierarchy may cause exponential 
growth of the model, which leads to exponential growth of 
the program size. The flattening technique is mostly useful 
only for smaller models. 
 
9. Conclusions 
 
     An OO approach for generating Java code from the UML 
statechart diagrams has been described. States are 
represented as objects and transitions as operations. All the 
behavior related with a particular state is put into one object 
and this localizes the state-specific behavior. Because all 
state-specific code lives in a state subclass, new states and 
transitions can be added easily by defining new subclasses. 
Our approach distributes behavior for different states across 
several state classes. This increases the number of classes 
but such distribution is actually good as introducing separate 
objects for different states makes the transitions more 
explicit. This makes the components of the statechart 
diagram explicit and the resulting code easier to understand 
and maintain. Our approach implements the statechart 
semantics as faithfully as possible and ensures that the 
resultant code is still consistent with the UML model.  
 
     The proposed approach has been implemented in our 
system, JCode, which automatically converts the UML 
statechart specifications into Java code. The comparison 
with Rhapsody shows that the code generated by our system 
is 68% more efficient and about four times more compact 
than that of Rhapsody. Our Code is also 50% more efficient 
that that of OCode. 
 
     Our approach is an OO approach and in the present study 
we have used Java as the target language. However our 
approach is general so it can be used to generate the low 
level code in other OO languages. The code generation 
engine has to be tailored to the target language as some of 
the features are implemented differently in different OO 
programming languages. 
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