
International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

An Object-Oriented Approach To Generate
Java Code From UML Statecharts

Iftikhar Azim Niaz and Jiro Tanaka *

University of Tsukuba, Japan

Abstract

 The Unified Modeling Language (UML) statechart
diagram is used for modeling the dynamic behavior of a
system. This paper describes an object-oriented (OO)
approach to generate compact and efficient Java code from
UML statechart diagrams. The states are represented as
objects and all the behavior associated with a state is
contained in one object. This localizes the state-specific
behavior and partitions behavior for different states.
Introducing separate objects for different states makes the
transitions more explicit. We have implemented the
statechart diagram having sequential and concurrent
substates by extending the state design pattern using the
concept of object composition and delegation. The method
has been successfully implemented in our automatic code
generating system, JCode, which generates Java code after
reading the specifications of the UML statechart diagram.
The paper also presents the results of the experiment in
which the code generated by JCode is compared to that of
Rhapsody and OCode. The results show that the code
generated by JCode is 68% more efficient and four times
more compact than that of Rhapsody and 50% more
efficient than that of OCode.

Keywords: Code generation, object-oriented analysis and
design, CASE, statecharts, object composition, Java.

1. Introduction

 The UML [1] is a general-purpose visual modeling
language that is used to specify, visualize, construct and
document the artifacts of a software system. The emergence
of UML as an industry standard for modeling systems has
encouraged the use of automated software tools that
facilitate the development process from analysis through
coding. It provides several diagram types that can be used to
view and model the software system from different
perspectives and/or at different levels of abstraction. In
UML based OO design, behavioral modeling aims at
describing the behavior of objects using state machines. A
state machine is a behavior that specifies the sequence of
states an object goes through during its lifetime in response
to events [2]. A state machine models the possible life

*Department of Computer Science
Graduate School of Systems and Information Engineering
Tsukuba, Ibaraki, 305-8573, Japan
ianiaz@iplab.cs.tsukuba.ac.jp, jiro@iplab.cs.tsukuba.ac.jp

histories of an object of a class. State machines are used for
specifying the full dynamic behavior of a single class of
objects. The UML statechart diagram visualizes a state
machine [2]. A statechart diagram contains states,
transitions, events and activities. Statechart diagrams
address the dynamic view of a system. They are especially
important in modeling the behavior of a class and emphasize
the event-ordered behavior of an object, which is
particularly useful in modeling reactive systems. A
statechart attached to a class specifies all behavioral aspects
of the objects in that class. The semantics and notations used
in UML statecharts mainly follow Harel’s statecharts [3]
with extensions to make them OO [1].

 The OO software is a collection of interacting objects.
Benefits of high-level modeling and analysis are
significantly enhanced if code can be generated
automatically from a model such that the correspondence
between the model and code is precisely understood. Model-
based code generation produces application code
automatically from graphical models of system objects and
behavior. Development tools are moving to model-based
development to raise the level of abstraction at which
developers can work. OO methods help developers analyze
and understand a system, but the Achilles' heel of analysis
and design methods has been the transition to code. Most of
the OO methodologies [4, 5, 6, 7] describe in sufficient
detail the steps to be followed during the analysis and
design phase, but fail to describe how the analysis and
design models of a system shall be converted into
implementation code. A big problem in the development of
a system through OO methodologies is that even after
having created good models, it is difficult for a large
fraction of programmers to convert the models into
executable code.

 There are two major approaches used for OO model-
based code generation, namely structural and behavioral.
The structural approach is based on using models of object
structure (static relationships). It generates code frames
(such as class interface specifications) from models of static
relationships among objects. Class diagrams concepts can
be implemented in a programming language supporting
concepts like classes and objects, composition and
inheritance. Based on the partial models of object dynamics,
developers then explicitly program object behavior and
communications in the target language. Many OO CASE
tools (ArgoUML [8], Poseidon [9], Metamill [10], etc.)
generate limited skeleton code from such models. The main

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

drawback of this approach is that there is no code generation
for object behavior and thus the code generated is not
complete.

 The behavioral approach extends the techniques used in
structural approach. It can generate complete code using
additional state machine models and action specifications in
a high-level language. With models of both object structure
and state machines, this approach enables the tools to
generate code for the entire application model.

 Our approach for code generation is a behavioral
approach. The objective of the current study is to find a
method to generate efficient code from the UML class and
statechart diagram in an OO programming language.
Through mapping between UML and Java, we are able to
generate low-level Java code directly from the class and
statechart diagram. Code generated from our approach is
intended to be complete and covers all the information from
the input models. The proposed implementation techniques
are valuable in that they raise the level of abstraction and
allow for straightforward mapping of UML statecharts to
compact and efficient code.

 Our code generation approach for implementing
statecharts is motivated by [18] and is based on [19], [20]
and State pattern [15]. In [18], an implementation model is
presented to convert UML statecharts to Java code. The
concept of helper object is introduced which handles all
state-specific requests forwarded to it by the multi-state
domain object. The helper object represents the current state
of the domain object. When the state of the of the domain
object changes, a new helper object, implementing the
behavior specific to the new state, replaces the old one. The
proposed model generates code only for the class with
which the statechart is attached and other classes of the
application model are not considered. The generated code is
incomplete and the model is not implemented in any code
generating system.

 In [19] and [20], we use a different approach. Instead of
using helper object, we adapt the idea of State pattern [15]
for representing states as objects and provide support for
hierarchy, concurrency and the dynamic parts of the
statecharts. State pattern puts all the behavior associated
with a particular state into one class. The object with state
behavior is split into context and a state. The context object
contains the common elements of the object’s state and
delegates events for processing to its current state object.
The state object contains state-specific attributes and
implementation for state-dependent behavior. The
implementation for the history state and fork is not
encapsulated rather it is distributed among the context class,
state class and the composite state class. In this approach,
the code is generated only for the class with which the
statechart is associated and the code generation for the other
classes in the application model is not considered. The

generated code is incomplete.

 In this paper, we have used the behavioral approach
which is different from the approach of [19] and [20]. This
paper focuses on the complete code generation for the entire
application model including the class diagram and the
statechart diagram. The code generation for some of the
statechart features such as history states and fork, is
encapsulated in the composite state class to generate
complete and more efficient code. The JCode system is
developed, which automatically generates the executable
Java code using our approach. The results of the experiment,
in which the code generated by JCode is compared with the
code generated by Rhapsody [14] and OCode [16, 17], is
presented in section 7.

 The remainder of this paper is organized as follows. In
the next section, we present an overview of the features and
semantics of the state machine and statechart diagram.
Section 3 provides background about various approaches to
implement statecharts. Section 4 explains our code
generation approach to implement statecharts. In section 5
an air conditioner system example is given to explain our
approach. In section 6, we explain our automatic code
generating system, JCode. In section 7, code generated by
JCode is compared with that of Rhapsody and OCode.
Section 8 overviews the related work. Finally, in section 9,
we summarize and conclude.

2. State Machines and Statechart Diagrams

 A state machine is a graph of states and transitions that
describes the response of an object to the receipts of events.
State machines are used for specifying the full dynamic
behavior of a single class of objects. The diagrammatic
presentation of a state machine is a statechart diagram.
Figure 1 shows a sample statechart diagram.

 Each state models a period of time during the life of an
object during which it satisfies certain conditions, performs
some action, or waits for some event. A state becomes
active when it is entered as a result of some transition and
becomes inactive if it is exited as a result of a transition. A
transition is a directed relationship between a source state
and a target state indicating that an instance in the source
state will enter the target state and performs certain actions
when a specified event occurs provided that certain
specified conditions are satisfied [2]. On such a change of
state, the transition is said to “fire”. The trigger for a
transition is the occurrence of the event labeling the
transition. The event may have parameters, which are
accessible by the actions specified on the transition as well
as in the corresponding exit and entry actions associated
with the source and target states respectively. When an
event occurs, it may cause the firing of transition that takes
the object to a new state. Events are processed one at a time.
If an event does not trigger any transition it is discarded.

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

Figure 1. A statechart diagram

A guard condition can be attached to a transition. A guard
condition is a Boolean expression that defines conditions
under which the transition is able to fire. The guard
condition must be true for the transition to be fired. The
condition is evaluated at the time the event is dispatched.
When a transition fires, an action attached to the transition is
executed. The action must be executed entirely before any
other actions are considered. A completion transition does
not have an explicit trigger event, although it may have a
guard defined. It causes an automatic state change
immediately after the actions of the source state have been
executed.

 A state may have, among other features, entry and exit
actions, internal activity and internal transitions. Whenever
a state is entered, it executes its entry action before any
other action is executed. Conversely, whenever a state is
exited, it executes its exit action as the final step prior to
leaving the state. If defined, the activity (do–activity)
associated with the state is forked as a concurrent activity at
the instant when the entry action of a state is completed.
Upon exit, the activity is terminated before the exit action is
executed. A state may also have internal transitions. An
internal transition has an event trigger that causes an
execution of an action. Firing of an internal transition does
not cause a change of state. Therefore, the entry and exit
actions of the state are not executed. There are two special
states that may be defined for an object’s state machine,
namely initial state and the final state. The initial state
indicates the default starting place for the state machine or
substate. An initial state is shown as a small solid circle.
The final state indicates that the execution of the state

machine or the enclosing state has been completed. A final
state is represented as a filled black circle surrounded by an
unfilled circle.

 A statechart may also have composite states. A
composite state is a state that contains other states. Any state
enclosed within a composite state is called a substate of that
composite state. A composite state may contain either
concurrent (orthogonal) or sequential (disjoint) substates.
Given a set of disjoint substates in the context of an
enclosing composite state, the object is said to be in the
composite state and in only one of those substates at a time.
Therefore, sequential substates partition the state space of
the composite state into disjoint states. Substates may be
nested to any level. A transition may target the composite
state or it may target a substate. If its target is the composite
state, the nested state machine must include an initial state,
to which control passes after entering the composite state
and after dispatching its entry action. An initial state is
shown as a small solid filled circle. If its target is the nested
state, control passes to the nested state after dispatching the
entry action (if any) of the composite state and then the
entry action (if any) of the substate. A transition leading out
of a composite state may have as its source the composite
state or a substate. In either case, control first leaves the
nested state and its exit action (if any) is executed, then it
leaves the composite state and its exit action (if any) is
executed. A composite state may contain history state
shown as a small circle containing an “H”. A history state
allows a composite state that contains sequential substates to
remember the last substate that was active in it prior to the
transition from the composite state.

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

 The orthogonal regions represent the parallel
composition of sub machines. These substates specify two
or more state machines that execute in parallel in the context
of the enclosing object. Fork and join pseudostates
synchronize transitions entering or leaving orthogonal
regions. Whenever there is a transition to a composite state
decomposed into concurrent substates, control forks into as
many concurrent flows as there are concurrent substates.
Similarly, whenever there is a transition from a composite
state, control joins back into one. This holds true in all cases.
A nested concurrent state machine does not have an initial,
final or history state. However, the sequential substates that
compose a concurrent state may have these features.

3. Common Approaches to Implement Statecharts

 The UML behavior diagrams include many concepts that
are not present in most popular programming languages,
like C++ or Java, e.g. events, states, history states etc. This
means there is not a one-to-one mapping between a
statechart and its implementation. A model enables the
modeler to work at a higher level of abstraction. The
progression from the model to an implemented system is not
truly a seamless transition, mainly due to a gap. A model-
system gap exists primarily due to the different levels of
abstraction. UML is a modeling language, which consists of
semantics and graphical notation. For every element of its
graphical notation there is a specification that provides a
textual statement of syntax and semantics. Implementing the
semantics correctly is a challenging task, as the
programming languages do not directly support them. The
OO programming languages do not deal with abstract
behavior.

 We observed that states can be represented as scalar
variables or they can be represented as objects. Events can
be represented as objects or as methods. Ran [11] examined
the relation between states and classes. Sane and Campbell
[12] proposed that states could be represented as classes and
events as operations. Some model elements, like history
states, can be implemented in many different ways. This
clearly contrasts with class diagrams that often can be
implemented directly in a programming language supported
concepts like classes and objects, composition and
inheritance. We will now discuss some of the common
approaches to implement statecharts.

3.1 Switch Statement

 The most common technique to implement statechart is
to provide a single scalar variable called a state variable and
use this as a discriminator in the switch statement inside
each event method of the context class [2]. Each case clause
in the switch statement can implement the various actions
and activities. This technique works well for classical “flat”
state machines. The nested states are implemented via many
flat states or nested switch statements [13]. The substates

are used as a discriminator in the second level of switch
statement. All the behavior of the statechart is put in one
class. The conditional statements are monolithic and tend to
make code less explicit. There is a lot of code duplication
and reuse of code is very difficult. Manual coding of entry
/exit actions and nested states is, however, cumbersome,
mainly because code pertaining to one state becomes
distributed and repeated in many places. This makes it
difficult to modify and maintain when the topology of state
machine changes. It does not provide explicit means for
reflecting the transition structure, state hierarchy and
entry/exit actions associated to states. Implementing and
maintaining the code generated by following this approach
is error-prone and labor intensive, but usable in automatic
code generators where the code maintenance is substituted
by forward engineering. I-Logix’s Rhapsody [14] follows an
approach similar to this pattern with major enhancements.

3.2 Helper Object

 In [18], the concept of a helper object is introduced,
which handles all the state-specific requests forwarded to it
by the multi-state object. Multi-state object respond
differently to each external message depending upon its
current state. The helper object encapsulates all the state-
specific behavior of the multi-state domain object. The
helper object represents the current state of the domain
object and implements the behavior specific to the current
state. The domain object delegates all external messages to
its helper object and the helper objects responds to the
message on behalf of the domain object. When the state of
the domain object changes, a new helper object,
implementing the behavior specific to the new state,
replaces the old one. Helper object puts the behavior
associated with a particular state into one object. Events
become methods and state hierarchy is implemented by
inheritance. Helper object has some similarity with the State
design pattern as both represents state as classes and events
as methods, but the State pattern neither addresses the state
hierarchy nor does it address the concurrency within the
statecharts. The implementation of some of the statechart
features such as history state and fork is not encapsulated in
the composite state rather it is distributed among state
objects and the domain object.

3.3 State Design Pattern

 By using object orientation, the use of switch statement
can be avoided through the use of dynamic binding. State
design pattern [15] is the OO replacement of switch
statements. Each case becomes a state class and the correct
case is selected by looking at the current state. Each state is
represented as a separate class. This makes the object’s state
as an object in its own right that can vary independently
from other objects. States are represented as descendents of
a common interface class (each method in this interface
corresponds to an event) that declares handler functions for

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

all events possibly received by the context class. A context
class delegates events for processing to the current state
object. Transition searching is performed by polymorphism.
State transitions are accomplished by changing the current
state object. This pattern groups behavior, which is
associated to the specific states of the object, into different
classes, enabling in this way the separation of concerns in an
elegant and efficient way. State pattern facilitates reuse in
subclasses because often subclasses that are changed need to
be modified. Thus the changes are better encapsulated. The
most important weakness of this approach is that it does not
provide any means for implementing the dynamic parts of
the model. The action chain to be performed on state
transitions as defined by UML behavioral model must be
coded in the event handler functions. There is no explicit
support for hierarchy, history and concurrency.

4. Code Generation Approach

 The switch statement solution is not scalable. The code is
difficult to read and maintain when the number of states
increases. The state pattern does provide a better and
scalable solution than switch statement but it still has
problems for implementing composite states and other
dynamic features of the statechart. The state pattern
provides a structural mechanism and the implementation
strategy of individual states and sub-statemachines is left
open. It provides a general solution and it is not specifically
meant for a particular application domain such as
implementing the statechart diagram. OCode [16, 17]
provided solutions to some of these problems. OCode is a
tool for generating code from Object Modeling Technique
(OMT) [5] object and dynamic models. OMT state
transition diagram is the predecessor of the UML statechart
diagram. OCode provides support for implementing
composite states but it does not provide support for new
features of UML statechart diagram, which are not present
in OMT state transition diagram, e.g. history states, fork and
join, time events etc.

 Our code generation approach is a behavioral approach
and it focuses on complete code generation for the entire
application model including the class diagram and the
statechart diagram. A number of class diagram elements are
supported by the Java language, so the translation from class
diagram to Java code is relatively straightforward. In
contrast, implementing statechart diagram is a challenging
task as many concepts are not directly supported by Java.

 In our approach, one main application class is generated
with a main() method that acts as an entry point of the
whole application. All the instances of the classes of the
class diagram are declared and initialized here. All classes
and interfaces within the class diagram are transformed into
code. The generated code will contain all the class
definitions of name, attributes and methods. Relationships
between classes are identified and transformed into code. To

implements the association between classes, reference
attributes with public visibility are defined in both the
classes. If a statechart is attached with a class then the code
for implementing the statechart is defined in the
corresponding class.

 In our approach for implementing statechart diagram, the
context class, whose behavior is represented by the
statechart, becomes the super context class and defines the
interface to clients. An abstract state class is used for
defining the interface for encapsulating the behavior
associated with a particular state of the context. The abstract
state class declares an interface common to all state classes
and its purpose is to make all the state classes able to accept
every event of the statechart. The interface for internal
events and entry /exit actions are also declared in this
abstract class. Each state in the statechart diagram becomes
a class and is derived from the abstract state class. All the
behavior associated with a particular state is put in this state
class. Each transition from a state becomes a method in the
corresponding state class in order to provide a uniform and
convenient way of invoking some services on the context
object. If-then statement will be used to check whether the
guard condition is satisfied. All the state-specific code
resides in one class. The logic that determines the state
transitions is partitioned between the state classes. Methods
in the state do not need conditional analysis and have no
concern for processing in other states. Encapsulating each
state transition in a class elevates the idea of an execution
state to full object status. Introducing separate objects for
different states makes the transitions more explicit. That
imposes structure on the code and makes its intent clear.
The actions in the transitions of a state machine perform
operations on data in the system. We consider actions as
messages so each action of the statechart becomes a method
in the context class. Internal transitions and entry/exit
actions are owned by their containing states so they are
implemented as methods in the corresponding state class.

 The context object maintains references of all the state
objects and they are created once in the constructor of the
context object. The context object also holds the reference
of the current active state in the state object, which is
initialized to default state in the constructor of the context.
The context has a method for each event of the statechart.
Instead of implementing the event method, the context
delegates all requests (events) for processing to the current
state object. The transition searching is performed using
polymorphism. Separating behavior into disparate objects
makes sense when the separation takes advantage of
polymorphism. Polymorphism allows two objects to be
treated identically, even though the objects implement these
methods in quite different ways. State transitions are
accomplished by changing the current state object. On
handling the transitions, the current state object first
executes the associated action with the transition followed
by the exit action of the current state and then calls the

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

setState() method of the context to set the new state. In the
setState() method, the entry action of the new state is also
executed. The state object is responsible for specifying the
successor state. Decentralizing the transition logic in this
way makes it easy to modify or extend the logic by defining
new state subclasses. The abstract state class has an
association with the context so it contains a reference to the
context object. The state objects inherit this reference to
access the methods of the context object.

 A composite state is decomposed into two or more
concurrent (orthogonal or AND) substates (regions) or into
mutually exclusive disjoint (sequential) substates. When a
hierarchical composite state containing sequential substates
is active, exactly one of its sequential substates is active.
Whenever a concurrent composite state becomes active,
each one of its concurrent regions also becomes active. The
concurrent substates show two or more nested state
machines that execute in parallel in the context of the
enclosing composite state. This leads us to implement the
hierarchical composite state and concurrent composite state
by extending the state design pattern with the concept of
object composition and delegation. Object composition is
defined dynamically at runtime through objects acquiring
references to other objects. New functionality is obtained by
composing objects to get more complex functionality.
Object composition keeps each class encapsulated and there
are substantially fewer dependencies. Any object can be
replaced at run-time by another as long as it has the same
type. Delegation is a way of making object composition
powerful for reuse. The main advantage of delegation is that
it makes it easy to compose behavior at run-time and to
change the way they are composed.

 The concurrent composite state becomes the context for
all the concurrent regions and maintains references of the
current active substates within each concurrent region.
Abstract state classes are defined for each concurrent region.
Each abstract state class defines an interface for
encapsulating the behavior associated with a particular
concurrent region of the composite state. The interface for
internal events and entry /exit actions are also declared in
these abstract classes. Each abstract state class also contains
two references, one for the composite state and the other for
the super context object to access the action methods of the
context object. Each substate in the concurrent region
becomes a class and is derived from the abstract state class
of the corresponding concurrent region. All the behavior
associated with a particular substate is put in this substate
class. Each transition from a substate becomes a method in
the corresponding substate class. All the substate specific
code resides in one class. Internal transitions and entry/exit
actions are owned by their containing states so they are
implemented as methods in the corresponding substate class.

 Whenever a concurrent composite state becomes active,
each one of its concurrent regions also becomes active. If

the concurrent regions contain history states then the
composite state will also maintain references for each
history state. These references store the most recent active
substate that was active prior to the transition from the
composite state. The history reference is updated in the exit
action method of the composite object. The current active
substates are set in the entry method of the composite object.
If the composite state is entered for the first time then
default substates are set as active substates. In the other case
the history references are used to set the most recent active
substate. The implementation of the history state and the
fork is encapsulated in the composite state class. The
composite state object delegates the incoming requests
(events), on which there are transitions within the
concurrent region to the corresponding component substate
objects. On handling the transitions, the active substate
object first executes the associated action with the transition
followed by the exit action of the current substate and then
calls the setSub() method of the composite state object to set
the new substate. In the setSub() method, the entry action of
the new substate is also executed. The substate object is
responsible for specifying the successor substate. For
transitions that are going out of the composite state or for
the internal transitions of the composite state, the composite
state object provides the implementation code and does not
forward them to the active substate objects. On handling
transitions that are going out of the composite state, the
composite state object first executes the exit actions of the
current active substates, followed by its own exit action and
finally the action associated with the transition is executed.

 In the case of hierarchical composite state, the composite
state will become the context for the nested statechart and
will maintain a reference of the current active sequential
substate. A composite abstract state class is generated for
defining interface for encapsulating the behavior associated
with sequential substates. The composite abstract state class
contains two references, one for the hierarchical composite
state and the other for the super context class. The
sequential substates become the concrete substate classes
and are derived from the composite abstract state class. The
history state implementation is encapsulated in the
hierarchical composite class. The composite class keeps the
control most of the time and delegates the events to
substates for transitions specific to the substates. Our
approach translates application model to implementation
code and aims not to create excessive information nor result
in loss of information during the translation of model to
implementation code.

5. Air Conditioner System

 We present an example of an Air Conditioner System
that will not only clarify the various terms mentioned so far,
but will also simplify the coming explanation of our code
generation system. Figure 2 shows the static structure of the
Air Conditioner System.

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

Figure 2. Class diagram of the air conditioner system

Figure 3. Statechart of AirCon class having concurrent states

 The display interface contains four buttons namely,
Power, Speed, Mode and Temp and a display area, which
shows the current state of the air conditioner. The
DisplayInterface class maintains one object instance of each
of the four buttons PowerButton, SpeedButton, ModeButton
and TempButton and is associated with the AirCon class.
The AirCon class represents the behavior of the air
conditioner. Whenever some button is pressed invoking
some service of the air conditioner, the DisplayInterface
sends the particular message to the AirCon class.

DisplayInterface class acts as a client to the AirCon class.
The response from the AirCon class depends on its current
state.

 The dynamic behavior of the AirCon class is specified in
the statechart as shown in Figure 3. It has two top-level
states Stop and Operating. These states are activated
alternatively whenever a powerBut event occurs. A
transition from a solid circle to a state shows that the state is
the default state. Initially, the air conditioner is in the default

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

state Stop, where it accepts the powerBut event. The air
conditioner reacts on such an event by switching from the
Stop state to the Operating state. A state can have entry and
exit actions, which are executed when a state is activated or
deactivated. When the Operating state is activated the setOn
action is executed and setOff action is executed when the
Operating state is deactivated. A state can also have internal
transitions. An internal transition has an event trigger that
causes an execution of an action without causing a change
in state. While in Operating state, if the tempPlusBut event
occurs then only the tempUp action will be executed and the
air conditioner will remain in the Operating state.

 The Operating state is a composite state with two
concurrent regions Mode and Speed. These regions become
active at the same time whenever the Operating state gets
activated. Each of the concurrent regions has a number of
sequential substates. Only one of the sequential substates
becomes active at a given time. While in Operating state, on
modeBut event, the air conditioner switches to the next
sequential substate in the mode region. Similarly, on
speedBut event, the air conditioner switches to the next

sequential substate in the speed region. On powerBut event,
the air conditioner switches to the Stop state. Sending a
powerBut event will reactivate the air conditioner. When the
air conditioner is reactivated, it switches into the history
states of the two concurrent regions of the Operating state
and recalls the last active substates of the two regions. A
statechart describes the dynamic aspects of an object whose
current behavior depends on its past. A statechart in effect
specifies the legal ordering of states an object goes through
its lifetime. History state allows a composite state that
contains sequential substates to remember the last substates
that was active in it prior to the transition from the
composite state.

6. JCode

 Using our approach, described in section 4, we have
developed a system, JCode, which automatically generates
Java code from the specifications of the UML class and
statechart diagrams. First, the system interprets the model
specifications and transforms them into a table and then it
generates the actual Java code from the table.

Figure 4. Overall structure of the JCode system

Figure 5: Statechart specification of the Air Conditioner in DSL format

Java code Intermediate
Tables

Transformed
Tables

DSL file

Interpreter

Transformer
Code

generator

OSTD (AirCon)[nodes{n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12},arcs{a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11}];

OSTDN(n1)[loc(25:20),size(20:20),ostdnAttr(name:START)];

OSTDN(n2)[loc(10:140),size(75:125),ostdnAttr(name:Stop)];

OSTDN(n3)[loc(125:160),size(10:100),ostdnAttr(name:FORK)];

OSTDN(n4)[loc(160:10),size(260:400),ostdnAttr(name:Operating,entry/setOn,exit/setOff,event(name:tempPlusBut)/te

mpUp,concurrent{n5,n9})];

OSTDN(n5)[loc(160:20),size(260:180),ostdnAttr(name:Mode,substates{n6,n7,n8})];

OSTDN(n6)[loc(190:150),size(30:25),ostdnAttr(name:HISTORY)];

OSTDN(n7)[loc(260:140),size(70:50),ostdnAttr(name:Cooler)];

………………………………………….

OSTDA(a1)[from(n1,side:BOTTOM,off:5),to(n2,side:TOP,off:40)];

OSTDA(a2)[from(n2,side:RIGHT,off:35),to(n3,side:LEFT,off:140),ostdaAttr(name:powerBut)];

………………………………………..

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

 The input to the system is the model specifications in
Design Schema List Language (DSL) [21]. The output from
the system is the Java code. DSL is a specification language
to represent class and statechart diagram in an
understandable text format and to facilitate data exchanges
among tools and members of the group. JCode is developed
in Java and is basically composed of three modules:
Interpreter, Transformer and Code Generator. Figure 4
shows the overall structure of JCode.

6.1 Interpreter

 The interpreter module reads the specifications of the
UML statechart diagram, given in DSL format and identifies
various states, their substates, history states, transitions and
internal events. It makes a nested table to properly record all
the information, thus transforming the information from
DSL format to a table format. The table is represented by an
object structure. Figure 5 shows a part of the DSL
representation of the statechart for AirCon class (Figure 3).
In DSL, each statement is terminated by a semicolon. The
first line declares the nodes and arcs, which compose a
diagram. In the diagram, nodes mean states and arcs mean
transitions. Each node is described by a separate statement
starting with the string “OSTDN”, and similarly, each arc is
described by a separate statement starting with “OSTDA”.
Figure 6 shows the table created by the Interpreter module
from the statechart diagram of the AirCon class (Figure 3).

6.2 Transformer

 This module transforms and organizes the table, created
by the interpreter module, in such a way so that code can be
easily generated from it. A pseudostate is an abstraction that
encompasses different types of transient vertices in the

statechart diagram. But DSL, being graphical oriented,
treats it as a node like any other node. Transformer module
removes the pseudostates (start state, history state, fork and
join) from the table and adjusts the information for the
affected states and transitions. It sorts the table so that
superstates should always come before their substates and
puts all the events and actions in the context class. The code
generator module needs to know not only the events that are
supposed to occur on a state but also the events that may
occur on its substates. The transformer module also adds the
substates events information to the composite state. Figure 7
shows the state table after transformation performed by the
transformer module.

6.3 Code Generator

 This module takes information from the table refined by
the transformer module and generates the Java language
code. It calls various methods, which generates code for the
respective classes. Figure 8 shows part of the actual code
generated from the air conditioner system of Figure 2.
While generating code, the system follows our approach
described in previous sections. The detailed rules for code
generation are as follow:

1. The main application class AirConditioner, is

generated. The name of the class is derived from the
project name specified in the input DSL file. All the
instances of classes of the class diagram are declared
and initialized in the constructor of this class. The
AirConditioner class contains the main() method that
serves as an entry point. The application object is
created and initialized in the main() method. The
initialization code is also defined here.

Outgoing Transitions State
ID

State
Name

Substates
ID Event Action Next

State

Entry
Action

Exit
Action

Internal
Event

n1 START a1 n2
n2 Stop a2 powerBut n3

a3 n6 n3 FORK
a4 n10

n4 Operating n5,n9 a5 powerBut n2 setOn setOff tempPlusBut/
tempUp()

n5 Mode n6,n7,n8
n6 HISTORY a6 n7
n7 Cooler a7 modeBut setHeater n8
n8 Heater a8 modeBut setCooler n7
n9 Speed n10,n11,n12
n10 HISTORY a9 n11
n11 Low a10 speedBut setHigh n12
n12 High a11 speedBut setLow n11

Figure 6: Table created by the Interpreter module for the air conditioner statechart

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

Outgoing Transitions Stat
e ID

State Name
*=default
+=history

Substates
ID Event Action Next

State

Entry
Action

Exit
Action

Internal
Event

n2 Stop* a2 PowerBut n4
n4 Operating n5,n9 a5 PowerBut n2 setOn setOff tempPlusBut

/tempUp()
n5 Mode+ n7,n8
n7 Cooler* a7 ModeBut setHeater n8
n8 Heater a8 ModeBut setCooler n7
n9 Speed+ n11,n12
n11 Low* a10 SpeedBut setHigh n12
n12 High a11 SpeedBut setLow n11

Figure 7: State table after the Transformer module for the air conditioner statechart

2. One Java class is created for each of the class in the

class diagram. The generated code contains all the
class definitions of name, attributes and methods. To
implements the association between classes, reference
attributes with public visibility are generated in both
the classes. If a statechart is attached with a class then
the code for implementing the statechart is also
generated in the corresponding class.

3. The context class AirCon, with which the statechart is
attached, is generated. It contains an attribute state that
holds the reference of the current active state of the
statechart. All the state objects are also defined here
and created once in the constructor of the AirCon class.
For each event in the statechart diagram, a method is
defined that delegates the event to the state object. For
each action in the statechart diagram, a method is
declared in this class. The user enters the body code for
the action methods. The default state is also set in the
constructor of the AirCon class. The setState() is also
defined, which is used for setting the next state and
also calling the entry action of the next state of the
statechart

4. To provide a common interface to all state classes, an
abstract state class, AirConState, is defined. It contains
an attribute for the context object and contains empty
declarations for all the events in the statechart diagram.
Each state class has implementation code for its own
events. States in the statechart diagram may have entry
and/or exit actions [2], which are executed whenever
the corresponding state is entered or exited. Such
actions are implemented as entry and exit methods in
the corresponding state classes. AirConState provides
empty declarations for the entry and exit operations.

5. A class is defined for each state (we call such classes
as state classes). The name of the class is derived from
the name of the state. All the behavior associated with
a state is put in the respective state class. The top-level
state classes are derived from AirConState class and
the substate classes are derived from the corresponding
abstract composite state class. If a state has entry/exit

actions, methods having the name entry and exit
respectively, are defined in the class. Bodies of these
methods contain a method-call to the corresponding
entry/exit actions.

6. If a state is a composite state (e.g. Operating in Figure
3), the corresponding class contains as many objects as
there are concurrent regions in the composite state. For
each concurrent region, an attribute with private
visibility is defined. If the composite state contains
history states then attributes with private visibility are
also defined for keeping the reference of the last active
substate. The name and type of the attributes are
derived from the concurrent region name. The
implementation of the history state and fork is
encapsulated in the concurrent composite state class.
An entry method is defined, which sets the default
state (if the composite is entered for the first time) or
sets the last active substate (to implement history state).
The entry actions of the active substates are also called
here. The composite state class is responsible for
implementing the fork. Also, an exit method is defined
which contains a call to the exit action of the
composite state. It also contains the code for storing
the active substate in the history state attribute. For
each event on the substates, a method is defined that
delegates the event processing to the substate and calls
the method(s) for that event defined in the class(es) for
the substate(s). It also contains methods for setting the
next substate and calling the entry action of the next
substate.

7. If the state is a concurrent region (e.g. Mode and Speed
in Figure 3), the class becomes an abstract class and
serves as an interface for its own subclasses. This class
is not subclassed from any other class. In addition to
the entry and exit operations, it contains empty
declarations for operations corresponding to its
substates. It also contains two objects, which provide
references to the composite state class and to the
context class for executing the actions associated with
events.

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

class AirCon { // context class
 public AirConState state; // reference for state
 public Stop stopState;
 public Operating operatingState;
 public Cooler coolerState;
 public Heater heaterState;
 public Low lowState;
 public High highState;
AirCon() { //constructor
 stopState = new Stop(this);
 operatingState = new Operating(this);
 coolerState = new Cooler(this,operatingState);
 heaterState = new Heater(this,operatingState);
 lowState = new Low(this,operatingState);
 highState = new High(this,operatingState);
 state = stopState // setting default state }
public void setState(AirConState st) {
 state = st;
 state.entry(); }
public powerBut() { state.powerBut(); }
public modeBut() {state.modeBut(); }
………………….
public void setOff() {……}
public void setCooler() {……}
………}

public AirConState { // abstract state class
 public AirCon ac; // context reference
 public void entry() {};
 public void exit() {};
 public void powerBut() {};
 public void tempPlusBut() {};
…………..
}

class Operating extends AirConState{ // composite
 private AbsModeState modeState;
 private AbsModeState modeHistory;
 private AbsSpeedState speedState;
 private AbsSpeedState speedHistory;
 int hist = 0;
public void entry() {
 if (hist > 0) {// last active substate
 modeState = modeHistory;
 speedState = speedHistory; }
else { // for first time entry
 modeState = ac.coolerState;
 speedState = ac.lowState; }
modeState.entry(); speedState.entry(); ac.setOn(); }
public void exit() {
 ac.setOff; modeHistory = modeState;
 speedHistory = speedState; }
public void modeBut() { modeState.modeBut(); }
public void speedBut() { speedState.speedBut();
public void powerBut() {modeState.exit();
 speedState.exit(); exit(); ac.setState(ac.stopState); }
public void setMode(AbsModeState subMode) {
 modeState = subMode; modeState.entry(); }
…….}

class AbsModeState {// abstract composite state
 public AirCon m_context;
 public Operating s_context;
/* Empty declarations for entry(), exit() and all
events methods of subclasses of AbsModeState*/ }
class Cooler extends AbsModeState {
 void modeBut() { m_context.setCooler(); exit();
 s_context.setMode(m_context.heaterState); } }
………………………………….

Figure 8: Part of the generated code for the air conditioner system

8. An event on any state becomes a method in the
corresponding class. Body code for the method is also
completely generated. If the event is an internal event,
the body code contains a method-call, which executes
the associated action. If the event has a transition, the
body code also contains: (i) call to the exit operation of
the current state, (ii) method-call for setting the next
state and (iii) call to the entry operation of the new
state.

7. Comparison with Rhapsody and OCode

 Rhapsody [14, 22], which is a successor of
STATEMATE [23], is a CASE tool that allows creating
UML models for an application and then generates C, C++
or Java code for the application. Rhapsody uses Object
eXecution Framework (OXF) [14]. The tool does not
optimize the generated code and the dynamics of the model
are defined in the framework classes and hard-coded in the
code generator. The code generator automatically derives

model classes from the framework classes based on the
application classes.

 OCode [16,17] is another tool for code generation from
OMT object and dynamic models. OMT state transition
diagram is the predecessor of UML statechart diagram.
UML statechart diagram contains many features which are
not present in OMT state transition diagram e.g. history
states, fork and join, time events etc.

7.1 Code Generated by Rhapsody

 Rhapsody uses data values to represent states and the
operations in the Reactive class (inner class within context
class) check the data explicitly. Events are represented as
classes and are derived from the framework class. The client
class creates the event object and calls the gen method of the
context class. The context class delegates it to Reactive class
to consume the event. The state transitions are implemented
as assignment to some variables and have no explicit

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

representation. The transition-searching is performed by
executing a switch statement in the Reactive class. The
hierarchical and concurrent substates are handled inside the
switch statement. Each action is implemented as a simple
statement. The designer user is forced to use target language
syntax for defining actions on the transitions. If the action is
a method call then no method header is generated, which
gives an error while compiling the code.

7.2 Code Generation by OCode

 In OCode, states are represented as classes and events
and actions as methods. The Controller class, which keeps
the control of the entire system, contains a helper object to
maintain a reference of current state object. The state
hierarchy is implemented using the concept of inheritance.
The super state of concurrent substates is implemented as a
composite class that owns objects of other classes. The
composite class maintains objects corresponding to each of
the concurrent substates. When the superstate becomes
active, the corresponding state class gets instantiated and it
instantiates its own substate objects. The state objects are
created each time an event is processed. The object creation
is an expensive operation. As OMT state transition diagram
does not contain history states and fork, we have rewritten
the equivalent code for the air conditioner system example
in order to have a fair comparison with the code generated
by our approach.

7.3 Code Generated by JCode

 In the code generated by JCode, the class with which the
statechart is attached becomes the context class. The states
become classes (inherited from a common interface class).
Each action is implemented as a method of the context class
and the method header is generated. The user has to write
the body code of the action. Hierarchical and concurrent
substates are implemented by object composition and
delegation. JCode converts each event into a method call
and transition searching is performed by polymorphism. The
transition code is put in separate methods in the
corresponding state classes. All the states and transitions are
thus made explicit without using any conditional statement.
The context class maintains a reference to the current state
object and delegates the event to the current active state. All
the states objects are created only once in the constructor of
the context class and this leads to faster execution of the
event handling mechanism. The hierarchical and concurrent
substates are implemented using the concept of object
composition. The composite state becomes the context for
the nested statechart and contains references for the current
active substate. The event is first handled by the composite
state. If the target of the event is a substate then it is
delegated to the current active substate.

7.4 Comparing the Code Generated by Rhapsody,
OCode and JCode

 We have used the same air conditioner system (Figure 2)
example and compared the code generated by Rhapsody and
OCode to that of JCode. Findings of the comparison are as
follows:

1. Code generated by JCode is more compact. The source

code generated by Rhapsody is approximately four
times longer than the code generated by JCode, as
shown in Table 1. In addition, as the context class and
events become subclasses of the OXF framework, the
number of classes is much larger than that of JCode.
The code generated by JCode is also 10% more
compact than that of OCode. The OCode generates the
same number of classes.

2. Our code is more efficient. To compare the efficiency

of the code generated by Rhapsody, OCode and JCode,
we performed an experiment in which the same
sequence of 4000 requests was sent to the AirCon
(context) class that corresponds to the statechart
diagram. Out of these 4000 events, 2250 caused
transitions while the remaining 1750 events did not
cause any transition and were ignored. For each event,
the time taken to process the event was calculated. We
made all the actions methods empty and concentrated
on measuring the time taken while executing transitions,
i.e. changing states. To have more accurate results, we
repeated the experiment 20 times and calculated the
average values. The experiment was performed on Sun
SPARC workstation. According to the results of the
experiment in Table 2, to process an event that has no
transition, our code is 58.50% more efficient than
Rhapsody and 15.10 % more efficient than OCode. For
events having transitions, our code offers a 71.00%
improvement over Rhapsody and 57.60% over OCode.
The overall improvement that JCode offers for all type
of events is 68.00% over Rhapsody and 49.90% over
OCode .

In Rhapsody, an object instance is created for each
event by the client. Various framework classes are
involved in the invocation of the actual event
processing mechanism and finally the
rootState_dispatchEvent method of the Reactive is
called to process the event. This method contains a
switch statement that finds if there is any transition on
this event from the current state. If there is a transition,
the corresponding method is executed, which updates
the current state and also calls various methods to
perform the entry and exit actions and also executes the
associated action. If there is no transition, false value is
returned to the calling method. When summed up, all
this takes a considerable amount of time.

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

Table 1. Comparing the compactness of code generated
by Rhapsody, OCode and JCode

 Rhapsody OCode JCode

Source code: Number of lines 1025 303 273

Source code: Number of bytes 29482 8569 7292

Number of classes 26 10 10

Table 2. Comparing the efficiency of the code generated by Rhapsody and JCode

 Rhapsody(x)
(millisecs)

OCode (y)
(millisecs)

JCode (z)
(millisecs)

Improvement
over Rhapsody

(x – z)/x*100

Improvement
over OCode
(y – z)/y*100

Total time for events
without transitions (a) 8.80 4.30 3.65

Average Time per
event without
transition (a / 1750)

0.00501 0.00246 0.00208 58.50% 15.10%

Total time for events
having transitions (b) 28.30 19.35 8.20

Average Time per
event having
transition (b / 2250)

0.01257 0.00860 0.00364 71.00% 57.60%

Total time for all
events (a + b) 37.10 23.65 11.85

Average Time per
event ((a + b) / 4000) 0.00928 0.00591 0.00296 68.00% 49.90%

In the case of OCode, the state object is created each
time the event is handled. The object creation is an
expensive operation and takes precious processor time.
Even for transitions without events the state object gets
instantiated.

In JCode, on the occurrence of an event, the context
class delegates it to the current active state. If there is
no transition, then only the empty method of the
abstract state class is executed, which is a fast operation
and nothing more happens. But if the event has a
transition, the method in the concrete state class gets
executed, which sets the current state reference object
of the context class to the new state. All the state
objects are created only once in the constructor of the
context class. There are no conditional structures in the
code. That is why the time taken by our code is
markedly short.

3. Rhapsody code is less understandable. Rhapsody uses
data values to represent states and implements events as
classes. The event processing mechanism involves

various OXF classes and their methods and is buried in
the framework classes. It uses the switch statement for
transition searching in each of the methods for a state in
the Reactive class. This makes the code difficult to
understand. Our code converts each event into a method
call. The appropriate method is selected on the principle
of polymorphism. The transition code is put in separate
methods in the corresponding state classes. All the
states and transitions are thus made explicit without
using any conditional statements. This contributes to
making the code more understandable.

8. Related Work

 Köhler et al. [24] presented a tool FUJABA [25] for code
generation from statecharts. Their approach adapts the idea
of generic array based state table [13] but uses an object–
oriented implementation of the state table at runtime. Events
are implemented as methods. They use objects to represent
states of the statechart and attributes to hold the entry and
exit methods. These state objects are linked via transition
objects that store the triggering event. Additional links and

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

attributes represent the nesting of complex states, history
states etc. A library function is used to interpret the state-
table and to react on events. This function is also
responsible for issuing appropriate action methods and
switching to the resulting states. The state table approach is
more complex and causes runtime overhead for table
lookups and the interpretative style of event execution. The
focus is more on implementing statechart features than
efficiency.

 Knapp and Merz [26] described a set of tools called
Hugo for the code generation of UML statecharts. A generic
set of Java classes provides a standard runtime component
state for UML statecharts. Every state of a statechart is
represented by a separate object, which provides methods
for activation, deactivation, initialization and event handling.
Events, guards and actions are also implemented as classes.
A greedy algorithm performs transition searching. The event
traverses the state hierarchy until one or more states are
found that consume the event. Simple states determine
whether to fire one of their transitions, whereas composite
events first let their active substate(s) handle the event
before trying to fire their own transitions. In the case of
concurrent composite states, the orthogonal regions are
traversed in a random permutation. In our approach the
composite state first handles the transition and if the target
of the transition is a substate then it will delegate it to the
current active substate(s). Hugo code generation is
interpretative in nature and is not producing the optimized
code. The history states are also not implemented.

 Gurp and Bosch [27] presented Finite State Machines
(FSM) framework, which extends State pattern by modeling
all the statechart elements as classes. Similar to the state
pattern, there is an FSMContext component that has a
reference to the current state and all state-specific data (in a
repository). State is represented as a state object rather than
a state subclass in the State pattern and is associated with a
set of transitions. The FSM object receives the incoming
events and responds to them by allocating an FSMContext
instance. FSMContext object forwards the request to the
current State object. The State maintains a list of transition-
event pairs. When an event is received the corresponding
transition is located and then executed (triggered). The
transition object has a reference to the target state and the
corresponding FSMAction object. The Transition object
knows which FSMAction to execute and resets the current
state on the FSMContext object. A state transition in FSM
framework is about twice as expensive as in the State
pattern implementation for the simple transitions. Transition
searching is done by a look up in a hashtable object. The
hashtable object maps event names to transitions. FSM
framework does not generate optimized code. History states
are also not implemented.

 Wasowski [28, 29] presented a hierarchical code
generator called SCOPE [30]. SCOPE compiles a

sublanguage of statecharts supported by visualSTATE [31]
and produces C language code. The visualSTATE
statecharts are subset of Harel’s statecharts [3] incorporating
most of the original statechart language including
concurrent states, history, internal transitions and other
elements. These statecharts are similar to UML statecharts.
SCOPE uses flattening in which hierarchical statecharts are
converted into parallel Mealy machines and then code is
generated. Abandoning the hierarchy may cause exponential
growth of the model, which leads to exponential growth of
the program size. The flattening technique is mostly useful
only for smaller models.

9. Conclusions

 An OO approach for generating Java code from the UML
statechart diagrams has been described. States are
represented as objects and transitions as operations. All the
behavior related with a particular state is put into one object
and this localizes the state-specific behavior. Because all
state-specific code lives in a state subclass, new states and
transitions can be added easily by defining new subclasses.
Our approach distributes behavior for different states across
several state classes. This increases the number of classes
but such distribution is actually good as introducing separate
objects for different states makes the transitions more
explicit. This makes the components of the statechart
diagram explicit and the resulting code easier to understand
and maintain. Our approach implements the statechart
semantics as faithfully as possible and ensures that the
resultant code is still consistent with the UML model.

 The proposed approach has been implemented in our
system, JCode, which automatically converts the UML
statechart specifications into Java code. The comparison
with Rhapsody shows that the code generated by our system
is 68% more efficient and about four times more compact
than that of Rhapsody. Our Code is also 50% more efficient
that that of OCode.

 Our approach is an OO approach and in the present study
we have used Java as the target language. However our
approach is general so it can be used to generate the low
level code in other OO languages. The code generation
engine has to be tailored to the target language as some of
the features are implemented differently in different OO
programming languages.

References

[1] Object Management Group (OMG), Unified
Modeling Language (UML) specifications
version 1.5, 2003. http://www.omg.org/

[2] G. Booch, J. Rumbaugh, and I. Jacobson, “The
Unified Modeling Language: User Guide”,
Massachusetts: Addison-Wesley, 1999.

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

[3] D. Harel, “Statecharts: A visual formalism for
complex systems”, Science of Computer
Programming, vol. 8, no. 3, pp 231-274, Jun.
1987.

[4] G. Booch, “Object Oriented Design with
Applications”, California: Benjamin/Cummins,
1991.

[5] J. Rumbaugh, M. Blaha, W. Premerlani, F.
Eddy and W. Lorenson, “Object-Oriented
Modeling and Design”, New Jersey: Prentice-
Hall, 1991.

[6] I. Jacobson, “Object-Oriented Software
Engineering: A Use Case Driven Approach”,
Massachusetts: Addison-Wesley, 1992.

[7] International Business Machines (IBM)
Corporation, Rational Unified Process, 2003,
http://www-306.ibm.com/software/awdtools/
rup

[8] Tigris.org, ArgoUML, http://argouml.tigris.org
[9] Gentleware AG, Poseidon for UML,

 http://www.gentleware.com
[10] Metamill Software, Metamill,

 http://www.metamill.com
[11] A. S. Ran, “Modeling States as Classes”, in

Proc. Technology of Object-Oriented
Languages and Systems Conference, 1994.

[12] A. Sane, and R. Campbell, “Object-Oriented
State Machines: Subclassing, Composition,
Delegation, and Genericity”, ACM SIGPLAN
Notices, OOPSLA'95, vol.30, Austin, Texas,
USA, 1995, pp. 17-32.

[13] B. P. Douglass, “Real Time UML – Developing
Efficient Objects for Embedded Systems”,
Massachusetts: Addison-Wesley, 1998.

[14] I-Logix Inc., Rhapsody,
http://www.ilogix.com.

[15] E. Gamma, R. Helm, R. Johnson, and J.
Vlissides, “Design Patterns: Elements of
Reusable Object-Oriented Software”,
Massachusetts: Addison-Wesley, 1995.

[16] J. Ali, and J. Tanaka, “An Object Oriented
Approach to Generate Executable Code from
OMT-Based Dynamic Model”, Journal of
Integrated Design and Process Science, vol. 2,
no. 4 1998, pp. 65-77.

[17] J. Ali, and J. Tanaka, “Implementing the
Dynamic Behavior Represented as Multiple
State Diagrams and Activity Diagrams”,
Journal of Computer Science & Information
Management (JCSIM), vol. 2, no. 1, 2001, pp.
24-34.

[18] J. Ali, and J. Tanaka, “Converting Statecharts
into Java Code”, in Proc. Fourth World Conf.
on Integrated Design and Process Technology
(IDPT’99), Dallas, Texas, USA, 2000 (CD-
ROM).

[19] I. A. Niaz and J. Tanaka, “Code Generation
from UML Statecharts”, in Proc. 7th IASTED
International Conf. on Software Engineering
and Application (SEA 2003),.Marina Del Rey,
USA, Nov. 2003, pp. 315-321.

[20] I. A. Niaz and J. Tanaka, “Mapping UML
Statecharts to Java Code”, in Proc. IASTED
International Conf. on Software Engineering
(SE 2004), Innsbruck, Austria, Feb. 2004, pp.
111-116.

[21] M. Harada, T. Fujisawa, M. Teradaira, K.
Yamamoto, and S. Hamada, “Refinement of
Dynamic Modeling of Some Automatic
Layouting of Object Oriented Design Schema
and Reverse Engineering of Design Schema
from C++ Program”, in IPSJ Object-Oriented
Symposium, Tokyo, Japan, 1996, pp 111-118.

[22] D. Harel, and E. Grey, “Executable Object
Modeling with Statecharts”, Computer, vol. 30,
no. 7, 1997, pp. 31-42.

[23] D. Harel, and A. Namaad, “The STATEMATE
Semantics of Statecharts”, ACM Transactions
on Software Engineering and Methodology,
vol. 5, no. 4, 1996, pp. 293-333.

[24] H. J. Köhler, U. Nickel, J. Niere, and A.
Zündorf, “Integrating UML Diagrams for
Production Control Systems”, in Proc. 22nd
International Conf. on Software Engineering
(ICSE 2000), Limerick, Ireland, 2000, pp. 241-
251.

[25] Fujaba Case Tool, http://www.fujaba.de/
[26] A. Knapp and S. Merz, “Model Checking and

Code Generation for UML State Machines and
Collaborations”, in Proc. 5th Workshop on
Tools for System Design and Verification,
Reisenburg, Germany, 2002, pp. 59-64.

[27] J. V. Gurp and J. Bosch, “On the
Implementation of Finite State Machines”, in
Proc. IASTED International Conf. on Software
Engineering and Applications, (SEA’99),
Scottsdale, AZ, USA, 1999, pp. 172-178.

[28] A. Wasowski, “On Efficient Program
Synthesis from Statecharts”, in Proc. ACM
SIGPLAN Conf. of Languages, Compilers, and
Tools for Embedded Systems (LCTES’03), San
Diego, USA, June 2003, pp. 163-170.

[29] A. Wasowski, “Flattening Statecharts without
Explosions”, in Proc. ACM SIGPLAN Conf. of
Languages, Compilers, and Tools for
Embedded Systems (LCTES’04), Washington
DC, USA, June 2004, pp. 257-266.

[30] SCOPE: A statechart compiler,
http://www.mini.pw.edu.pl/~wasowski/scope.

[31] IAR Systems, visualSTATE Case Tool,
http://www.iar.com/Products/VS/

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

Iftikhar Azim Niaz is currently a
PhD candidate at the Graduate
School of Systems and Information
Engineering, University of Tsukuba.
His research interests include
object-oriented software engineering,
design patterns and human computer
interaction. He received his MSc
from Quaid-i-Azam University in
1994 and MBA from Allama Iqbal

University in 1999. He is a member of the ACM, IEEE
Computer Society and Computer Society of Pakistan.

Jiro Tanaka is a professor in the
Department of Computer Science,
Graduate School of Systems and
Information Engineering, University
of Tsukuba. His research interests
include visual programming,
interactive programming, computer-
human interaction and software
engineering. He is especially
interested in the software design

methodologies based on object orientation. He received a
BSc and a MSc from the University of Tokyo in 1975 and
1977. He received a PhD in computer science from the
University of Utah in 1984. He is a member of the ACM
and the IEEE Computer Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

