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Abstract We have created a visual interface using the

human palm that is location sensitive and always available.

To accomplish this, we constructed an augmented space in

an actual workspace by installing several depth cameras.

To manage and connect the multiple depth cameras, we

constructed a distributed system based on scalable client––

server architecture. By merging depth images from dif-

ferent cameras, the distributed system can track the loca-

tions of users within their area of coverage. The system

also has a convenient feature that allows users to collect the

locations of objects while visualizing the objects via ima-

ges from the depth cameras. Consequently, the locations of

both users and objects are available to the system, thus

providing a location-based context for determining which

user is close to which object. As a result, the visual inter-

face on the palm becomes location sensitive, which could

lead to various applications in daily life. In this paper, we

describe the implementation of the aforementioned system

and demonstrate its potential applicability.

Keywords Location awareness � Interface on body �
Augmented reality � Ubiquitous � System � Interaction

1 Introduction

The advancement of sensing and display technologies has

made it possible to construct augmented spaces. Several

systems have already been developed for augmenting all

objects in a space and enabling users to interact with those

objects. Such systems include Microsofts EasyLiving [1],

the Everywhere Display Projector [18], and LightSpace

[22]. This study shares the concept of augmented space in

such studies: it is assumed that all objects in an augmented

space are interactive, and users can potentially interact with

all of them.

LightSpace, in particular, enables interactions between

augmented objects and a visual interface on the body [22].

Users are able to store digital content on their bodies and

drop the content onto other physical objects (cf. the pick-

and-drop metaphor of Rekimoto’s early work [19]).

The present study employs a similar interactive concept

(i.e., combining an interface on the body with augmented

objects), but applies it to an actual workspace. Our space

was constructed by installing depth cameras in a laboratory

that is used by students. We installed several depth cameras

to track users in the space. Accordingly, we implemented a

distributed system that can seamlessly connect the depth

cameras and merge their images, and thereby track the

locations of users in the space. The installation of the depth

cameras and the implementation of the distributed system

are described in subsequent sections.

A key feature of our system is that it facilitates the

process of registering or deleting the locations of objects.

Because the system can track user locations, it provides a

location-based context for determining which user is close

to which object. A necessary preliminary step to enable this

location awareness is the collection (i.e., registration or

deletion) of object locations, which generally requires
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considerable time and effort. To facilitate this process, we

developed a support tool that enables such registration or

deletion while visualizing objects via the images from the

depth cameras. Thus, the system is able to determine the

distance between users and registered objects, which

establishes the location-based context.

Another key feature is that it provides a visual interface

on the human palm. We installed two projected displays in

the space. These devices display visual content on the

user’s palm, and the user can interact with this interface via

hand gestures or physical metaphors. Because the projected

displays are installed in the space, the user is provided with

a simple graphical user interface (GUI) on his/her palm,

without temporal or spatial limitations (i.e., it is always

available). Hence, we have created a visual interface on the

palm that is location sensitive and always available, and

could lead to various applications in daily life.

Figure 1 shows an example. Because the system records

the locations of objects and users (i.e., user skeletons), it

can continuously track the distance between a user body

part (e.g., a hand or a head) and an object. Employing this

location-based context (i.e., the distance), the system can

recognize which user is close to which device. Therefore,

the system can intelligently display an appropriate message

on a user’s palm.

For example, if a user needs to print a document, the

system displays a notification of the printing task on the

user’s palm when the user is close to a printer (i.e., the

physical distance is sufficiently small). The user can then

complete the printing task by dropping the notification onto

the printer. This application allows users to efficiently carry

out a task at a physical location. The notification is dis-

played when the necessary device (the printer in this

example) is close enough, and the user can complete the

task without carrying any additional devices (i.e., the

notification can be displayed on a bare hand).

Our system includes the following features, which are

described in detail below: (1) A distributed system to

manage the depth cameras and track the locations of users,

(2) a support tool to help collect object locations, and (3)

projected displays to create a visual interface on the palm.

2 Related work

The contributions of this study can be divided into three

related domains: (1) constructing an augmented space, (2)

registration of object locations, and (3) creating interfaces

on the body. Below, we summarize each of these and

clarify the motivations of this study.

2.1 Constructing an augmented space

The augmented space in this study allows interactions

among all objects in the space. Here, we summarize some

typical techniques for constructing an augmented space.

Computer vision is a popular approach for constructing

an augmented space. Computer vision can track or identify

both humans and objects. Microsoft’s EasyLiving project

[1] and the work of Lee et al. [12] are based on this

approach. Studies from that era (i.e., about a decade ago)

mainly relied on RGB cameras, which were adequate for

envisioning futuristic environments in the early stages.

However, because RGB image processing is sensitive to

different lighting conditions, these techniques may present

some practical drawbacks.

Another approach is to use highly capable sensors. The

Gator Tech Smart House enables augmentation with vari-

ous sensors, such as ultrasonic trackers [8]. Such sensors

can provide high fidelity, but cost-effectiveness is an issue,

because they are still expensive and not readily available.

An approach that has recently attracted attention

involves the use of depth cameras. Depth cameras can

provide features similar to those of RGB image processing

(i.e., they can gather a lot of content) and are much more

robust under different lighting conditions. Also, they are

now affordably priced. LightSpace was the first system in

which an augmented space was constructed using depth

Fig. 1 An application of smart

notification: when the user is

close to the printer, a message is

displayed on his palm regarding

a scheduled printing task (a).

The user can complete the

printing task by dropping the

message onto the printer (b)
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cameras [22]. The authors augmented all common surfaces

(originally non-interactive) in their experimental space,

and they successfully demonstrated the plausibility of

using depth cameras via promising applications and

interactions.

Our environment is implemented using an approach

similar to that of LightSpace (i.e., depth cameras) [22].

However, we installed cameras in an actual workspace,

whereas the LightSpace was based on an experimental

space. Our real-world approach requires additional inves-

tigation. For example, it creates more concerns regarding

the installation and synchronization of the cameras (The

details of the implementation are presented in Sect. 4).

Augmented spaces based on actual workspaces may also be

necessary for specific research topics. For example, our

system can be used to examine the effect of a users

familiarity with a space [10], which is difficult to accom-

plish in an artificially constructed experimental space.

2.2 Registration of object locations

Location-based context means that the system is able to

track the locations of users or objects to measure the dis-

tances between them. Consequently, the system can

determine which users are most likely to manipulate which

objects. This is the exact meaning of location-based con-

text in this study. Location-based context can provide many

usable features [16], and the registration of object locations

is a necessary preliminary step to accomplishing this.

Generally speaking, there are two approaches to regis-

tration: automated and manual. The Gator Tech Smart

House employs various sensors to track object locations

automatically [8, 11]. Devices store their profiles and

register themselves automatically, and then, the sensors are

able to track the locations of the devices. We agree that this

is an elegant approach, but the technology is not yet fully

mature, and the cost remains relatively high.

Mobile augmented reality is a manual approach. In CA-

MAR [20] and iCam [17], the space is able to track the pose

(i.e., location and heading) of a mobile device. With this pose

data, it is possible to determine the location of an object using

the mobile screen (users can collect the locations from the

mobile screen). However, one drawback of this approach is

that it can be time-consuming, because the users must be

close to the objects, which necessitates physical movement.

The Gator Tech Smart House demonstrated another

promising technique [8]. They constructed a sophisticated

virtual model that allows users to collect locations while

navigating the virtual space via a simple GUI application.

This technique is actually cheaper and more efficient than

the aforementioned approaches (automatic registration and

mobile AR), but considerable time and labor (e.g., 3D

modeling) are involved in constructing the virtual model.

As noted above, we constructed an augmented envi-

ronment using multiple depth cameras. By combining

images from the depth cameras, it is possible to create a

point cloud visualization, which can function as a virtual

model without additional cost. Then, users can collect the

locations of objects from this point cloud visualization. The

details are presented in Sect. 5.1.

2.3 Creating interfaces on the body

There are two different methods for creating interfaces on

the body: wearable devices and the infrastructure-depen-

dent approach. In this section, we describe both methods

and explain their benefits and shortcomings.

2.3.1 Wearable devices

Skinput, by Harrison et al. [7] attaches analog sound sen-

sors to a user’s elbows. When a point on the skin is tou-

ched, some vibration occurs, and this vibration is

propagated along the skin. The sound sensors are able to

detect such vibrations, and recent machine learning tech-

niques allow the point of contact to be recognized. Om-

nitouch provides similar features, but relies on different

sensors (i.e., depth cameras) [6]. The developers of this

system tested a shoulder-worn device that included a micro

projector and a depth camera. The micro projector dis-

played some images on a user’s palm, and the depth

camera was able to track the movement of fingertips on the

palm.

2.3.2 Infrastructure-dependent approach

Another technique for creating a visual interface on the

body is to exploit the infrastructure of the space. The Palm

Display of Kim et al. [9] exploits a projector and camera

installed in the space. The projector displays some images

on a user’s palm, and the user is able to interact with these

images via fingertip gestures. LightSpace has a more

sophisticated setup [22]. Multiple depth cameras and pro-

jectors are used so that every surface in the space becomes

a touch-sensitive display, and a user is able to interact with

them using the interface on his/her body.

The major advantage of this infrastructure-dependent

approach is obvious. It does not require the user to wear

any devices. However, it is applicable only to indoor sce-

narios. On the other hand, wearable devices are applicable

to both indoor and outdoor scenarios, but users must wear

more than one device.

This study is concerned with interactions in an aug-

mented space, which is an indoor scenario. Accordingly,

we developed a visual interface using the infrastructure-

dependent approach.
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3 Applications

As previously noted, we have constructed a space that can

record the locations of users and objects. Using this loca-

tion-based context, the system can determine which user is

manipulating which object. The space also creates a visual

interface on the palm. In this section, we present some

applications. The details of the system are discussed in

Sect. 4.

3.1 Data storage on the body

The system can track users’ bodies and the locations of

devices. Thus, it can sense a touch event between a body

part and a device by measuring the distance between them.

A possible application arising from this capability is data

storage on the body. Figure 2 illustrates this. A user tou-

ches a digital picture on a laptop display, and the picture is

moved to his hand (Fig. 2a, d). Then, he touches his right

pocket (Fig. 2b), and the system stores the picture on his

right pocket. Subsequently, the user again touches the right

pocket, and the picture reappears on his hand (i.e., the user

extracts the picture from the pocket). Then, the user can

drop the picture onto another computer (Fig. 2c, e).

When transferring data from one machine to another,

temporary storage (e.g., flash drive) is sometimes

necessary, and this can be rather cumbersome, because the

device must be connected to and disconnected from each

machine. The present application could be useful in such

situations, allowing users to temporarily store data on their

bodies and easily transfer the data to another machine.

3.2 Virtual midair input

In the above example, the system recognized a touch event

between a body part and a device by measuring the dis-

tance between them. Utilizing the same principle, the

system can also recognize a touch event between a midair

location and a body part. For example, if a location is

associated with a specific interface, and a user’s hand is

close to that location, the system can automatically display

the interface on the hand.

Figure 3 illustrates this. The location indicated by the

blue rectangle P in Fig. 3a is reserved as the location of an

imaginary light switch. The user memorizes this location,

and when he wants to control the light, he simply places his

hand near the reserved location, and the switch automati-

cally appears, as shown in Fig. 3b, c. The application

displays a bidirectional arrow, the two directions corre-

sponding to the on and off commands. The user can control

the light by making the appropriate directional hand

gestures.

Fig. 2 An example of data

stored on the body. The user

stores a picture on his hand by

touching the screen of a laptop

(a, d), stores the picture on his

pocket (b), and drops the picture

onto another laptop (c, e)
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This application implies that we can exploit any location

in a space as a meaningful location associated with a

specific interface. Generally speaking, controllers for

electrical devices (e.g., lights or air conditioners) are

placed at certain locations, and users must move to those

locations. When this type of virtual input is available, users

can reserve a convenient location and can access the con-

trollers with less physical movement.

3.3 Complementary interface

Because most interaction schemes are less than perfect on

their own, additional modalities generally help to improve

their capabilities. In this sense, a visual interface on the

palm can be used to provide a visual modality to other

interfaces. To illustrate this point, we present a visual

feedback viewer for hand gestures.

An advantage of hand gestures is that they can be made

without temporal or spatial constraints. Sometimes there

may be no means of providing feedback (i.e., devices

without visual or auditory components). In this case, an

interface on the palm can serve as a visual feedback

viewer, as shown in Fig. 4. When a user makes a triangular

gesture with one hand (Fig. 4a), the system traces the

recognized shape on the other hand (Fig. 4b).

This type of viewer could be particularly useful in cer-

tain scenarios where users are manipulating devices with-

out visual components (e.g., printers or microwaves), and

for some interaction schemes that have no visual modality

(e.g., speech or haptic interfaces).

4 Construction of the augmented space with depth

cameras

Thus far, we have presented some applications utilizing

augmented space. In this section, we describe the imple-

mentation of augmented space in detail.

Fig. 3 Imaginary input in the

air. Users can secure a location

in the air for an interface. For

example, the user swings his

arm around at (P) in a. Then, it

shows an imaginary interface

(c) for a light emulator in a large

display, i.e., (1) in b

Fig. 4 Visual feedback viewer

for a hand gesture. When the

user makes a gesture (a), the

shape of the gesture is traced on

the other hand (b)
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4.1 Installation of the depth cameras

The augmented space in this study was constructed using

depth cameras. As mentioned in Sect. 2, depth cameras

make it possible to collect a great deal of information, are

robust under different lighting conditions, and are cost

effective. To employ depth cameras, the first task is obvi-

ously their installation.

There are two primary considerations regarding instal-

lation: avoiding blind spots and ensuring that each camera

covers as much area as possible. With these two concerns

in mind, we installed four Microsoft Kinect cameras at

points (a)–(d) in Fig. 5. We took into account the cameras’

horizontal and vertical fields of view (FOVs), which are

43� and 57�, respectively. The white dotted lines in Fig. 5

indicate the FOVs. (a)–(d) denote the locations of the depth

cameras.

Another consideration is efficient tracking range.

According to the official specifications, the efficient

tracking range for the Kinect sensor is about 0.7–6 m.

However, in an informal preliminary test, the device was

only able to effectively track users from 1 to 4 m, which is

similar to the range supported by Microsoft’s official

software development kit (SDK). Accordingly, we installed

the cameras to cover only this range. As Fig. 5 shows, there

were four cameras in a distance of 7.5 m. Hence, these four

cameras should be able to cover the entire area if each

camera covers a range of about 1–4 m.

4.1.1 Interference between infrared lights

A concern that arises when using multiple Kinect cameras

is interference between the infrared (IR) lights. According

to an informal experiment reported on a website, this

interference can be especially severe when two depth

cameras are facing each other directly [4]. However, this

did not occur in our installation, because all cameras were

pointed toward the floor (see Fig. 5). Moreover, we

observed no interference effects in preliminary

demonstrations.

4.2 Merging multiple depth cameras

To combine 3D data from multiple depth cameras, syn-

chronization (i.e., aligning the coordinates of each camera)

is a necessary step. Here, we describe this process.

4.2.1 Synchronization via image processing

Synchronization (i.e., merging) of multiple depth cameras

was successfully demonstrated previously [22]. Because

they set up their system in an experimental space, they

were able to install retro-reflective dots, which emitted

relatively bright light that was easily extracted via simple

image processing. However, such retro-reflective dots are

generally not available in actual workspaces.

Therefore, we had to develop a new synchronization

procedure. Du et al. [2] demonstrated a promising tech-

nique. When two images are slightly different, the SIFT

algorithm makes it possible to find many shared feature

points between them [21]. These shared feature points play

the same role as the retro-reflective dots employed in

LightSpace [22]. After eliminating outliers using the

RANSAC [3] algorithm, a synchronization matrix M can

be found by solving Eq. 1:

MðX1;X2; . . .;XnÞ ¼ ðY1; Y2; . . .; YnÞ ð1Þ

where X1;X2; . . .;Xn are inliers in Frame 1 and

Y1; Y2; . . .; Yn are inliers in Frame 2.

This approach is based on the assumption that there are

two slightly different images. Thus, we can only use this

method when two cameras are very close to each other, so

that their images will differ only slightly. However, as

Fig. 5 shows, the cameras are installed at separate

locations.

To address this issue, we slowly move a camera from

one location to another, capturing many frames in between,

and find synchronization matrices between every consec-

utive frame. Figure 6 illustrates this process. Assume that

two cameras are installed at points (a) and (b). The camera

at point (a) is manually moved along the indicated path

Fig. 5 Layout for the depth camera installation. Side view (a) and top

view (b). (a)–(d) indicate the locations of depth cameras, and P1 and

P2 indicate the locations of the projected displays. The white dotted

lines indicate the fields of view for the depth cameras
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toward the camera at point (b), and synchronization

matrices are found between all consecutive frames along

the path. In this way, we can find the desired synchroni-

zation matrix by accumulating all intermediate matrices.

Using this technique, we were able to find matrices that

synchronized the four cameras in Fig. 5. In preliminary

tests, it took about 30 min to complete this procedure.

4.2.2 Manual adjustment

Although we were able develop an automated process, it is

very difficult to eliminate all imperfections, because errors

can occur when extracting matrices between frames. To

deal with such errors, we developed a piece of software

that allows the cameras pose (i.e., yaw, pitch, roll, and

position) to be adjusted manually.

Figure 7 shows a screenshot of the software. A list (a) of

connected depth cameras is displayed. After selecting one

of these cameras, the image panel (b) shows an RGB image

from the selected camera. The camera’s pose data (c) are

also displayed. Users can edit these values, and the soft-

ware shown in Fig. 8 reflects the changes in real time. This

software enabled us to complete the process of finding

synchronization matrices for all cameras. Figure 8 shows a

visualization of a point cloud from the four depth cameras

shown in Fig. 5.

4.3 Distributed system

After synchronizing the four cameras, we developed a

distributed system to manage them. Here, we describe the

composition of this system.

Figure 9 shows the system composition. Each of the four

computers (a) hosts one of the four depth cameras in Fig. 5.

The computer (b) functions as a server. Each of the four

host computers sends depth data, RGB images, and user

skeletons to the server. Then, the server can visualize the

environment, manage object locations, and track user

locations, because it has access to all data from the four

depth cameras. The applications shown in Figs. 7 and 8 run

on the server.

We expect that this scalable client––server architecture

will be useful when additional cameras are necessary.

4.4 Tracking user skeletons

As Fig. 9 shows, four computers host the depth cameras

and send user skeletons to the server. A problem may occur

Fig. 6 Example of synchronization. If two cameras are placed at

(a) and (b), they can be synchronized by moving one camera along

the indicated path

Fig. 7 Software used for manual adjustment and managing objects in the space. Users can add or delete object locations, and adjust a camera’s

pose (e.g., for fine synchronization)
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if a user is captured by more than one camera, because

more than one set of skeleton data will be sent to the server.

The server must accept only one set of skeleton data in

such a case.

For this purpose, the host computers send not only

skeleton data, but also the absolute distance between the

user and the camera. Because the closest camera is

clearly more reliable in most instances, the system

accepts the skeleton data with the shortest distance and

ignores data from more distant cameras. Figure 10 shows

visualizations of a user (colored green) from different

perspectives.

4.5 Projected displays for creating an interface

on the body

In this section, we describe the projected displays, which

are located at P1 and P2 in Fig. 5. The purpose of the

projected displays is to display appropriate images on the

palms of users.

Figure 11 shows the projected displays. As the figure

indicates, each projected display is composed of a projector

and a depth camera. The depth camera tracks the location

of a users hand and provides the location to the projector.

Then, the projector displays an appropriate image on the

hand (see Figs. 2, 3, 4).

Obviously, it is necessary to calibrate the projector and the

depth camera. For this purpose, the projector first displays a

chessboard pattern, and two sample images are captured at

different heights, as shown in Fig. 11a, b. Then, we can find

the directional vectors that connect the corners of the two

images, represented by dotted lines (1)–(4) in Fig. 11c. Using

these vectors, we can estimate the pose of the projector. This

calibration process is required only once [6].

Fig. 8 Visualizations of a merged point cloud from four depth

cameras, showing the space from different perspectives

Fig. 9 Distributed system. Each of the four computers (a) hosts a

depth camera, and all data are sent to the server (b)

Fig. 10 A user in the space is tracked from different perspectives (a,

b)
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Some related studies used the POSIT algorithm [15] for

the calibration [6, 22]. However, this algorithm requires

several intrinsic parameters of the camera and projector,

and these parameters were not available to us. Therefore,

we developed this method.

5 The support tool

To enable the applications mentioned in Sect. 3, registra-

tion of objects is also necessary. The software shown in

Fig. 7 can be used for this purpose. We present the details

below.

5.1 Pick what you see: collecting the locations

of objects

Although the system provides visualizations of point

clouds, the quality is usually not very high. Our support

tool is capable of displaying RGB images from each

camera. When the depth cameras are connected to the

server via the host computers, they appear in list box (see

Fig. 7a). Users can select any camera from the list, and the

corresponding RGB image will be displayed (Fig. 7b).

This RGB image can be used to collect object locations.

When a user clicks on a 2D point in the RGB image, it is

converted into a 3D point by adding the relevant depth

data, and the results (Fig. 7f) are displayed in the bottom

left corner of the window. The user can input the name of

an object in a text box (Fig. 7g), and the object will be

added to the list (Fig. 7d). Below this list box, there are

remove and save buttons. When the user selects an item in

the list box and clicks the remove button, the correspond-

ing object is removed. When the user clicks the save but-

ton, the current locations of registered items are stored in

an extensible markup language (XML) file for later use.

Figure 12 shows an example of the database file containing

the names and locations of objects.

All of these changes (i.e., registration and deletion) are

reflected in real time, as shown in Fig. 13. In the example

illustrated, text labels for the two items [printer (a) and

microwave (b)] are added.

Because the desktop environment is 2D, we expect that

the 2D graphical panel (the RGB image) is easier to use

than the 3D visualization (the point cloud). Indeed, the

difficulty created by mismatched input and output dimen-

sions has been an issue of note for a long time.

Fig. 11 Calibration of a

projector and a depth camera.

The camera captures images at

two different heights (a, b).

Then, the projector’s pose is

determined by connecting the

corners of the two images (c)

Fig. 12 An example of the XML database. This example shows the

positions and names of a printer and a microwave

Fig. 13 The visualization of registered objects in the space. Text

labels (a, b) are placed near the objects
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5.2 Visualizing only necessary data to support real-

time updating

It is difficult to support real-time updating [i.e., to

guarantee more than 15 frames per second (FPS)]. When

point clouds from four cameras are merged, the server

must process about 17 MB of data per frame, assuming

that the cameras have VGA resolution (640� 480),

including three floating point numbers per 3D point (12

bytes) and RGB data (3 bytes). Even though the amount

of data varies (e.g., missing depth data), it is almost

impossible to process such a tremendous amount of data

in real time. In preliminary tests, we were only able to

obtain 2–3 FPS, and our server has an Intel Core i7

2.8 GHz processor, 8 GB RAM, and an nVidia GTS250

chipset.

To address this, the system has a feature whereby only

necessary data are visualized. In this mode, the host com-

puters send only point cloud data corresponding to users,

and more than 20 FPS was obtained.

5.3 Summary

Figure 14 shows the overall composition of the system. In

this figure, machines (a) and (b) correspond to machines

(a) and (b) in Fig. 9. The depth cameras (a) send user

skeletons, RGB images, and point cloud data to the server

(b).

Then, the server can visualize a point cloud and dis-

play an RGB image (see Figs. 7, 8, 10, 12). As men-

tioned above, users can register objects, and the server

can calculate the distances between the objects and user

skeletons. These distance data are transferred to the

software (c), and the software, in turn, can display an

image on a user’s palm via the projected display (d).

6 Implementation of the applications

In this section, we explain the implementation of the

applications described in Sects. 1 and 3.

6.1 Smart notification of a printing task

In Sect. 1, we introduced an application that notifies a user

of a printing task when the user is close to a printer. To

implement this application, we must first input the location

of a printer, and this is done using the software shown in

Fig. 7. Then, the server (Fig. 14b) examines the distance

between the printer and the user skeleton. The distance data

are shared with the software (Fig. 14c). If the distance is

relatively small, the software turns on the projected display

and causes the notification to be displayed on the user’s

palm (see Fig. 1).

After an image is displayed on the user’s palm, the

distance between the printer and the user’s palm is con-

tinuously tracked. If this distance is relatively small, the

software prints a sample page. Communications among the

server, software, and projected display are manually

established via a network. The system is connected to a

printer, and a routine for printing a sample page is included

in the software.

6.2 Data storage on the body

In Sect. 3.1, we introduced an application that enables the

storage of digital content on some part of the body and the

transfer of the content to machines. To implement this

application, we must first input the locations of two com-

puters, which can be registered using the software shown in

Fig. 7. Then, the distance between the user’s right hand and

the computers is continuously examined.

When a touch event occurs (i.e., between the user’s right

hand and a machine or between the hand and the pocket),

the system takes a different action depending on the state of

Fig. 14 Overall composition of the system. Depth cameras (a) send

their data to the server (b). The server stores the necessary context

(i.e., locations) and provides that context to the software (c) when

necessary. The software can turn the projected display (i.e., the visual

interface on the palm) on and off

Fig. 15 State diagram for the application that presents data storage on

the body
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the application. Figure 15 shows the state transition dia-

gram. There are four states, depending on the location (the

two machines, the hand, and the pocket) of the data (the

image on the computer shown in Fig. 2).

The application starts with the state ‘‘picture in machine 1’’

(state S1 in Fig. 15), and the picture is first shown at that

location. When the user touches machine 1, the state changes

to picture in hand (state S2, transition (a) in Fig. 15). When

the hand is close to the pocket, the state changes to ‘‘picture in

pocket’’ (state S3, transition (c) in Fig. 15). When the user

touches the pocket again, the state reverts to ‘‘picture in hand’’

(state S2, transition (d) in Fig. 15). Employing the same

principle, the user can move the picture to machine 1 (state

S1, transition (b) in Fig. 15), to machine 2 (state S4, transition

(f) in Fig. 15), or back to his pocket (state S3, transition (c) in

Fig. 15).

6.3 Virtual midair input

The implementation of this application is almost the same

as that of the smart notification example (see Sect. 6.1). To

reserve a midair location, the user places his hand at the

location, and the location is secured via the software shown

in Fig. 7.

When the user’s left hand is near the location, the

software turns on the projected display and displays an

image. A gesture is recognized by tracking the movement

of the right hand. In tests, we constructed a simple light

emulator (shown in the display (1) of Fig. 3b) that was

manually connected to the system via the network. Rec-

ognition of hand gestures is explained in the next section.

6.4 Complementary interface

For the application in this example, we arbitrarily specified

the right hand for making gestures and the left hand for the

feedback viewer. Using the skeleton data from the depth

cameras, the left and right hands are easily distinguished.

For gesture recognition, we employed the one dollar ges-

ture recognizer [23]. This created a problem, because the

depth camera provides 3D hand movement data, whereas

the one dollar recognizer accepts only 2D data. To address

this issue, we projected the 3D data onto an appropriate 2D

plane, as in a previous study [5]. The system continuously

provided the right hand movements to the recognizer, and a

visualization was displayed when a gesture was

recognized.

7 Limitations and future work

Here, we describe the limitations of the current imple-

mentation and suggest some promising future directions.

7.1 Temporary disappearance of a user

One concern with the current system is that a user’s location

can temporarily be lost. In particular, this occurs when users

cross the borders between coverage areas of different cam-

eras (i.e., intersections between the dotted lines in Fig. 5).

Currently, the OpenNI implementation takes 1–2 s to rec-

ognize a skeleton, depending on the image processing

capabilities or sensors. When more sophisticated algorithms

and devices are developed, this issue will be addressed.

7.2 Lack of accuracy

The accuracy of the depth camera installation is not high. We

are currently using four Kinect cameras to cover a 4–7.5 m

space. This setup could be used to cover a broader area, but

high accuracy is not easily obtained. Because we employ a

distributed system architecture, we could add more depth

cameras when higher accuracy is required. However, this

issue can be better addressed when more advanced (i.e.,

higher resolution) depth cameras become available.

7.3 Supporting complex shapes

The current system treats object locations as points. This is

because the system is not accurate enough to support

complex shapes (e.g., spheres or cubes). Although this was

sufficient to implement the applications demonstrated here,

a greater variety of applications would be possible if the

system supported complex shapes. It would be worthwhile

to develop a more advanced version of the software shown

in Fig. 7, and resolve the issues related to it.

7.4 Continuous tracking of objects

In this work, we considered only interactions among static

objects. Of course, some objects in a space (e.g., books or

laptops) can be moved. To support interactions with such

movable objects, continuous tracking is necessary and

should be investigated in future work.

There are various technologies that can track moving

digital devices with good accuracy [14]; however, there are

fewer solutions for non-digital devices (e.g., notes or

books). We expect that our system may be extended to

create an infrastructure for tracking non-digital devices. In

our setup, an object is imaged using multiple cameras (see

Fig. 5); therefore, when an object is registered using the

software (see Fig. 7), the system can obtain multiple ima-

ges from different angles. Such images are valuable in

improving the accuracy of object detection. This is a pos-

sible area for future work, when more sophisticated image

processing algorithms and higher resolution cameras

become available.
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7.5 Identifying users

We have demonstrated a system that can track users;

however, we did not consider how the system might

identify users. Although this is beyond the scope of this

work, there is a promising scenario that may be enabled

with the current implementation.

In many laboratories and offices, most users undergo

some authentication procedure when they enter the work-

place. If our system can communicate with the authenti-

cation system, it could continuously track a user with a

registered profile. Realizing this scenario and addressing

new issues related to it is a direction for future work.

8 Conclusions

We have demonstrated applications that can be achieved

via a visual interface on the human palm, which is always

available and is location sensitive. We constructed an

augmented space in a workspace by adding depth cameras.

We employed a distributed system to manage the depth

cameras and developed a support tool to facilitate the

collection of object locations. We have also demonstrated

several potential applications.

In future work, we plan to focus on continuous tracking

of objects and user identification (see Sects. 7.4, 7.5).

Potentially, every surface on objects in a room can be

augmented to be interactive. Moreover, it can be fully

personalized. Lee et al. [13] demonstrated augmenting

various surfaces and, with our system, it is possible to

make them fully personalized. For example, when a user

reads a newspaper, our system can project a related article

onto it, selected based on a user’s personal interests; it can

also be automatically translated into the user’s native lan-

guage. Another example is that users can write a message

using gestures on a book and attach it on a book (or any-

where they wish). The attached message can then only be

read by specific people.

We anticipate that this work will contribute to the

development of an infrastructure for such services, and

may help to create new interactions in such environments.
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