
HandyWidgets: Local Widgets Pulled-out from Hands

Takuto Yoshikawa, Buntarou Shizuki, and Jiro Tanaka
University of Tsukuba, Japan

{yoshikawa,shizuki,jiro}@iplab.cs.tsukuba.ac.jp

ABSTRACT
Large multi-touch tabletops are useful for collocated collabo-
rative work involving multiple users. However, applying tra-
ditional WIMP interfaces to tabletops causes problems where
users cannot reach GUI elements, such as icons or buttons,
on the opposite side with their hands, and they sometimes
have difficulty in reading the content of GUI elements be-
cause their view does not match the orientation of the con-
tent. To solve these problems, we present HandyWidgets that
are widgets localized around users’ hands. The widgets are
quickly invoked by a bimanual multi-touch gesture which we
call “pull-out”. This gesture also allows users to adjust the
position, orientation, and size of the widgets, in a continuous
manner after invocation.

ACM Classification Keywords
H.5.2 [Information interfaces and presentation]: User
Interfaces. - Interaction styles, Graphical user interfaces.

Author Keywords
multi-touch; tabletops; gestures; bimanual interaction;
crossing.

INTRODUCTION
Large multi-touch tabletops are useful for collocated collab-
orative work involving multiple users. Users surround table-
tops extend their hands and touch the screen at their location.
However, applying traditional WIMP interfaces to tabletops
causes problems where users cannot reach GUI elements,
such as icons or buttons, on the opposite side with their hands,
and they sometimes have difficulty in reading the content of
GUI elements because their view does not match the orien-
tation of the content. These problems impose extra actions
on users, such as having to extend their hands to reach the
desired elements, walking toward them, or tilting their heads
to read the content. Furthermore, the first two actions might
obstruct other users’ line of sight or their territory.

Our approach to these problems is to localize the GUI ele-
ments around each user’s hand as illustrated in Figure 1. This
paper presents HandyWidgets, which are widgets (combina-
tions of GUI elements) that are localized around users’ hands.
The widget are quickly invoked by a bimanual multi-touch
gesture which we call pull-out. This gesture also allows users

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITS’12, November 11–14, 2012, Cambridge, Massachusetts, USA.
Copyright 2012 ACM 978-1-4503-1209-7/12/11...$15.00.

Figure 1. Overview of HandyWidgets. Each user can simultaneously
display HandyWidgets.

to adjust the position, orientation, and size of the widgets, in
a continuous manner after invocation.

RELATED WORK
Localization of widgets has previously been studied. In such
research, where and how widgets appear and how users in-
voke widgets are important design factors and they have been
intensively investigated.

Popup menus and localized widgets [1, 4, 5, 7–10, 12, 16] can
be displayed at any position, but their orientation is fixed.
This is because their designs assume users interact with a
constant view, and they have not been designed for tabletops
where multiple-users touch the screen at each location. Re-
search such as [2,3,6,13,15,17–20] allows users to not only
determine the position of widgets, but also their orientation.
Using orientation enables each user to match his/her view and
the orientation of widgets.

In contrast, HandyWidgets’ users can not only adjust the po-
sition and orientation of widgets, but also additional parame-
ters, such as their size and type, through invocation gestures.
Further, they can also adjust their parameters in a continuous
manner by using the gestures, after they have invoked them.

On-screen buttons or physical buttons [7,16] are wide-spread
techniques of invocation. Stroke gestures have also been used
as invocation techniques [1,12,19] . Further, multi-stroke ges-
tures have been used. Benko et al. utilized a secondary finger
to invoke a widget [4]. The number of touches has also been
used for invocation [15,20]. In addition, the rotation of pinch
gestures has invoked widgets [9]. Additional states, which
are provided by special devices, are also used for invocation.
In [5, 8, 10] the hover states of styluses or hands have been
used. Further, the contact shape of hands have invoked wid-
gets [3, 6, 13, 18]. Guimbretière and Nguyen used the gesture
of a hovering hand for invocation [11].

197

a c db

Widget Widget
Pin button

Figure 2. Basics of HandyWidgets. User a) touches tabletop with two fingers of non-dominant hand (base-fingers), b) places one finger of dominant
hand (pull-finger) inside non-dominant hand, and drags pull-finger outside non-dominant hand to cross segment between base-fingers (base-segment),
c) moves base-fingers and pull-finger to obtain desired position, orientation, and size of shown widget and d) releases pull-finger and executes command
with widget using pull-finger.

HandyWidgets are invoked by a bimanual multi-stroke ges-
ture combined with other gestures to avoid conflict with tradi-
tional gestures. HandyWidgets are robust to casual touching
because users do not generally unintentionally perform this
gesture. Moreover, this design requires no special devices
and can be applied to conventional multi-touch screens that
detect three or more coordinates of touches.

HANDYWIDGETS
HandyWidgets are invoked by a bimanual multi-touch ges-
ture that we call pull-out. Widgets are displayed by using the
following procedure (Figure 2), where the behavior of fingers
in steps a) and b) is pull-out:

a) Touch the tabletop with two fingers of the non-dominant
hand (base-fingers).

b) Place one finger of the dominant hand (pull-finger) in-
side the non-dominant hand, and drag the pull-finger out-
side the non-dominant hand to cross the segment between
the base-fingers (base-segment).

c) Move the base-fingers and the pull-finger to obtain the
desired position, orientation, and size of the shown wid-
get.

d) Release the pull-finger, and execute a command with
the widget using the pull-finger.

Once the pull-finger is lifted from the tabletop, the position,
orientation, and size of the widget are fixed. Users can then
interact with the widget. The widget is removed by releas-
ing the base-fingers from the tabletop. This design provides
ad-hoc use of HandyWidgets. However, if users need to keep
the widget visible even after their fingers have been released,
a pin button on the widget allows it to be pinned to the table-
top. This design allows users to interact with the widget with
both hands in a relaxed way. In addition, it is possible to si-
multaneously display two or more widgets.

Features
Fluidity. Pull-out does not conflict with traditional multi-
touch gestures, such as pinch or swipe, and can coexist with
them. This means that pull-out represents a new interaction
vocabulary. Thus, as seen in Figure 3, users can invoke a wid-
get and fluidly execute commands with their dominant hand
while using pinch gestures with their non-dominant hand to
adjust the scale, rotation, or translation of objects.

Scaling, rotation, and translation

with pinch gesture

None

Sepia
Gra

ys
ca

le

Figure 3. Fluid manipulation of objects. Note that non-dominant hand
keeps pinching.

Robustness against casual touching. Pull-out is distinctive,
that is, users do not generally perform this gesture uninten-
tionally. Therefore, HandyWidgets are hard to be accidentally
invoked by casual touching.

Occlusion aware design. The design of HandyWidgets and
pull-out gestures avoids occlusion in a similar manner to
those found in previous works [6, 13, 18, 19], where the in-
teraction technique itself has been designed to avoid the wid-
get from being occluded. The hands that invoke widgets in
HandyWidgets do not occlude the widgets because they ap-
pear between the hands. Because dragging the base-fingers
can also adjust the position, orientation, and size of the wid-
gets, it helps users to invoke widgets even if they are near the
edge of the screen (Figure 4).

Figure 4. Showing widget near the edge of the screen.

ADVANCED INTERACTION DESIGN
This section presents advanced interaction design that en-
hances the basics of HandyWidgets we previously described.

Pull-in. Dragging an object with the pull-finger to cross
base-segments can be used as a gesture (Figure 5). We
called this gesture pull-in. Users can copy objects to their
clipboards with pull-in, and they can then choose a copied
object from the widget invoked by pull-out and paste it.

Text

Image

Text
Image

Figure 5. Pull-in.

Object specific widget. While pull-out on the background
can be assigned to invoke a general widget, pull-out on a fore-
ground object can be assigned to invoke its specific widget. It
is possible in this way to display an effect menu on an im-
age while a tool set is being displayed on the background, for
example.

Various pull-outs. Various pull-outs are available. This en-
ables users to select types of widgets corresponding to each
pull-out. For example, the additional use of single crossing
with two pull-fingers (Figure 6) or double crossing with one
pull-finger (Figure 7) enables users to display a system menu
with the former and a keyboard with the latter, while basic
pull-out invokes a tool set. Thus, users can invoke various
widgets using various pull-outs depending on their purposes.

198

Figure 6. Single crossing with
two pull-fingers.

Figure 7. Double crossing with
one pull-finger.

Figure 8. Widget that transforms from Numeric keypad into QWERTY
keyboard.
Dynamic widgets. Users can dynamically transform the
structure of a widget according to the positional relation
of a base-segment and a pull-finger, which determines the
position, orientation, and size of the widget. This enables
adaptive use of the widget depending on the required
functions. Figure 8 shows such usage, where the widget
transforms from a Numeric keypad into a QWERTY key-
board. While users can input numbers quickly with the
former, the latter is available for long texts.

EXPLORING DESIGN SPACE
Pull-out gestures not only allow users to determine the po-
sition, orientation, and size of widgets, but they also add a
degree of freedom to the design space of widgets. We im-
plemented four widget models to explore the design space of
HandyWidgets. Each model is outlined in Figure 9.

The Drawer Model (Figure 9a) is the model in which items
of the widget are displayed from one side according to the
length between the base-segment’s center and the pull-finger,
which we called the distance-pulled. In this model, placing
frequently used items on one side of the widget allows fast
access to the items, while providing on-demand access to the
items rarely used by opening it further. This model is suitable
for a tool palette in which frequency of use differs greatly be-
tween items, such as those in painting or CAD applications.

The Popup Model (Figure 9b) is the model in which the
widget is immediately displayed when pull-out is performed,
regardless of the distance-pulled. Although this model causes
occlusion by the user’s hand, it minimizes the time to access
the widget. The model is thus suitable for widgets that only
include some frequently-used items. We used the model for
pie-menus, which can be used quickly without depending on
visual cues once users have become familiar with them.

The Scale Model (Figure 9c) is the model in which the wid-
get is scaled according to the distance-pulled. In this model,
users can adjust the size of widgets, which is needed to deter-
mine their area on the screen, by using pull-out. The model is
suitable for widgets that require definitions of areas, such as
zoom lenses or shape tools.

The Transform Model (Figure 9d) is the model in which
the structure of the widget dynamically transforms according
to the distance-pulled. This model is suitable for widgets in
which users want to modify usage depending on their purpose
such as that illustrated in Figure 8.

While these four models only utilize the distance-pulled,
more parameters are available, e.g., the rotation and length

Widget

c

d

Widget

WidgetWidgetWidget

Widget
Widget Widget

Widget Widget Widget

Widget

Widget

Widget

Widget Widget

Widgeta

Widgetb

Figure 9. Four models of widgets we implemented.

of a base-segment. This indicates that HandyWidgets have a
broad design space.
IMPLEMENTATION
Invoking HandyWidgets needs to recognize the crossings of
pull-fingers through base-segments. Base-segments are de-
fined to fit the users’ hand shapes shown in Figure 10. This
technique can be applied to conventional multi-touch screens
that detect three or more coordinates of touches. We describe
the recognition technique below.

First, the system tries to find the nearest touch point within a
threshold distance (15 cm in our current implementation) for
each touch point. If such points are found, then the system
defines the segment between them as a base-segment. These
segments are updated dynamically. Second, the crossing of
pull-finger is detected. The system regards touch points that
are within a half length of the base-segment from its center
as pull-fingers. Touches farther than the threshold from the
other touches are also regarded as pull-fingers. Next, cross-
ing through the base-segments of pull-fingers is detected. Af-
ter that, the system estimates users’ locations. Lines through
base-segments roughly point to users when they place their
index finger and thumb on the tabletop as base-fingers. Based
on this observation, our system defines the nearest intersec-
tions of the lines with four sides of the screen as users’ loca-
tions. Finally, the system determines which hand has pulled
out the widgets by using the users’ locations. If a pull-finger
has crossed a base-segment from left to right from the view-
point of each user’s location, then our system determines the
right hand has pulled out the widget, and vice versa. This al-
lows users to pull-out widgets from both right and left hands.

HandyWidgets are rendered within the rectangular area be-
tween the base-segment and the pull-finger. Our system de-
fines the side of the area nearest to the users’ location to be
the widgets’ floor to display the widgets. This makes their
orientation suit the users’ view.

There have been some multi-touch systems that have used
the segment defined by users (e.g., [20]), but we utilized the
segments as targets of crossing.

Segments between base-fingers

Areas where pull-fingers are detected

Figure 10. Definitions of base-segments, and detection of pull-finger.

199

APPLICATION
We developed an application (Figure 1), similar to [14], that
supports collocated collaborative work such as discussions or
meetings. In this application, each user can annotate images
or text documents. Users can invoke HandyWidgets at any
position and orientation, and they display images or text doc-
uments in a shared folder with file browsers embedded in the
widgets. Annotations by painting or texts, and zoom lenses
are also available with the widgets. Users can scale, rotate, or
translate objects. Objects including images, texts, and paint-
ings can be stored in a shared clipboard by using pull-in.

Object specific widgets are available. Pull-out with one fin-
ger single crossing on images or annotations invokes a pie-
menu of the Popup Model, which determines image effects,
or background colors. Moreover, pull-out with one finger
single crossing on the background invokes a tool set of the
Drawer Model; pull-out with two fingers single crossing on
the background invokes a system menu of the Drawer Model;
pull-out with one finger double crossing on the background
invokes a keyboard (Figure 8) of the Scale and Transform
Model.

EXHIBITION
We demonstrated a prototype system at an open house at our
university. We used a 60-inch tabletop, and prepared a simple
diagram-drawing application with HandyWidgets. Twenty
three participants used the system and their behaviors were
recorded during the exhibition. Participants used the sys-
tem simultaneously with one of the authors. Many partici-
pants failed to invoke the widget at first because they did not
know how far they should place the pull-finger between base-
fingers. However, they immediately learned how to do it after
being instructed to place their finger further. This observation
may indicate the ease of learning HandyWidgets. Still, acci-
dental invocations were observed when users quickly swiped
more than three fingers, and invocation failures were also ob-
served. However, these problems seemed to be due to failures
in finger detection by the optical multi-touch display we used,
because when we carried out tests with a smaller, more accu-
rate multi-touch display, no problems were observed.

DISCUSSION
Fatigue is an issue that needs to be further studied because
pull-out gestures involve three fingers, although we did not
observe any fatigue in users at the exhibition. Our system
allows users to touch the tabletop with more than two fingers
of their non-dominant hand, thus they can stably pull-out and
use widgets with less fatigue by allowing their non-dominant
hand touch with all fingers for invocation. Further, allowing
users to place their palms in contact with the tabletop will
also reduce fatigue.

CONCLUSIONS AND FUTURE WORK
We presented HandyWidgets, which represented widgets lo-
calized around hands. The widgets are invoked by a distinc-
tive bimanual multi-touch gesture, called pull-out, which can
coexist with traditional gestures and is hard to be accidentally
invoked by casual touches. Moreover, various pull-outs can
be defined, each of which can be used to invoke their corre-
sponding widgets.

One direction for future work is to explore the properties of
pull-out. We will use more parameters, such as the rotation
and length of base-segments, to add more degrees of freedom
to widgets. Another direction we plan is to utilize the geom-
etry of hands. This will realize four widgets corresponding
to four base-segments defined by five fingers. It can thus al-
low users to relate spatial memory to widgets. Moreover, ar-
ranging the elements of a widget along the strokes, similiar
to [17], of pull-out achieves ergonomical design, because the
strokes follow the range of motion of one’s arm and hand. We
could, for example, develop a curved tool set or keyboard.

REFERENCES
1. G. Apitz and F. Guimbretière. CrossY: A crossing-based

drawing application. In UIST ’04, pp. 3–12.
2. N. Banovic, F. C. Y. Li, D. Dearman, K. Yatani, and K. N.

Truong. Design of unimanual multi-finger pie menu interaction.
In ITS ’11, pp. 120–129.

3. T. Bartindale, C. Harrison, P. Olivier, and S. E. Hudson.
SurfaceMouse: supplementing multi-touch interaction with a
virtual mouse. In TEI ’11, pp. 293–296.

4. H. Benko, A. D. Wilson, and P. Baudisch. Precise selection
techniques for multi-touch screens. In CHI ’06, pp. 1263–1272.

5. A. Bragdon, R. DeLine, K. Hinckley, and M. R. Morris. Code
Space: touch + air gesture hybrid interactions for supporting
developer meetings. In ITS ’11, pp. 212–221.

6. P. Brandl, J. Leitner, T. Seifried, M. Haller, B. Doray, and P. To.
Occlusion-aware menu design for digital tabletops. In CHI EA
’09, pp. 3223–3228.

7. J. Callahan, D. Hopkins, M. Weiser, and B. Shneiderman. An
empirical comparison of pie vs. linear menus. In CHI ’88, pp.
95–100.

8. G. Fitzmaurice, A. Khan, R. Pieké, B. Buxton, and
G. Kurtenbach. Tracking Menus. In UIST ’03, pp. 71–79.

9. D. Freeman and R. Balakrishnan. Tangible Actions. In ITS ’11,
pp. 87–96.

10. T. Grossman, K. Hinckley, P. Baudisch, M. Agrawala, and
R. Balakrishnan. Hover Widgets: using the tracking state to
extend the capabilities of pen-operated devices. In CHI ’06, pp.
861–870.

11. F. Guimbretière and C. Nguyen. Bimanual marking menu for
near surface interactions. In CHI ’12, pp. 825–828.

12. K. Hinckley, P. Baudisch, G. Ramos, and F. Guimbretiere.
Design and analysis of delimiters for selection-action pen
gesture phrases in Scriboli. In CHI ’05, pp. 451–460.

13. K. Hinckley, K. Yatani, M. Pahud, N. Coddington,
J. Rodenhouse, A. Wilson, H. Benko, and B. Buxton. Pen +
Touch = New Tools. In UIST ’10, pp. 27–36.

14. U. Hinrichs, S. Carpendale, and S. D. Scott. Evaluating the
effects of fluid interface components on tabletop collaboration.
In AVI ’06, pp. 27–34.

15. K. Kurihara, N. Nagano, Y. Watanabe, Y. Fujimura,
A. Minaduki, H. Hayashi, and Y. Tutiya. Toward localizing
audiences’ gaze using a multi-touch electronic whiteboard with
spiemenu. In IUI ’11, pp. 379–382.

16. G. Kurtenbach and W. Buxton. User learning and performance
with marking menus. In CHI ’94, pp. 258–264.

17. D. Leithinger and M. Haller. Improving menu interaction for
cluttered tabletop setups with user-drawn path menus. In
TABLETOP ’07, 121–128.

18. J. Rekimoto. SmartSkin: An infrastructure for freehand
manipulation on interactive surfaces. In CHI ’02, pp. 113–120.

19. V. Roth and T. Turner. Bezel Swipe: conflict-free scrolling and
multiple selection on mobile touch screen devices. In CHI ’09,
pp. 1523–1526.

20. S. Strothoff, D. Valkov, and K. Hinrichs. Triangle Cursor:
interactions with objects above the tabletop. In ITS ’11, pp.
111–119.

200

