

VISUAL PROGRAMMING SYSTEM SPECIFIED FOR THE

INTERPROCESSOR COMMUNICATIONS IN PARALLEL PROGRAMS

Yasutaka Sakayori, Motoki Miura and Jiro Tanaka

Institute of Information Sciences and Electronics

University of Tsukuba

Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573 Japan

yasutaka@iplab.is.tsukuba.ac.jp, miuramo@iplab.is.tsukuba.ac.jp

 and jiro@is.tsukuba.ac.jp

ABSTRACT

In this paper, we propose GRIX system, which is a visual
programming system specified for interprocessor
communications in parallel computing. We explain the
system outline and its GUI based operations. The GUI
based operations make users enable to input the structure
of interprocessor communications with intuitive images.
Code generation by this system omits the users’ jobs of
translation from the figured images of users into the
textual program codes. The program codes generated by
the system can be adopted for various parallel computing
environments like LAN-connected workstations and
massively parallel computers.
Keywords
Visual Programming System, Interprocessor
Communications and Parallel Programs

INTRODUCTION

We have proposed GRIX system [1,2], which is a visual
programming system specified for interprocessor
communications appearing in programs for
Message-Passing parallel computing. The aim of GRIX
is to realize effective interprocessor communications and
to reduce users' jobs by using visual input instead of
complex input with textual specifications.
We must pay large attention for interprocessor
communications when we construct parallel programs.
The cost of interprocessor communications is the

bottleneck of computing. Moreover, they bring barrier
synchronizations in some cases. Inefficient coding
brings frequent barrier synchronizations and the
computing loss from the peak performance will be large.
There exists lots of means for coding the sentences of
interprocessor communications, like PVM [3], MPI [4]
and native functions implemented only for each
computers. Those specifications show a tendency to be
complex because we require high performance of
execution. One of our emphasizing point is those
complexities which bring confusion should be eliminated.
For instance, in order to realize the most simple
communication, which is a pair of send and receive, by
using PVM functions, programmers have to complete four
procedures at least, packing data (ex. pvm_pkint),
sending data (ex. pvm_send), receiving data (ex.
pvm_recv) and unpacking data (ex. pvm_upkint).
Moreover, some variables included in each function must
be complex because of bringing high performance. This
tendency must be strengthened at more native
environments.
We worry about the above misfortune of programmers and
insist on the following opinions.

• Forcing programmers to learn the meaning of

difficult functions, especially unessential ones for
interprocessor communications like memory
mapping, is not desirable.

• The ideal method to materialize interprocessor
communications is the programming with the most
simple information, “who (which processing
elements)”, “where (which address space)”, “what
(which data)” and “how (like blocking and
non-blocking).”

We have selected the realization by using Visual
Programming method as the one of the most efficient
solution for above insistence. Visual Programming
method [10] is the programming form using the interface
with visual images like icons, figures, animations and so
on. Coding interprocessor communications intuitively
with visual images and keeping high performance are the
roots and the aim of GRIX.

VISUAL PROGRAMMING SYSTEM GRIX

GRIX is used in the case of appearing the interprocessor
communications in SPMD programming. GRIX have
been constructed the system from the following features.

• Input based on GUI (Graphical User Interface)
• Highly portable optimization technique
• GUI output of the optimization result
• Code generation corresponded to any parallel

computing environments

It has become more intuitive for programmers to input
communications because of GUI. The optimization
which has high portability has made possible to generate
the actual codes corresponded to any environments. The
graphical output of the result of optimization enables users
to realize the actual code intuitively and support in the
program debugging.
GRIX system can be classified into three subsystems: GUI
Engine, Optimization Engine and Code Generation
Engine (Figure 1). GUI Engine changes the input
information from the users into the file which can be
executed in Optimization Engine. Optimization Engine
changes the communications provided from the file into
the one of the faster to communicate and easier to
generate the actual code. The modified information is
written into the two files, one is for the graphical output
and the other is for code generation. GUI Engine shows
the modified information graphically. Graphical output
is for the purpose of intuitive realization of optimizations
and can also help users during their debugging works.
The file for code generation is used by Code Generation
Engine in order to generate the actual code for each
environment automatically. Code generation for each
environment can be realized by preparing corresponding
translator.

INTERFACE SPECIFIED FOR INTERPROCESSOR

COMMUNICATIONS

We have paid attention to the viewpoint of the users, when
they input the send-receive relationships. We explain the
visual interface of GRIX with the most basic example
assuming the input of 1-dimensional node ID (We call the
physical processor represented on the GUI system

“node”).

Input from Absolute Viewpoint
As the one of the viewpoint, we have thought about the
case that users already know the number of processors and
they input the relationships in advance. For instance, it
is the case that the programmer uses the single computer
including multiple processors, like massively parallel
computers (Figure 2), and he wants to use the actual ID of
processors which have been assigned by each
environment, like “The processor 2 sends the data toward
the processor 5.” We call this viewpoint “Absolute
Viewpoint.”
The initial window (left of Figure 3) appears by informing
the system of the number of showing nodes. In this
window, both of the send-node and the receive-node are
represented as circles. The nodes lined up vertically
mean the set of processors, the two nodes aligned on the
horizontal line represent the same processor: the left one
is a send-node and the right one is a receive-node. The
number in the left of each send node shows the ID of its
processor, which is 0-origin. The user describes the
relationship by drawing arrows. The relationships
between nodes are shown as arrows. The most basic
operation is dragging a mouse from the send-node to the
receive-node. The user can describe any relationship
among nodes naturally (right of Figure 3).
Though the user can describe every type of relationship by
using this operation, he has to draw the arrows one by one.
Therefore, we implement some multiple-arrow drawing
operations which help the users input three typical
communications like Broadcast, All-to-All Broadcast and
Shift. For instance, in the case of the input of
1-to-multiple communications like Broadcast and Scatter,
the user selects 1 send node and multiple receive nodes at
first (upper left of Figure 4: selected nodes change into
emphasized color). Then, by selecting existence order
from the menu bar or typing established shortcut key
(right of Figure 4), the system describes all arrows for
selected nodes (lower left of Figure 4). Those advanced
operations bring more rapid input by omitting
monotonous repetition.

Input from Relative Viewpoint
As the contrast of Absolute Viewpoint, the user frequently
images with the relative relationships among processors.
This is often happened when the programmer uses the
multiple workstations connected by LAN. For instance,
it is one of the Scatter image like “the processors whose
ID are even number send the data to the processors which
have the –2,+1,+3 distance from them.” In this
viewpoint, users construct the communications with the
notice of the movement in existence processors. We call
this viewpoint “Relative Viewpoint” (Figure 5).
Explaining how to input this example, at first, user must
inform the system of the number of nodes which is needed
to represent all the relative processors (in this example, it
is 6). The upper left of Figure 6 is the initial window

with 6 nodes. In this window user selects one node
which is the center of viewpoint, we call the node Owner,
and the system paints it with emphasized color and shows
the distance in the left of nodes (upper right of Figure 6).
If the user changes the owner, the value of distance shown
in the left of the nodes is rewritten into the new value.
Afterward, user describes the arrows with the same
operations of Absolute Viewpoint (lower left of Figure 6).
There remains the job of defining the condition of Owner.
In this example, the condition of the active nodes is “ID is
even number.” Defining the condition starts from
selecting ‘Edit define active nodes’ from the menu.
The choices prepared as the default are ‘all’ (all nodes are
active), ‘1 node’ (existence 1 node is active), ‘even’ (the
nodes which have even ID are active), ‘odd’ (the nodes
which have odd ID are active) and ‘customize’ (active
nodes are defined by the user). The input of this
example is completed by selecting ‘even’ (lower left of
Figure 6).
The user who wants to define another condition can select
‘customize’ and input the sentence of the definition in the
dialog (this dialog also appears when user selects ‘1
node’). The system allows users to input the constant,
the variable, the four basic operations of arithmetic and
logical operations (ex. ((id /2) % 2) == 0 : id is the
variable of own node ID). Definition of the condition
can be executed not only after the input of communication
relationships but also before that. Without the definition
of the condition, the system judges the condition as “all
active.”
In the case of Gather, it is possible to input it by selecting
Owner from the receive nodes. In the case of the input
with this viewpoint, the system does not allow users to
describe the arrow which is not connected with Owner.
The advanced operations like the case of Absolute
Viewpoint can be used while keeping that restriction.

OPTIMIZATION

GRIX optimizes the inputted communication relationships
in order to improve the efficiency. The concept of
optimization is to make the communication pattern which
is “fast to communicate” and “easy to generate” the
actual code. The principal jobs of Optimization Engine
are as follows.

• Removing communication conflicts
• Reducing the number of communication by memory

copying
• Generating conditional sentences of active (or

inactive) nodes

Optimization for Absolute Input
GRIX optimizes the inputted communication relationships
in order to improve the efficiency. Especially, in order
to realize the motivation that is to keep up with any
environment, the optimization for the communications

which are inputted with Absolute Viewpoint is important
because random communications can be happened.
When user has inputted with Absolute Viewpoint, the
optimization is performed with the following 5 steps using
synchronous communications.

(1). Grouping the communications by shift transfers

which have same-stride bandwidth.
(2). Assigning each group of (1) to each “step” of

synchronous communications.
(3). Overlapping the steps, if the steps have no conflict

in send-nodes and receive-nodes.
(4). Transforming the communication patterns, if it

can reuse the received data.
(5). Creating the Bit-Pattern which has the information

of active nodes (or inactive nodes) in each shift
transfer.

It is possible to generate the code only using (1) and (2).
We can reduce the execution steps of communications by
applying (3). By (1)~(3) implementations, the input
example in Figure 3 is changed as shown in Figure 7.
In the center and the right of Figure 7, the nodes lined up
vertically mean the set of processors, and the nodes
aligned on the horizontal line represent the same processor.
This is same to the input window. But their horizontal
lines also have the meaning of the notion of time.
Therefore, the leftmost nodes aligned vertically are initial
send-processors. The next nodes are initial
receive-processors. The receive-processors become the
send-processors in the next stage. This optimization are
performed with the synchronous communication.
Therefore, there exists a barrier synchronization in the
point that each vertical set of node are drawn. We call
the gap as “step.”
The optimization (4) which reuses received data is applied
in case that there are the partial Broadcast and the other
communication patterns. The example in Figure 8 is the
case that 6 processors perform Broadcast and 4 processors,
All-to-All Broadcast.
The number of the communication steps is computed as
the largest number of the arrows which each node has.
By adding the (4), the Broadcast is transformed like
Figure 9 and the number of communication steps is
reduced. We represent the number of processors which
perform Broadcast as Nb. (1)~(3) requires Nb-1 steps
because of the send-conflict of Broadcast. Then
optimization added (4) reduces the communication steps
into log2Nb (Nb is n’s power of 2) or log2Nb+1 (Nb is not
n’s power of 2). In case of Figure 8, the optimization
reduces the number of steps from 5 into 3.
Moreover, in the example of Figure 8, there are two
irregular nodes, node 4 and 5, for the Broadcast
transformation at the Step 3. In Step 3, each node of
0 3 can send the data to node 4 and 5. In this case, the
stride must be +3 because there exists the communication
by +3, node 6 to 9. So the stride computed by the
Broadcast transformation at Step 3 is +3.
The purpose of (5) is to write the code of deciding the

active (or inactive) nodes by one conditional sentence.
For example, if send-active nodes are {0,3,8} in {0~9}, its
Bit-Pattern is d_bit=20+23+28=1+8+256=265. And its
code is as follows.

d_bit = 265;
if (1 && (d_bit >>= myid))
 /*myid:node ID of myself*/

And the code of deciding the receive-active nodes
includes the sentences which decide senders and use the
d_bit. The code is as follows.

nprocs = 10;
if ((sender = (myid-stride)) < 0)
 sender += nprocs;
else if (sender >= nprocs)
 sender -= nprocs;
if (1 && (d_bit >>= sender))
 /*nprocs:the number of processors*/
 /*stride:the distance of shift transfer*/

In case of one step has very few inactive nodes and has no
overlapped step, it is possible to change the step for
All-Active. This implementation can take away the
conditional sentence. If only unique communications
like Broadcast and Summation are requested, it does not
implement above optimization and uses the functions
which each environment has.

Optimization for Relative Input
The optimization for Relative Input is simpler than the
one of Absolute Input. The system does not need to
prepare the communication steps and overlap them.
Overlapping is impossible because there always exists the
communication conflict in Owner node. Asynchronous
communications can be executed by labeling on each
stride communications. Of course, the system has to
prepare each receiving memory space.
Now, we use myid as own ID and nprocs as the number
of processors in the actual code. In the case of Figure 6,
the distance from active nodes are -2, +1 and +3. If
those strides stored in the array stride[] like int stride[3]
= "-2, 1, 3";, the send and receive sentence forms in the
actual code are like following code.

Send Sentence:

if ((myid % 2) == 0)+¥¥
 for (i = 0; i < 3; i++)-¥¥
 SEND to (myid + stride[i]), label(i);
/* Sending the data labeled i toward the node which has
the distance of stride[i] */

Receive Sentence:

for (i = 0; i < 3; i++){
 if ((sender = myid - stride[i]) < 0)
 sender += nprocs;
 else if (sender >= nprocs)
 sender -= nprocs;
 if ((sender % 2) == 0)
 RECV from sender, label(i);

/* Receiving the data labeled i from Sender, the node
which has the -stride[i] distance, if Sender is active */

In the case that the input contains all processors, like
“The processors whose ID are odd number receive the
data from all processors”, the send and receive sentence
forms are like following code using nprocs instead of
stride[].

Send Sentence:

for (i = 1; i < nprocs; i++){
 if ((receiver = myid + i) < 0)
 receiver += nprocs;
 else if (receiver >= nprocs)
 receiver -= nprocs;
 if ((receiver % 2) == 1)
 SEND to receiver, label(i);
/* Sending the data labeled i toward Receiver, the node
which has the i distance, if Receiver is active */

Receive Sentence:

if ((myid % 2) == 1)
 for (i = 1; i < nprocs; i++)
 RECV from (myid - i), label(i);
/* Receiving the data labeled i from the node which has
the distance of -i */

In order to determine the sentence forms, Optimizer
introduces following 4 information into Code Generator.

• Which is Owner, send node or receive node?

 Definition of the conditional sentence form
• How many nodes does Owner communicate to or

communicate from?
 Definition of the number of the element of

stride[], or using nprocs
• How long distance between send node (or send

nodes) and receive nodes (or receive node)?
 Definition of each value of stride[]

• What condition does Owner have?

FEEDBACK FOR USER

After the optimizations, user knows the result by the
graphical output windows as shown in Figures 10 and 11.
These graphical output windows bring users more
intuitive realization about how each node communicates
in each step. Figure 10 is the result of the optimization
for Figure 3 which is the input with Absolute Viewpoint.
In the case of the output for Relative Input, the system
does not know the number of the actual processors and
asynchronous communications can be happened.
Moreover, the result of optimization is mainly the
information of active nodes. So, the system describes
the output window with assuming existence number of
processors. Figure 11 is the output window of Figure 6
assuming 10 processors.
Though this output can be seem the one with synchronous
communications, all the communications can be executed

asynchronously. Users can be realized the information
that “the nodes whose ID are even number are active”
intuitively by this output window. These graphical
outputs can help users when they debug the program.

CODE GENERATION

GRIX involves the subsystem which generates the actual
code automatically in order to deal with the recent various
environments, like PVM and MPI. This code generation
removes coding with the knowledge of those
specifications and enables the programmer to write the
code with the intuitive manner. Moreover it is possible
to acquire the code for various environments with their
corresponding translation engines. We have prepared the
code generation subsystem for PVM at first. For
instance, the actual code of Figure 6 which is the input
with Relative Viewpoint is following code.

int stride[3] = "-2, 1, 3";
int skip = 0;

/*---------- SEND ----------*/
if ((SPMD_procnum % 2) == 0){
 for (i = 0; i < 3; i++){
 pvm_pkbyte(&send_area, datasize, 1);
 pvm_send(SPMD_tid[(SPMD_procnum +

 SPMD_nprocs + stride[i]) % SPMD_nprocs], i);
 }
}
/*---------- RECV ----------*/
for (i = 0; i < 3; i++){
 if ((sender = SPMD_procnum - stride[i]) < 0)
 sender += SPMD_nprocs;
 else if (sender >= SPMD_nprocs)
 sender -= SPMD_nprocs;
 if ((sender % 2) == 0){
 recv_area += datasize * skip;
 pvm_recv(SPMD_tid[sender], i);
 pvm_upkbyte(&recv_area, datasize, 1);
 skip++;
 }
}

The followings are simple explanations of variable names
written in the program.

• SPMD_nprocs: the number of Virtual Processors

(VP)
• SPMD_procnum: the VP number of myself (zero

origin)
• SPMD_tids: the array of tid those indexes are VP

numbers

RELATED WORKS

GRIX is a new GUI tool for parallel computing because
we have implemented it specified for the input of

interprocessor communications.
There exists some GUI systems for parallel computing.
P. Newton and J. C. Browne propose CODE [5], which is
a visual parallel programming language. G. A. Geist
proposes HeNCE [7], it is also the visual parallel
programming language. Newton has compared their
characteristics in the bibliography [6]. Those visual
programming languages force users to write the program
on their GUI windows. The visual input for the
sentences which is not redundant, like the normal sentence
of basic operations C[i,j] = C[i,j] + A[i,k] * B[k,j]; , has
some waists. We insist that the visual input for the
redundant points is most effective and the redundant point
in the parallel program is the sentence for interprocessor
communications.
XPVM [8] is the GUI system in order to control and
visualize the PVM programs. GRIX and XPVM have
same characteristics on the point of controlling
interprocessor communications. But GRIX is not aiming
only on PVM but also the multiple plat home for
executing interprocessor communications. Performance
monitors which visualize the load performance of each
processor, are also the GUI systems for parallel computing.
ParaGraph [9] is the one of performance monitors.
Though performance monitors are only for output, GRIX
has the functions of both input and output.

CONCLUSIONS

There exists lots of specifications to code interprocessor
communications and they shows a tendency to be complex.
Visual programming method has large possibility to make
such a difficult programming more smooth. We have
proposed the GRIX system, the visual programming
system for making the programming of interprocessor
communications less difficulty. Because of the GUI
system, GRIX is the efficient environment to realize the
faster interprocessor communications and allows
programmers the easier and more intuitive inputs of
interprocessor communications. GRIX can set
programmers free from complicated works being familiar
with a lot of complex specifications about interprocessor
communications. GRIX will be more effective and more
interactive system by jointing the existing textual editors.

REFERENCES

[1] Yasutaka Sakayori, Motoki Miura and Jiro Tanaka:
GRIX: Visual Programming System for Interprocessor
Communications, Proceedings of the 10th IASTED
International Conference PDCS '98, pp.503-508, Oct.
1998

[2] Yasutaka Sakayori: GRIX: The Proposal of Visual
Programming System Specified for Interprocessor

Communications, Master Thesis, University of Tsukuba,
Feb. 1999 (in Japanese, English shorter version is
available)

[3] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng
Jiang, Robert Mancheck and Vaidy Sunderam: PVM, The
MIT Press, 1994

[4] William Gropp, Ewing Lusk and Anthony Skjellum:
USING MPI, The MIT Press, 1994

[5] Peter Newton and James C. Browne: The CODE 2.0
Graphical Parallel Programming Language, Proceedings
of ACM International Conference on Supercomputing,
July, 1992

[6] P.Newton: Visual Programming and Parallel
Computing, Delivered at Workshop on Environments and
Tools for Parallel Scientific Computing, May, 1994.

[7] A. Beguelin, J. J. Dongarra, G. A. Geist, R.
Manchek, and V. S. Sunderam: Graphical Development
Tools for Network-Based Concurrent Supercomputing,
Proceedings of Supercomputing 91, pp.435-444, 1991

[8] G. A. Geist, A. Beguelin, J. J. Dongarra, W. Jiang, R.
Manchek, and V. S. Sunderam: PVM 3 Users Guide and
Reference Manual, Technical Report ORNL/TM-12187,
Oak Ridge National Laboratory, 1993

[9] Michael T.Heath: ParaGraph: A Tool for
Visualizing Performance of Parallel Programs, Univ of
Illinois, Jennifer Etheridge Finger, Oak Ridge National
Laboratory, June 1994

[10] B. A. Mayers: Taxonomies of Visual Programming
and Programming Visualization, Journal of Visual
Language and Computing, 1(1):97-123, 1990

FIGURES

Figure 1: System Structure of GRIX

Figure 2: Absolute Viewpint

Figure 3: Input from Absolute Viewpoint

Figure 4: Advanced Operation

Figure 5: Relative Viewpoint

Figure 6: Input from Relative Viewpoint

Figure 7: Optimization

Figure 8: Reusing Received Data

Figure 9: Broadcast Transformation

Figure 10: Graphical Output with Absolute Viewpoint

Figure 11: Graphical Output with Relative Viewpoint

		ABSTRACT

		INTRODUCTION

		VISUAL PROGRAMMING SYSTEM GRIX

		INTERFACE SPECIFIED FOR INTERPROCESSOR COMMUNICATIONS

		Input from Absolute Viewpoint

		Input from Relative Viewpoint

		OPTIMIZATION

		Optimization for Absolute Input

		Optimization for Relative Input

		FEEDBACK FOR USER

		CODE GENERATION

		RELATED WORKS

		CONCLUSIONS

		REFERENCES

		FIGURES

