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ABSTRACT 


In this paper, we propose GRIX system, which is a visual 
programming system specified for interprocessor 
communications in parallel computing.  We explain the 
system outline and its GUI based operations.  The GUI 
based operations make users enable to input the structure 
of interprocessor communications with intuitive images.  
Code generation by this system omits the users’ jobs of 
translation from the figured images of users into the 
textual program codes.  The program codes generated by 
the system can be adopted for various parallel computing 
environments like LAN-connected workstations and 
massively parallel computers.  
Keywords 
Visual Programming System, Interprocessor 
Communications and Parallel Programs 


INTRODUCTION 


We have proposed GRIX system [1,2], which is a visual 
programming system specified for interprocessor 
communications appearing in programs for 
Message-Passing parallel computing.  The aim of GRIX 
is to realize effective interprocessor communications and 
to reduce users' jobs by using visual input instead of 
complex input with textual specifications.  
We must pay large attention for interprocessor 
communications when we construct parallel programs.  
The cost of interprocessor communications is the 


bottleneck of computing.  Moreover, they bring barrier 
synchronizations in some cases.  Inefficient coding 
brings frequent barrier synchronizations and the 
computing loss from the peak performance will be large.  
There exists lots of means for coding the sentences of 
interprocessor communications, like PVM [3], MPI [4] 
and native functions implemented only for each 
computers.  Those specifications show a tendency to be 
complex because we require high performance of 
execution.  One of our emphasizing point is those 
complexities which bring confusion should be eliminated.  
For instance, in order to realize the most simple 
communication, which is a pair of send and receive, by 
using PVM functions, programmers have to complete four 
procedures at least, packing data (ex. pvm_pkint), 
sending data (ex. pvm_send), receiving data (ex. 
pvm_recv) and unpacking data (ex. pvm_upkint).  
Moreover, some variables included in each function must 
be complex because of bringing high performance.  This 
tendency must be strengthened at more native 
environments.  
We worry about the above misfortune of programmers and 
insist on the following opinions.  
 
• Forcing programmers to learn the meaning of 


difficult functions, especially unessential ones for 
interprocessor communications like memory 
mapping, is not desirable. 


• The ideal method to materialize interprocessor 
communications is the programming with the most 
simple information, “who (which processing 
elements)”, “where (which address space)”, “what 
(which data)” and “how (like blocking and 
non-blocking).” 







 


 


We have selected the realization by using Visual 
Programming method as the one of the most efficient 
solution for above insistence.  Visual Programming 
method [10] is the programming form using the interface 
with visual images like icons, figures, animations and so 
on.  Coding interprocessor communications intuitively 
with visual images and keeping high performance are the 
roots and the aim of GRIX. 


VISUAL PROGRAMMING SYSTEM GRIX 


GRIX is used in the case of appearing the interprocessor 
communications in SPMD programming.  GRIX have 
been constructed the system from the following features.  
 
• Input based on GUI (Graphical User Interface) 
• Highly portable optimization technique 
• GUI output of the optimization result 
• Code generation corresponded to any parallel 


computing environments 
 
It has become more intuitive for programmers to input 
communications because of GUI.  The optimization 
which has high portability has made possible to generate 
the actual codes corresponded to any environments.  The 
graphical output of the result of optimization enables users 
to realize the actual code intuitively and support in the 
program debugging. 
GRIX system can be classified into three subsystems: GUI 
Engine, Optimization Engine and Code Generation 
Engine (Figure 1).  GUI Engine changes the input 
information from the users into the file which can be 
executed in Optimization Engine.  Optimization Engine 
changes the communications provided from the file into 
the one of the faster to communicate and easier to 
generate the actual code.  The modified information is 
written into the two files, one is for the graphical output 
and the other is for code generation.  GUI Engine shows 
the modified information graphically.  Graphical output 
is for the purpose of intuitive realization of optimizations 
and can also help users during their debugging works.  
The file for code generation is used by Code Generation 
Engine in order to generate the actual code for each 
environment automatically. Code generation for each 
environment can be realized by preparing corresponding 
translator.  


INTERFACE SPECIFIED FOR INTERPROCESSOR 


COMMUNICATIONS 


We have paid attention to the viewpoint of the users, when 
they input the send-receive relationships.  We explain the 
visual interface of GRIX with the most basic example 
assuming the input of 1-dimensional node ID (We call the 
physical processor represented on the GUI system 


“node”).  


Input from Absolute Viewpoint 
As the one of the viewpoint, we have thought about the 
case that users already know the number of processors and 
they input the relationships in advance.  For instance, it 
is the case that the programmer uses the single computer 
including multiple processors, like massively parallel 
computers (Figure 2), and he wants to use the actual ID of 
processors which have been assigned by each 
environment, like “The processor 2 sends the data toward 
the processor 5.”  We call this viewpoint “Absolute 
Viewpoint.” 
The initial window (left of Figure 3) appears by informing 
the system of the number of showing nodes.  In this 
window, both of the send-node and the receive-node are 
represented as circles.  The nodes lined up vertically 
mean the set of processors, the two nodes aligned on the 
horizontal line represent the same processor: the left one 
is a send-node and the right one is a receive-node.  The 
number in the left of each send node shows the ID of its 
processor, which is 0-origin.  The user describes the 
relationship by drawing arrows.  The relationships 
between nodes are shown as arrows.  The most basic 
operation is dragging a mouse from the send-node to the 
receive-node.  The user can describe any relationship 
among nodes naturally (right of Figure 3). 
Though the user can describe every type of relationship by 
using this operation, he has to draw the arrows one by one.  
Therefore, we implement some multiple-arrow drawing 
operations which help the users input three typical 
communications like Broadcast, All-to-All Broadcast and 
Shift.  For instance, in the case of the input of 
1-to-multiple communications like Broadcast and Scatter, 
the user selects 1 send node and multiple receive nodes at 
first (upper left of Figure 4: selected nodes change into 
emphasized color).  Then, by selecting existence order 
from the menu bar or typing established shortcut key 
(right of Figure 4), the system describes all arrows for 
selected nodes (lower left of Figure 4).  Those advanced 
operations bring more rapid input by omitting 
monotonous repetition. 


Input from Relative Viewpoint 
As the contrast of Absolute Viewpoint, the user frequently 
images with the relative relationships among processors.  
This is often happened when the programmer uses the 
multiple workstations connected by LAN.  For instance, 
it is one of the Scatter image like “the processors whose 
ID are even number send the data to the processors which 
have the –2,+1,+3 distance from them.”  In this 
viewpoint, users construct the communications with the 
notice of the movement in existence processors.  We call 
this viewpoint “Relative Viewpoint” (Figure 5).  
Explaining how to input this example, at first, user must 
inform the system of the number of nodes which is needed 
to represent all the relative processors (in this example, it 
is 6).  The upper left of Figure 6 is the initial window 







 


 


with 6 nodes.  In this window user selects one node 
which is the center of viewpoint, we call the node Owner, 
and the system paints it with emphasized color and shows 
the distance in the left of nodes (upper right of Figure 6).  
If the user changes the owner, the value of distance shown 
in the left of the nodes is rewritten into the new value.  
Afterward, user describes the arrows with the same 
operations of Absolute Viewpoint (lower left of Figure 6).  
There remains the job of defining the condition of Owner.  
In this example, the condition of the active nodes is “ID is 
even number.”  Defining the condition starts from 
selecting ‘Edit  define active nodes’ from the menu.  
The choices prepared as the default are ‘all’ (all nodes are 
active), ‘1 node’ (existence 1 node is active), ‘even’ (the 
nodes which have even ID are active), ‘odd’ (the nodes 
which have odd ID are active) and ‘customize’ (active 
nodes are defined by the user).  The input of this 
example is completed by selecting ‘even’ (lower left of 
Figure 6). 
The user who wants to define another condition can select 
‘customize’ and input the sentence of the definition in the 
dialog (this dialog also appears when user selects ‘1 
node’).  The system allows users to input the constant, 
the variable, the four basic operations of arithmetic and 
logical operations (ex. ((id /2) % 2) == 0 : id is the 
variable of own node ID).  Definition of the condition 
can be executed not only after the input of communication 
relationships but also before that.  Without the definition 
of the condition, the system judges the condition as “all 
active.” 
In the case of Gather, it is possible to input it by selecting 
Owner from the receive nodes.  In the case of the input 
with this viewpoint, the system does not allow users to 
describe the arrow which is not connected with Owner.  
The advanced operations like the case of Absolute 
Viewpoint can be used while keeping that restriction. 


OPTIMIZATION 


GRIX optimizes the inputted communication relationships 
in order to improve the efficiency.  The concept of 
optimization is to make the communication pattern which 
is “fast to communicate” and “easy to generate” the 
actual code.  The principal jobs of Optimization Engine 
are as follows. 
 
• Removing communication conflicts 
• Reducing the number of communication by memory 


copying 
• Generating conditional sentences of active (or 


inactive) nodes 


Optimization for Absolute Input 
GRIX optimizes the inputted communication relationships 
in order to improve the efficiency.  Especially, in order 
to realize the motivation that is to keep up with any 
environment, the optimization for the communications 


which are inputted with Absolute Viewpoint is important 
because random communications can be happened.  
When user has inputted with Absolute Viewpoint, the 
optimization is performed with the following 5 steps using 
synchronous communications.  
 
(1). Grouping the communications by shift transfers 


which have same-stride bandwidth. 
(2). Assigning each group of (1) to each “step” of 


synchronous communications. 
(3). Overlapping the steps, if the steps have no conflict 


in send-nodes and receive-nodes. 
(4). Transforming the communication patterns, if it 


can reuse the received data. 
(5). Creating the Bit-Pattern which has the information 


of active nodes (or inactive nodes) in each shift 
transfer. 


 
It is possible to generate the code only using (1) and (2).  
We can reduce the execution steps of communications by 
applying (3).  By (1)~(3) implementations, the input 
example in Figure 3 is changed as shown in Figure 7. 
In the center and the right of Figure 7, the nodes lined up 
vertically mean the set of processors, and the nodes 
aligned on the horizontal line represent the same processor.  
This is same to the input window.  But their horizontal 
lines also have the meaning of the notion of time.  
Therefore, the leftmost nodes aligned vertically are initial 
send-processors.  The next nodes are initial 
receive-processors.  The receive-processors become the 
send-processors in the next stage.  This optimization are 
performed with the synchronous communication.  
Therefore, there exists a barrier synchronization in the 
point that each vertical set of node are drawn.  We call 
the gap as “step.” 
The optimization (4) which reuses received data is applied 
in case that there are the partial Broadcast and the other 
communication patterns.  The example in Figure 8 is the 
case that 6 processors perform Broadcast and 4 processors, 
All-to-All Broadcast. 
The number of the communication steps is computed as 
the largest number of the arrows which each node has.  
By adding the (4), the Broadcast is transformed like 
Figure 9 and the number of communication steps is 
reduced.  We represent the number of processors which 
perform Broadcast as Nb.  (1)~(3) requires Nb-1 steps 
because of the send-conflict of Broadcast.  Then 
optimization added (4) reduces the communication steps 
into log2Nb (Nb is n’s power of 2) or log2Nb+1 (Nb is not 
n’s power of 2).  In case of Figure 8, the optimization 
reduces the number of steps from 5 into 3. 
Moreover, in the example of Figure 8, there are two 
irregular nodes, node 4 and 5, for the Broadcast 
transformation at the Step 3.  In Step 3, each node of 
0 3 can send the data to node 4 and 5.  In this case, the 
stride must be +3 because there exists the communication 
by +3, node 6 to 9.  So the stride computed by the 
Broadcast transformation at Step 3 is +3. 
The purpose of (5) is to write the code of deciding the 







 


 


active (or inactive) nodes by one conditional sentence.  
For example, if send-active nodes are {0,3,8} in {0~9}, its 
Bit-Pattern is d_bit=20+23+28=1+8+256=265.  And its 
code is as follows. 
 


d_bit = 265; 
if (1 && (d_bit >>= myid)) 
       /*myid:node ID of myself*/ 


 
And the code of deciding the receive-active nodes 
includes the sentences which decide senders and use the 
d_bit.  The code is as follows. 
 


nprocs = 10; 
if ((sender = (myid-stride)) < 0) 
  sender += nprocs; 
else if (sender >= nprocs) 
  sender -= nprocs; 
if (1 && (d_bit >>= sender)) 
     /*nprocs:the number of processors*/ 
     /*stride:the distance of shift transfer*/ 


 
In case of one step has very few inactive nodes and has no 
overlapped step, it is possible to change the step for 
All-Active.  This implementation can take away the 
conditional sentence.  If only unique communications 
like Broadcast and Summation are requested, it does not 
implement above optimization and uses the functions 
which each environment has. 


Optimization for Relative Input 
The optimization for Relative Input is simpler than the 
one of Absolute Input.  The system does not need to 
prepare the communication steps and overlap them.  
Overlapping is impossible because there always exists the 
communication conflict in Owner node.  Asynchronous 
communications can be executed by labeling on each 
stride communications.  Of course, the system has to 
prepare each receiving memory space.  
Now, we use myid as own ID and nprocs as the number 
of processors in the actual code.  In the case of Figure 6, 
the distance from active nodes are -2, +1 and +3.  If 
those strides stored in the array stride[] like int stride[3] 
= "-2, 1, 3";, the send and receive sentence forms in the 
actual code are like following code. 
 
Send Sentence: 


if ((myid % 2) == 0)+¥¥ 
   for (i = 0; i < 3; i++)-¥¥ 
       SEND to (myid + stride[i]), label(i); 
/* Sending the data labeled i toward the node which has 
the distance of stride[i] */ 


 
Receive Sentence: 


for (i = 0; i < 3; i++){ 
    if ((sender = myid - stride[i]) < 0) 
        sender += nprocs; 
    else if (sender >= nprocs) 
        sender -= nprocs; 
    if ((sender % 2) == 0) 
        RECV from sender, label(i); 


/* Receiving the data labeled i from Sender, the node 
which has the -stride[i] distance, if Sender is active */ 


In the case that the input contains all processors, like 
“The processors whose ID are odd number receive the 
data from all processors”, the send and receive sentence 
forms are like following code using nprocs instead of 
stride[]. 
 
Send Sentence: 


for (i = 1; i < nprocs; i++){ 
    if ((receiver = myid + i) < 0) 
        receiver += nprocs; 
    else if (receiver >= nprocs) 
        receiver -= nprocs; 
    if ((receiver % 2) == 1) 
        SEND to receiver, label(i); 
/* Sending the data labeled i toward Receiver, the node 
which has the i distance, if Receiver is active */ 


 
Receive Sentence: 


if ((myid % 2) == 1) 
    for (i = 1; i < nprocs; i++) 
        RECV from (myid - i), label(i); 
/* Receiving the data labeled i from the node which has 
the distance of -i */ 


 
In order to determine the sentence forms, Optimizer 
introduces following 4 information into Code Generator.  
 
• Which is Owner, send node or receive node? 


 Definition of the conditional sentence form 
• How many nodes does Owner communicate to or 


communicate from? 
 Definition of the number of the element of 


stride[], or using nprocs 
• How long distance between send node (or send 


nodes) and receive nodes (or receive node)? 
 Definition of each value of stride[] 


• What condition does Owner have? 


FEEDBACK FOR USER 


After the optimizations, user knows the result by the 
graphical output windows as shown in Figures 10 and 11.  
These graphical output windows bring users more 
intuitive realization about how each node communicates 
in each step.  Figure 10 is the result of the optimization 
for Figure 3 which is the input with Absolute Viewpoint. 
In the case of the output for Relative Input, the system 
does not know the number of the actual processors and 
asynchronous communications can be happened.  
Moreover, the result of optimization is mainly the 
information of active nodes.  So, the system describes 
the output window with assuming existence number of 
processors.  Figure 11 is the output window of Figure 6 
assuming 10 processors. 
Though this output can be seem the one with synchronous 
communications, all the communications can be executed 







 


 


asynchronously.  Users can be realized the information 
that “the nodes whose ID are even number are active” 
intuitively by this output window.  These graphical 
outputs can help users when they debug the program. 


CODE GENERATION 


GRIX involves the subsystem which generates the actual 
code automatically in order to deal with the recent various 
environments, like PVM and MPI.  This code generation 
removes coding with the knowledge of those 
specifications and enables the programmer to write the 
code with the intuitive manner.  Moreover it is possible 
to acquire the code for various environments with their 
corresponding translation engines.  We have prepared the 
code generation subsystem for PVM at first.  For 
instance, the actual code of Figure 6 which is the input 
with Relative Viewpoint is following code. 
 


int stride[3] = "-2, 1, 3"; 
int skip = 0; 
 
/*---------- SEND ----------*/ 
if ((SPMD_procnum % 2) == 0){ 
   for (i = 0; i < 3; i++){ 
       pvm_pkbyte(&send_area, datasize, 1); 
       pvm_send(SPMD_tid[(SPMD_procnum +  


 SPMD_nprocs + stride[i]) % SPMD_nprocs], i); 
   } 
} 
/*---------- RECV ----------*/ 
for (i = 0; i < 3; i++){ 
    if ((sender = SPMD_procnum - stride[i]) < 0) 
        sender += SPMD_nprocs; 
    else if (sender >= SPMD_nprocs) 
        sender -= SPMD_nprocs; 
    if ((sender % 2) == 0){ 
        recv_area += datasize * skip; 
        pvm_recv(SPMD_tid[sender], i); 
        pvm_upkbyte(&recv_area, datasize, 1); 
        skip++; 
    } 
} 


 
The followings are simple explanations of variable names 
written in the program. 
 
• SPMD_nprocs: the number of Virtual Processors 


(VP) 
• SPMD_procnum: the VP number of myself (zero 


origin) 
• SPMD_tids: the array of tid those indexes are VP 


numbers 


RELATED WORKS 


GRIX is a new GUI tool for parallel computing because 
we have implemented it specified for the input of 


interprocessor communications. 
There exists some GUI systems for parallel computing.  
P. Newton and J. C. Browne propose CODE [5], which is 
a visual parallel programming language.  G. A. Geist 
proposes HeNCE [7], it is also the visual parallel 
programming language.  Newton has compared their 
characteristics in the bibliography [6].  Those visual 
programming languages force users to write the program 
on their GUI windows.  The visual input for the 
sentences which is not redundant, like the normal sentence 
of basic operations C[i,j] = C[i,j] + A[i,k] * B[k,j]; , has 
some waists.  We insist that the visual input for the 
redundant points is most effective and the redundant point 
in the parallel program is the sentence for interprocessor 
communications.  
XPVM [8] is the GUI system in order to control and 
visualize the PVM programs.  GRIX and XPVM have 
same characteristics on the point of controlling 
interprocessor communications.  But GRIX is not aiming 
only on PVM but also the multiple plat home for 
executing interprocessor communications.  Performance 
monitors which visualize the load performance of each 
processor, are also the GUI systems for parallel computing.   
ParaGraph [9] is the one of performance monitors.  
Though performance monitors are only for output, GRIX 
has the functions of both input and output. 


CONCLUSIONS 


There exists lots of specifications to code interprocessor 
communications and they shows a tendency to be complex.  
Visual programming method has large possibility to make 
such a difficult programming more smooth.  We have 
proposed the GRIX system, the visual programming 
system for making the programming of interprocessor 
communications less difficulty.  Because of the GUI 
system, GRIX is the efficient environment to realize the 
faster interprocessor communications and allows 
programmers the easier and more intuitive inputs of 
interprocessor communications.  GRIX can set 
programmers free from complicated works being familiar 
with a lot of complex specifications about interprocessor 
communications.  GRIX will be more effective and more 
interactive system by jointing the existing textual editors.  
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Figure 1: System Structure of GRIX 


 
 
 
 


 
Figure 2: Absolute Viewpint 


 
 
 
 
 


 
Figure 3: Input from Absolute Viewpoint 


 
 
 
 
 
 
 
 


 
Figure 4: Advanced Operation 


 







 


 


 
 
 
 


 
Figure 5: Relative Viewpoint 


 
 
 
 
 


 
Figure 6: Input from Relative Viewpoint 


 


 
 
 
 
 
 
 
 


 
Figure 7: Optimization 


 
 
 


 
Figure 8: Reusing Received Data 


 
 
 
 
 
 
 
 
 







 


 


 
 
 
 
 


 
Figure 9: Broadcast Transformation 


 
 
 
 
 


 
Figure 10: Graphical Output with Absolute Viewpoint 


 
 


 
 
 
 


 
Figure 11: Graphical Output with Relative Viewpoint 
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