
Programming Environment Specified for Describing

Interprocessor Communications based on the

Operations on Graphical User Interface

Yasutaka Sakayori, Buntarou Shizuki and Jiro Tanaka
Institute of Information Sciences and Electronics

University of Tsukuba
Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan.

Abstract In this paper, we propose the GRIX sys-
tem, which is a visual programming system speci-

fied for interprocessor communications in parallel

computing. We will outline the system and ex-

plain its Graphical User Interface (GUI) based op-

erations. GUI-based operations enable users to in-

put the structure of interprocessor communications

with intuitive images. Using this system to generate

code eliminates user tasks of translation from im-

ages produced by users into textual program codes.

Moreover, most programmers construct the picto-

rial images of communications’ behavior on paper

or in their minds, when faced with interproces-

sor communications during parallel programming.

By adopting the GUI interaction with the sense of

the programmers’ pictorial tracing, this system can

provide an effective programming environment for

most programmers.

Keywords: Interprocessor Communications, Vi-
sual Programming System

1 Introduction

In this paper, we propose the GRIX system [1],
which is a visual programming system specified
for interprocessor communications occurring in
programs for Message-Passing parallel comput-
ing.

Occasionally, poor implementations of inter-
processor communications cause frequent syn-
chronizations and waste computing resources.
Furthermore, there are many methods for cod-

ing the sentences of interprocessor communica-
tions, like PVM [2], MPI [3] and native func-
tions implemented only for specific computers.
A major point we emphasize is to eliminate
complexities that cause bring confusion. For
instance, in order to realize the simplest com-
munication, which is a send-receive pair, by us-
ing PVM functions, programmers must com-
plete at least four procedures, packing data,
sending data, receiving data and unpacking
data. Moreover, some variables included in
each function must be complex to achieve high
performance. This tendency is stronger in
more native environments.

The ideal method of describing interproces-
sor communications is with simple information
such as “who”, “where” and “how.” We can
accomplish this by using the Visual Program-
ming method [4]. The Visual Programming
method is a programming form using visual im-
ages like icons, figures and animations, instead
of textual specifications.

2 Visual Programming Sys-
tem GRIX

When programmers implement interprocessor
communications based on the Single Program
/ Multiple Data (SPMD) paradigm or Master-
Slave style, they describe the outlined move-
ment of interprocessor communications on pa-
per or in their minds. The GRIX system
adopts a GUI that is consistent with program-

mers’ pictorial plans for the input interface and
generates the textual programs from their in-
put.
GRIX is used if interprocessor communica-

tions occur in SPMD programming. The sepa-
ration between interprocessor communications
and other calculations can be clearer in SPMD
than in other parallel programming styles. and
the GRIX system can be expected to be more
effective.
The GRIX system is implemented with Java

and can be classified into two subsystems: the
GUI Engine, for interactions between users and
the system, and the Code Generation Engine,
for generating textual codes. Though the cur-
rent Code Generation Engine is produces PVM
or MPI codes, it can be adopt for generating
code in any environment by preparing a code
generation module for each environment.
Figure 1 provides an overview of the GRIX

system.

-2

-1

0

+1

+2

+3

Owner:
This is the
center of the
viewpoint.

Relative Distance

The distance between
2 grid lines is set as
"Distance = 1" as default.

This input means
"The Owner (the myself-processor-ID in programs)
transfers the data toward the nodes
that are the -2, +1, +3 distance."

Figure 1: Overview of GRIX system

The basic operation in a GRIX system is
“drawing the figure” representing the flow of
interprocessor communications. In practical
terms, users place the nodes that represent PE
and draw edges that represent data flows be-

tween two PEs on the canvas by mouse opera-
tions.

The GRIX system also enables grid infor-
mation on the canvas of Fig. 1 to be used ef-
fectively by both users and the system. Users
can employ the grid for beautiful and reason-
able node placing by automatic snapping to the
nearest grid point. The system uses the grid in-
formation to infer the users’ intention to some
extent.

3 Interface to Describe Inter-
processor Communications

In this section, we explain the visual interface
of the GRIX system that is specified for inter-
processor communications.

3.1 Input of Send-Receive Relation-
ship among Processing Elements

We now explain how to input the send-receive
relationship with the following Scatter exam-
ple: “the processors with even-number IDs
send the data to the processors that are -2,-
1 or +3 distance from them.” Figure 1 is an
appropriate input for the example. Users per-
form four tasks to reach this input.

1. Map 6× 2 nodes represented by CPU icons
on the grid points on the canvas.

A new node is created by selecting the toggle

button with the CPU icon’s image, holding this

state, and clicking the left button of the mouse

on the canvas. The node is then automatically

snapped to the nearest grid point of the coordi-

nate clicked by the user. At first, user must create

six nodes in a line to show the distance between -2

to +3 by those operations. As shown in Fig. 1,

the user must create two lines of nodes to represent

time flow from left to right by adding the meaning

of “send nodes” for the left nodes and the meaning

of “receive nodes” for the right ones. Therefore, the

two nodes aligned on the horizontal line represent

the same processor.

2. Select a certain node that is the center of
viewpoint from the send nodes.

One node is the center of the viewpoint, in other

words, the processor node referred to as “myself”

in SPMD programs. We call it the node Owner.

Selecting the third (from top) node from the left

nodes as the Owner node adds the meaning of rel-

ative distance as shown in Fig. 1. Basically, the

width between two grid points represents the dis-

tance of nodes as 1.

3. Draw data-flow edges from Owner to the
receive nodes.

Users describe the data flow edges from the send

node to the receive node by mouse-dragging oper-

ations. They can describe any relationship among

nodes naturally by these operations.

4. Input the condition that activates Owner
node.

The condition of Owner must now be defined.

In this example, the condition of the active nodes

is “ID is an even number.” Users have to in-

form the system of this condition with a repre-

sentation that can insert the condition sentence.

For instance, if the variable for referring to “my-

self” is set as SPMD_procnum, the input must be

SPMD_procnum % 2 == 0. If the condition is not

defined, the system judges the condition to be “all

nodes are active.”

Gather is input by selecting Owner from the
receive nodes and drawing edges from the send
nodes to one Owner.

For Scatter or Gather, the system does not
allow users to describe an arrow that is not
connected with Owner. With this restriction,
however, it is possible to input data assuming
a 2-dimensional(2D) node ID such as shown in
Fig. 2.

Figure 2 shows communication in which the
Owner node gathers data from nodes with rel-
ative distances of (-1, -1), (-1, 0), (-1, +1), (0,
-1), (0, +1), (+1, -1), (+1, 0) and (+1, +1). In
this case, the height between two nodes means
the column-direction distance and the width
means the row-direction distance.

3.2 Inferring from Grid Information

Nodes and edges are placed on the canvas fol-
lowing the grid points by automatic snapping.

This node’s distance
from Owner is
 (+1, -1)

This input means
"the Owner gathers data from the nodes with relative distances
(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, +1), (+1, -1), (+1, 0) and (+1, +1)
(the adjoining nodes with vertical, horizontal and diagonal direction) ."

Figure 2: Input with 2D node ID

If those nodes and edges have certain charac-
teristics, the system infers the users’ intention
from them.

For example, the statements to infer “the in-
put with 1-dimensional(1D) ID” are “two lines
of the node group have the same number” and
“it can define the edges’ direction uniquely,
vertically or horizontally.”

The upper-most left grid point on the can-
vas has this attribute, the origin (0, 0). The
grid point x to the right of the origin and y
below the origin has the attribute (x, y). In
Fig. 3, the existence nodes have the attributes
(1, 0∼5) and (3, 0∼5). The system infers the
existence of two lines of the node from these
attributes. The five existing edges start at (1,
2) and end at (3, 0), (3, 1), (3, 3), (3, 4) and (3,
5). The edges thus have the vector attribute,
(2, -2), (2, -1), (2, 1), (2, 2) and (2, 3). The
system can infer that all the edges are directed
to the right because the first elements of all
vectors have the same value.

The system can judge the left-lined nodes
to be send nodes and the right-lined ones to be
receive nodes. By using the grid attribute, the
system detects the same result for some kinds
of symmetric inputs.

The origin (0,0)
Edges’ Vector:
 (2, -2)
 (2, -1)
 (2, 1)
 (2, 2)
 (2, 3)

Figure 3: Inference from objects’ attributes

4 Code Generation

The GRIX system can automatically gener-
ate the actual code with its simple and pow-
erful mechanism. SPMD programs can use
the variables for referring to “myself,” “the
number of all nodes” and “the other existing
node.” Assuming variables SPMD procnum,
SPMD nprocs and SPMD tids[], the generated
PVM code for the input of Fig. 1 is as follows.

1: int stride[3] = {-2, 1, 3};

2:

3: /*---------- SEND ----------*/

4: if ((SPMD_procnum % 2) == 0){

5: for (i = 0; i < 3; i++){

6: pvm_pkbyte(&send_area, datasize, 1);

7: pvm_send(SPMD_tid[(SPMD_procnum

8: + stride[i] + SPMD_nprocs)

9: % SPMD_nprocs], i);

10: }

12: }

In the first line, stride[] is an array hav-
ing the relative distances to the receive nodes.
This is generated by the values from the y ele-
ments of the edges’ vector (x, y).

Te data should be sent on the condition that
“myself is active.” Therefore, the conditional
sentence in the fourth line are generated.

The fifth line means to send data three
times; three is the number of elements in
stride[]. The receive node ID which has
the distance “distance′′ can be calculated by
(“myself ID′′+“distance′′+“the number of
nodes′′)%“the number of nodes.′′ Therefore,
the index of SPMD tids[] in the seventh line is
as follows.

(SPMD_procnum + stride[i] +

SPMD_nprocs) % SPMD_nprocs

The loop index i is used as the description
that correspond with the one of the receive ex-
ecution (in the ninth line).
In some reception cases, it can be difficult to

define the active condition using only “myself
ID,” such as sending cases, especially if the ac-
tive send nodes have complicated conditions.
Therefore, we selected a strategy that calcu-
lates the sender, the node ID that must send
to “me,” and adds the conditional sentence as
in send execution using the sender ID.
The sender ID from the distance stride[i] can

be calculated from the node ID that has the
distance -stride[i] from “me.” Therefore, the
code for receiving is as follows.

/*---------- RECV ----------*/

int skip = 0;

for (i = 0; i < 3; i++){

if (((sender = (SPMD_procnum - stride[i] +

SPMD_nprocs) % SPMD_nprocs)

% 2) == 0){

recv_area += datasize * skip;

pvm_recv(SPMD_tid[sender], i);

pvm_upkbyte(&recv_area, datasize, 1);

skip++;

}

}

The system shows the generated code as
shown in Fig. 4.

5 Example Using Jacobi Algo-
rithm

The Jacobi algorithm [5] is one of the most ef-
ficient algorithms for parallel computing. The
following pseudo code presents one Jacobi al-
gorithm implementation.

Figure 4: Code Viewer

1: begin
2: {Boundary Conditions}
3: for i := 1 to n do
4: begin
5: x[0][i] := north[i];
6: x[n+ 1][i] := south[i];
7: x[i][0] := west[i];
8: x[i][n+ 1] := east[i];
9: end
10: {Initialize values of elements of x}
11: for i := 1 to n do
12: x[i] := 50;
13: {Refine estimates of x until values converge}
14: repeat
15: diff := 0;
16: for i := 1 to n do
17: for j := 1 to n do
18: newx[i][j] := (x[i− 1][j] + x[i][j − 1]+
19: x[i+ 1][j] + x[i][j + 1])/4;
20: for i := 1 to n do
21: for j := 1 to n do
22: begin
23: diff := max(diff, |newx[i][j]− x[i][j]|);
24: x[i][j] := newx[i][j];
25: end
26: until diff < ε
27: end

Parameters n, ε and diff represent the data
size, the convergence criterion and the max-
imum change. The values of arrays north,
south, east and west are the boundary condi-
tions. x is the parameter for the solution, and
newx is the parameter for the new estimated
solution.

One of the parallelizing blocks incorporated
into the SPMD program in the pseudo code is
the block of lines 16 to 19. We can find the

following two strategies for parallelizing that
block.

• Node mapping with 1D node ID and
column-oriented or row-oriented data dis-
tribution.

• Node mapping with 2D node ID and
block-oriented data distribution.

Figure 5 presents the communication behav-
ior under 1D node mapping and row-oriented
data mapping, using a 16× 16 matrix on four
nodes.

Data Mapping

Node Mapping

Pack and send these data
to the north nodes

Pack and send these data
to the south nodes

Figure 5: Communication behavior under 1D
node mapping

Let us determine the communication cost as-
suming the Parallel Random Access Machine
(PRAM) model [5]. Using the parameters λ as
the start up cost, n as the data size (the num-
ber of points in each dimension of the data ma-
trix), β as the proportional constant multiply-
ing n, and p as the number of processors, the
total communication cost is 4(λ+nβ) because
the cost of single transfer is λ+ nβ and there
are two pairs of send and receive transfers on
one node. We find that there is no relationship
with p under this strategy.
Figure 6 shows the communication behav-

ior under 2D node mapping and block-oriented
data distribution, using a 16×16 matrix on 16
nodes.
In this case, the total communication cost

is 8(λ + nβ/
√
p) because the cost of a single

Data Mapping

Node Mapping

Pack and send these
data to the east and
the west nodes

Pack and send these
data to the north and
the south nodes

Figure 6: Communication behavior under 2D
mesh node mapping

transfer is λ+ nβ/
√
p and there are four pairs

of send and receive transfers. Comparing those
costs, we find the following trade-off.

8(λ+ nβ/
√
p) < 4(λ+ nβ)⇒

n >
λ

(1− 2/
√
p)β

If there are 64 processors and λ = 50β, the
trade-off point at which the 2D node mapping
and block-oriented data distribution should be
superior appears to be a 70×70 matrix because
n > 66.6̇.
If users do not know the exact data size, they

may change the communication behavior from
Fig. 5 to Fig. 6. This change can occur when
they know the exact data size and do not know
the environment parameter β and λ. Moreover,
there exists some environments are difficult for
showing the formulated performance.
The textual gap caused by this change is not

so small. In particular, increasing the number
of node ID dimensions generates large textual
changes. However, the GRIX system only re-
quires users to perform mouse operations on
the canvas.
In Fig. 5, generated parameter stride[] is

int stride[2] = {-1, 1};

and the node to send is as follows.

(SPMD_nprocs + stride[i] + SPMD_nprocs)

% SPMD_nprocs

The system provides the following advanced
functions for a 2D node ID such as shown in
Fig. 6. The system provides a 2D array in
order to access the nodes mapped with the 2D
ID. Most parallel computing environments pro-
vide scalar variables for processors’ ID. The
correspondence between the 2D array and the
scalar variables is provided by the following
code, assigning 16 nodes (the scalar variables
are 0 to 15) on a 4× 4 mesh map.

int origin = 0

int ncolumns = 4, nrows = 4;

int procID[ncolumns][nrows];

for (i = 0; i < ncolumns; i++)

for (j = 0; j < nrows; j++)

procID[i][j] = origin + i * nrows + j;

Current indexes of array procID[][] can be
accessed by the following code.

int x_procID = SPMD_procnum / ncolumns;

int y_procID = SPMD_procnum % nrows;

Because of the change of distance from
scalar variables to vector variables, the array
stride[] has one more dimension. In Fig. 5,
stride[] is as follows.

int stride[2] = {-1, 1};

In Fig. 6, the distance array stride[][] is as
follows.

int stride[4][2] = {{-1, 0}, {0, -1}, {0, 1},

{1, 0}};

Furthermore, the send node ID can be found
by determining the distance in each index of
procID[][] such as following.

procID[(x_procID + stride[i][0] + ncolumns)

% ncolumns][(y_procID + stride[i][1]

+ nrows) % nrows]

The receive node ID is determined in the
same way as follows.

procID[(x_procID - stride[i][0] + ncolumns)

% ncolumns][(y_procID - stride[i][1]

+ nrows) % nrows]

The system provides textual changes and re-
duces users’ trial and error work.

6 Related Work

There are some GUI systems for parallel com-
puting. P. Newton and J. C. Browne pro-
posed CODE [6], which is a visual parallel-
programming language. G. A. Geist proposes
HeNCE [7], which is also a visual parallel-
programming language. Newton compared
their characteristics in reference [8]. We focus
on interprocessor communications in the GRIX
system because it represents the most charac-
teristic and difficult point of message-passing
parallel programs.

XPVM [9] is a GUI system for controlling
and visualizing the PVM programs. GRIX and
XPVM have the same characteristics for con-
trolling interprocessor communications, but
XPVM is designed for run-time environments,
not for editing programs.

7 Conclusion

There are many implementation methods for
coding interprocessor communications, but
they tend to be complex. Visual programming
has great potential for simplifying such difficult
programming. We proposed the GRIX system,
a visual programming system for simplifying
the programming of interprocessor communi-
cations. The visual interface specified for the
input of interprocessor communications allows
users to input such communications intuitively.
Also, GRIX can free programmers from com-
plicated tasks and the need to be familiar with
many complex interprocessor communications
procedures. Moreover, it can help them in both
one-time coding and performance tuning trial
and error.

GRIX will become a more effective system
when combined with existing textual editors.

References

[1] Y. Sakayori, M. Miura, and J. Tanaka. Pro-
gramming environment specified for inter-
processor communications based on graph-
ical user interface. In Proceedings of the

International Conference on Parallel and
Distributed Processing Techniques and Ap-
plications, pages 2779–2785, June 2000.

[2] A. Geist, A. Beguelin, J. Dongarra,
W. Jiang, R. Mancheck, and V. Sunderam.
PVM. The MIT Press, 1994.

[3] W. Gropp, E. Lusk, and A. Skjellum. US-
ING MPI. The MIT Press, 1994.

[4] B. A. Mayers. Taxonomies of visual pro-
gramming and program visualization. In
Journal of Visual Language and Comput-
ing, 1(1):, pages 97–123, 1990.

[5] M. J. Quinn. PARALLEL COMPUTING
Theory and Practice. MacGraw-Hill, 1994.

[6] P. Newton and J. C. Browne. The code 2.0
graphical parallel programming language.
In Proceedings of ACM International Con-
ference on Supercomputing, July 1992.

[7] A. Beguelin, J. J. Dongarra, G. A. Geist,
R. Manchek, and V. S. Sunderam. Graph-
ical development tools for network-based
concurrent supercomputing. In Proceedings
of Supercomputing 91, pages 435–444, 1991.

[8] P. Newton. Visual programming and par-
allel computing. Delivered at Workshop on
Environments and Tools for Parallel Scien-
tificComputing, May 1994.

[9] G. A. Geist, A. Beguelin, J. J. Dongarra,
W. Jiang, R. Manchek, and V. S. Sun-
deram. Pvm 3 users guide and refer-
ence manual. Technical report, Oak Ridge
National Laboratory, 1993. ORNL/TM-
12187.

