
Programming Environment Specified for Interprocessor

Communications Based on Graphical User Interface

Yasutaka SAKAYORI, Motoki MIURA and Jiro TANAKA
Institute of Information Sciences and Electronics,

University of Tsukuba
Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573 Japan

Abstract GRIX system, which is a visual pro-

gramming system specified for interprocessor com-

munications in parallel computing, is proposed in

this paper. In general, the scheduling of interpro-

cessor communications during constructing paral-

lel programs is the most difficult and important job

in order to realize its high performance. GRIX

brings users easy scheduling and intuitive realiza-

tion of interprocessor communications because of

its GUI based operations. Moreover, by automatic

code generation by GRIX system, users do not need

to know about the specifications of parallel program-

ming like PVM and MPI. All of users have to know

is the rules of figured images and operations on the

GRIX window. The system outline and ,especially,

its GUI based operations are described in this pa-

per.

Keywords: Visual Programming System, Interpro-
cessor Communications and Parallel Programs

1 Introduction

GRIX system [1, 2], which is a visual pro-
gramming system specified for interprocessor
communications appearing in programs for
Message-Passing parallel computing, is pro-
posed in this paper. The aim of GRIX is to
realize effective interprocessor communications
and to reduce users’ jobs by using visual input
instead of complex input with textual specifi-
cations.

1.1 Background

The parallel computing architectures can be
classified by its characteristics, the exam-
ples are multiple workstations connected by
LAN(Local Area Network) and a single com-
puter including multiple processors. The
peak performance of the parallel computers es-
pecially called massively parallel computers,
which include hundreds or thousands proces-
sors, reaches hundreds G-flops or several T-
flops. But the peak performance is appeared in
the case of the computing which have no com-
puting loss in all processors and, moreover, no
communications among processors. The real
applications can not reach to the peak perfor-
mance because of interprocessor communica-
tions, cache miss and so on. The serious deteri-
oration of the performance is invoked by kinds
of the program structure. This phenomenon
commonly appears on all parallel computing
architectures.

Especially, programmers must pay large
attention for interprocessor communications
when construct parallel programs. The cost
of interprocessor communications is the bot-
tleneck of computing. Moreover, they bring
barrier synchronizations in some cases. Inef-
ficient coding brings frequent barrier synchro-
nizations and the computing loss from the peak
performance will be large.

1.2 Motivation

There exists lots of means for coding the sen-
tences of interprocessor communications, like

PVM [3], MPI [4] and native functions imple-
mented only for each computers. Those specifi-
cations show a tendency to be complex because
we require high performance of execution. One
of our emphasizing point is those complexities
which bring confusion should be eliminated.
For instance, in order to realize the most sim-
ple communication, which is a pair of send
and receive, by using PVM functions, program-
mers have to complete four procedures at least,
packing data (ex. pvm_pkint), sending data
(ex. pvm_send), receiving data (ex. pvm_recv)
and unpacking data (ex. pvm_upkint). More-
over, some variables included in each function
must be complex because of bringing high per-
formance. This tendency must be strengthened
at more native environments.

We insists that forcing programmers to learn
the meaning of difficult functions, especially
unessential ones for interprocessor communi-
cations like memory mapping, is not desirable.
In order to release programmers from com-
plex specifications of interprocessor communi-
cations, we have selected Visual Programming
method [5]. Visual Programming method is
the programming form using the visual im-
ages like icons, figures, animations and so on.
This interface brings users more intuitive un-
derstanding of the interprocessor communica-
tions. Users only need to consider the in-
tuitive information like “who (which process-
ing elements)”, “where (which address space)”,
“what (which data)” and “how (like blocking
and non-blocking).” If the system automati-
cally generates the actual code of PVM and
MPI, users do not have to understand their de-
tailed specifications of each library procedures.
Moreover, by adding the scheduling algorithm,
users can input any communication patterns.

2 Visual Programming Sys-
tem GRIX

GRIX is used in the case if the interproces-
sor communications appears in SPMD (Sin-
gle Program / Multiple Data) programming.
GRIX has the following four features: in-

put based on GUI (Graphical User Interface),
highly portable optimization technique, GUI
output of the optimization result, and code
generation corresponded to any parallel com-
puting environments. It has become more in-
tuitive for programmers to input communica-
tions because of GUI. The optimization which
has high portability has made possible to gen-
erate the actual codes corresponded to any en-
vironments. The graphical output of the result
of optimization enables users to realize the ac-
tual code intuitively and support in the pro-
gram debugging.

GUI ENGINE

OPTIMIZATION
 ENGINE

CODE GENERATION
 ENGINE

Figure 1: System Structure of GRIX

GRIX system can be classified into three
subsystems: GUI Engine, Optimization En-
gine and Code Generation Engine (Figure 1).
GUI Engine changes the input information
from the users into the file which can be ex-
ecuted in Optimization Engine. Optimization
Engine changes the communications provided
from the file into the one of the faster to
communicate and easier to generate the ac-
tual code. The modified information is writ-
ten into two files, one is for the graphical out-
put and the other is for code generation. GUI
Engine shows the modified information graph-
ically. Graphical output is for the purpose of
intuitive realization of optimizations and can
also help users during their debugging works.
The file for code generation is used by Code
Generation Engine in order to generate the ac-
tual code for each environment automatically.
Code generation for each environment can be
realized by preparing corresponding transla-
tor.

3 Interface Specified for Inter-
processor Communications

We have paid attention to the viewpoint of the
users, when they input the send-receive rela-
tionships. We explain the visual interface of
GRIX with the most basic example assuming
the input of 1-dimensional node ID (We call
the physical processor represented on the GUI
system “node”).

3.1 Input from Absolute Viewpoint

As the one of the viewpoint, we have thought
about the case that users already know the
number of processors and they input the re-
lationships in advance. For instance, it is the
case that the programmer uses the single com-
puter including multiple processors, like mas-
sively parallel computers (Figure 2), and he
wants to use the actual ID of processors which
have been assigned by each environment, like
“The processor 2 sends the data toward the pro-
cessor 5.” We call this viewpoint “Absolute
Viewpoint.”

Figure 2: Absolute Viewpoint

The initial window (left of Figure 3) appears
by informing the system of the number of show-
ing nodes. In this window, both of the send-
node and the receive-node are represented as
circles. The nodes lined up vertically mean the
set of processors, the two nodes aligned on the
horizontal line represent the same processor:

the left one is a send-node and the right one
is a receive-node. The number in the left of
each send node shows the ID of its processor,
which is 0-origin. The user describes the rela-
tionship by drawing arrows. The relationships
between nodes are shown as arrows. The most
basic operation is dragging a mouse from the
send-node to the receive-node. The user can
describe any relationship among nodes natu-
rally (right of Figure 3).

Initial State After the Input

Figure 3: Input from Absolute Viewpoint

3.1.1 Advanced Operations for Fre-
quent Communication Patterns

Though the user can describe every type of re-
lationship by using this operation, he has to
draw the arrows one by one. Therefore, we
implement some multiple-arrow drawing oper-
ations which help the users input three typi-
cal communications like Broadcast, All-to-All
Broadcast and Shift. In the case of the input
of 1-to-multiple communications like Broad-
cast and Scatter, the user selects 1 send node
and multiple receive nodes at first (upper left
of Figure 4: selected nodes change into em-
phasized color). Then, by selecting existence
order from the menu bar or typing established
shortcut key (right of Figure 4), the system de-
scribes all arrows for selected nodes (lower left
of Figure 4).

While the input with Absolute Viewpoint,
user can also use the advanced operation for

Selecting Nodes

Order from Menu or
Shortcut Key

Drawing

Figure 4: Advanced Operation for Scatter

the input of All-to-All Broadcast and Shift
transfers. First, the user selects multiple send
nodes (upper left of Figure 5). With the input
of the shortcut key, the system describes the
arrows of All-to-All Broadcast (upper right of
Figure 5). With the once more input of the
shortcut key, the system changes the arrows
into the one of Shift transfer whose stride is +1.
By the repetition of the input of the shortcut
key, the stride of Shift transfer is incremented.
If there exists no more stride, the window is
returned to the initial state. The describing of
All-to-All Broadcast is also available by the se-
lecting ‘Link → all-to-all’ after node def-
inition (upper left to upper right of Figure 5).
Similarly, the Shift transfers are available by
selecting ‘Link → shift’ and defining the
stride (center of Figure 5).

We have implemented the advanced opera-
tion for Unlink which clears the arrows con-
nected to existence node. This operation is
completed by selecting the existence one node
and ordering with ‘Link → unlink’ (Figure
6). Those advanced operations bring more
rapid input by omitting monotonous repeti-
tion.

Initial State

or Press Shortcut Key

Shortcut Key

+1-1

+n: input the stride into the dialog

: mouse operations

: keyboard operations

Shortcut Key

Shortcut Key

Shortcut Key

Shortcut Key

Figure 5: Advanced Operation for All-to-All
Broadcast

select

unlink

Figure 6: Unlink

3.2 Input from Relative Viewpoint

In contrast to Absolute Viewpoint, the user
frequently images with the relative relation-
ships among processors. This is often hap-
pened when the programmer uses the multi-
ple workstations connected by LAN. For in-
stance, it is one of the Scatter image like “the
processors whose ID are even number send the
data to the processors which have the -3,-1,+2
distance from them.” In this viewpoint, users
construct the communications with the notice
of the movement in existence processors. We
call this viewpoint “Relative Viewpoint” (Fig-
ure 7).

Local Area Network

Distance: -1 0 +1 +2

Figure 7: Relative Viewpoint

Explaining how to input this example, at
first, user must inform the system of the num-
ber of nodes which is needed to represent all
the relative processors (in this example, it is 6).
The upper left of Figure 8 is the initial window
with 6 nodes. In this window user selects one
node which is the center of viewpoint, we call
the node Owner, and the system paints it with
emphasized color and shows the distance in the
left of nodes (upper right of Figure 8). If the
user changes the owner, the value of distance
shown in the left of the nodes is rewritten into
the new value. Afterward, user describes the
arrows with the same operations of Absolute
Viewpoint (lower left of Figure 8).
There remains the job of defining the con-

dition of Owner. In this example, the condi-

After selecting Owner,
the system shows the relative
distance from it.

Initial State

Input with Mouse Dragging

Definition of the Owner Condition

Figure 8: Input with Relative Viewpoint

tion of the active nodes is “ID is even num-
ber.” Defining the condition starts from select-
ing ‘Edit→ define active nodes’ from the
menu. The choices prepared as the default are
‘all’ (all nodes are active), ‘1 node’ (ex-
istence 1 node is active), ‘even’ (the nodes
which have even ID are active), ‘odd’ (the
nodes which have odd ID are active) and
‘customize’ (active nodes are defined by the
user). The input of this example is completed
by selecting ‘even’ (lower left of Figure 3).
The user who wants to define another condi-
tion can select ‘customize’ and input the sen-
tence of the definition in the dialog (this dialog
also appears when user selects ‘1 node’). The
system allows users to input the constant, the
variable, the four basic operations of arithmetic
and logical operations (ex. ((id/2)%2) == 0 :
id is the variable of own node ID). Definition
of the condition can be executed not only after
the input of communication relationships but
also before that. Without the definition of the
condition, the system judges the condition as
“all active.” In the case of Gather, it is pos-

sible to input it by selecting Owner from the
receive nodes. In the case of the input with this
viewpoint, the system does not allow users to
describe the arrow which is not connected with
Owner. The advanced operations like the case
of Absolute Viewpoint can be used while keep-
ing that restriction.

4 Optimization

GRIX optimizes the inputted communication
relationships in order to improve the efficiency.
The concept of optimization is to make the
communication pattern which is “fast to com-
municate” and “easy to generate” the actual
code. The principal jobs of Optimization En-
gine are as follows.

• Removing communication conflicts

• Reducing the number of communication
by memory copying

• Generating conditional sentences of active
(or inactive) nodes

The detail of those optimization is shown in
bibliography [1, 2].

5 Code Generation

GRIX involves the subsystem which gener-
ates the actual code automatically in order to
deal with the recent various environments, like
PVM and MPI. This code generation removes
coding with the knowledge of those specifica-
tions and enables the programmer to write the
code with the intuitive manner. Moreover it is
possible to acquire the code for various envi-
ronments with their corresponding translation
engines. We have prepared the code generation
subsystem for PVM at first. For instance, the
actual code of Figure 8 which is the input with
Relative Viewpoint is following Table 1.
The followings are simple explanations of

variable names written in the program.

• SPMD_nprocs:the number of Virtual Pro-
cessors(VP)

Table 1: Actual Code with Relative Viewpoint

int stride[3] = "-3, -1, 2";

int skip = 0;

/*---------- SEND ----------*/

if ((SPMD_procnum % 2) == 0){

for (i = 0; i < 3; i++){

pvm_pkbyte(&send_area, datasize, 1);

pvm_send(SPMD_tid[(SPMD_procnum +

SPMD_nprocs + stride[i])

% SPMD_nprocs], i);

}

}

/*---------- RECV ----------*/

for (i = 0; i < 3; i++){

if ((sender = SPMD_procnum - stride[i]) < 0)

sender += SPMD_nprocs;

else if (sender >= SPMD_nprocs)

sender -= SPMD_nprocs;

if ((sender % 2) == 0){

recv_area += datasize * skip;

pvm_recv(SPMD_tid[sender], i);

pvm_upkbyte(&recv_area, datasize, 1);

skip++;

}

}

• SPMD_procnum:the VP number of my-
self(zero origin)

• SPMD_tids:the array of tid those indexes
are VP numbers

6 Related Works

GRIX is a new GUI tool for parallel com-
puting because we have implemented it spec-
ified for the input of interprocessor commu-
nications. There exists some GUI systems
for parallel computing. P. Newton and J.
C. Browne propose CODE [6], which is a vi-
sual parallel programming language. G. A.
Geist proposes HeNCE [8], it is also the vi-
sual parallel programming language. New-
ton has compared their characteristics in the
bibliography [7]. Those visual programming
languages force users to write the program
on their GUI windows. The visual input
for the sentences which is not redundant,
like the normal sentence of basic operations
C[i,j] = C[i,j] + A[i,k] * B[k,j]; , has
some waists. We insist that the visual input for

the redundant points is most effective and the
redundant point in the parallel program is the
sentence for interprocessor communications.

XPVM [9] is the GUI system in order to con-
trol and visualize the PVM programs. GRIX
and XPVM have same characteristics on the
point of controlling interprocessor communica-
tions. But GRIX is not aiming only on PVM
but also the multiple plat home for executing
interprocessor communications. Performance
monitors which visualize the load performance
of each processor, are also the GUI systems
for parallel computing. ParaGraph [10] is the
one of performance monitors. Though perfor-
mance monitors are only for output, GRIX has
the functions of both input and output.

7 Conclusion

There exists lots of implementation methods to
code interprocessor communications and they
shows a tendency to be complex. Visual pro-
gramming method has large possibility to make
such a difficult programming more smooth. We
have proposed the GRIX system, the visual
programming system for making the program-
ming of interprocessor communications less dif-
ficulty. Because of the GUI system, GRIX is
the efficient environment to realize the faster
interprocessor communications. Adopting the
pictorial implementation, we do not need to
use complex texts to the implementation. We
can apply intuitive graphical charts to the im-
plementation. GRIX can release programmers
from complicated works without being familiar
with a lot of complex procedures about inter-
processor communications.

GRIX will be more effective and more inter-
active system by jointing the existing textual
editors.

References

[1] Y. Sakayori, M. Miura and J. Tanaka,
GRIX: Visual Programming System for
Interprocessor Communications, Proceed-
ings of the 10th IASTED International

Conference PDCS ’98, pp.503-508, Oct.
1998

[2] Y. Sakayori, GRIX: The Proposal of Vi-
sual Programming System Specified for
Interprocessor Communications, Master
Thesis, University of Tsukuba, Feb. 1999
(in Japanese, English extended abstract is
available)

[3] A. Geist, A. Beguelin, J. Dongarra, W.
Jiang, R. Mancheck and V. Sunderam,
PVM, The MIT Press, 1994

[4] W. Gropp, E. Lusk and A. Skjellum, US-
ING MPI, The MIT Press, 1994

[5] B. A. Mayers, Taxonomies of Visual Pro-
gramming and Programming Visualiza-
tion, Journal of Visual Language and
Computing, 1(1):97-123, 1990

[6] P. Newton and J. C. Browne, The
CODE 2.0 Graphical Parallel Program-
ming Language, Proceedings of ACM In-
ternational Conference on Supercomput-
ing, July, 1992

[7] P. Newton, Visual Programming and Par-
allel Computing, Delivered at Workshop
on Environments and Tools for Parallel
Scientific Computing, May, 1994

[8] A. Beguelin, J. J. Dongarra, G. A. Geist,
R. Manchek, and V. S. Sunderam, Graphi-
cal Development Tools for Network-Based
Concurrent Supercomputing, Proceedings
of Supercomputing 91, pp.435-444, 1991

[9] G. A. Geist, A. Beguelin, J. J. Dongarra,
W. Jiang, R. Manchek, and V. S. Sun-
deram, PVM 3 Users Guide and Reference
Manual, Technical Report ORNL/TM-
12187, Oak Ridge National Laboratory,
1993

[10] M. T.Heath, ParaGraph: A Tool for Visu-
alizing Performance of Parallel Programs,
Univ of Illinois, Jennifer Etheridge Fin-
ger, Oak Ridge National Laboratory, June
1994

