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Abstract. Bodyweight training has grown in popularity; it is desirable
to be fit and strong. However, training can be dangerous if performed
incorrectly. Several systems are used to correct pose during training.
However, most require wearable sensors that may interfere with training,
or an expensive depth camera. We offer a new form of training support
using a smartphone camera and a server. We use a verbal interface to
help users to correct their pose and to encourage them. We describe our
new system and experimentally evaluate it.
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1 Introduction

Bodyweight training is any work performed against gravity, and includes
pushups, pullups, and squats used to increase strength and stamina [1]. Body-
weight training has grown in popularity because it requires minimal or no equip-
ment. However, errors in pose or training intensity compromise the possible
benefits and may negatively affect the joints. To avoid injury, it is desirable to
observe and evaluate poses assumed during training.

Few convenient and inexpensive methods are available to correct pose and
ensure appropriate exercise intensity. Support systems using wearable sensors or
depth cameras (such as Microsoft Kinect) are expensive. Body-attached sensors
may interfere with training.

Here, we develop a new bodyweight training support system using only a
smartphone and a server; users receive verbal corrections and encouragement
during training. We use OpenPose [2] to obtain skeletal data from RGB (Red–
Green–Blue) images taken by the smartphone camera; these data aid pose recog-
nition and correction. Feedback is aural (delivered by the smartphone). We con-
structed a prototype and evaluated it experimentally.

2 Related Work

Training support is a popular research topic. Depth cameras, wearable sensors,
RFID (Radio Frequency IDentification) technologies, and RGB cameras have
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been used to detect user movements during training. For example, Eyes-Free
Yoga [3] (an accessible yoga exergame) uses Microsoft Kinect to enable low– or
no–vision subjects to correct their poses based on skeletal tracking and verbal
feedback. Lee et al. [4] developed a rehabilitation system based on the Kinect
sensor to assist patients with movement disorders to perform “Tai Chi” exercises
at home. The FitCoach [5] is a virtual fitness coach using an accelerometer and
a gyroscope powered by a smartphone or smartwatch to evaluate the quality of
user exercises. The differences in body movement strength and speed between
exercise repetitions are evaluated. RunBuddy, developed by Hao et al. [6], mea-
sures the breathing rhythm during running using an acceleration sensor and a
wireless earphone connected to a smartphone. The physiological state can be
estimated by reference to the breathing rhythm. The TTBA, an RFID-based
motion tracking system proposed by Ding et al. [7], uses a single dumbbell tag
to recognize vertical and circular motion. Recently, an RGB camera has been
used to read two-dimensional gestures and thus support training. Qiao et al. [8]
developed a real-time gesture grading system employing a single RGB camera.
The differences between the standard and user joint trajectories are compared
and the gesture grade calculated and shown on a screen.

Unlike previous works, we focus on low cost and convenience; we develop
a voice-based bodyweight training support system using a smartphone camera.
We deliver real-time verbal feedback to users.

3 System Overview and Implementation

We use the GUI (Graphical User Interface) smartphone application to support
bodyweight training (Fig. 1); we deliver verbal corrections and encouragement
via a smartphone. For example, in Fig. 2, user pose (a) is captured and evaluated
during training. The verbal correction is “Do not bend your knee”. If the pose
is then corrected, the user is told the time for which s/he is required to assume
a high-quality pose. Successful training in a certain pose is followed by: “Good
job, go to the next pose”. Before training commences, smartphone imaging dur-
ing training must be established. Pose support requires whole-body images; the
smartphone must thus be 2 to 3 m distant from the user. Users could also con-
firm the correct poses through the description using texts and figures in the GUI
application before training.

Figure 3 shows the system architecture; the steps are: Attribute Pose Data
Acquisition, Pose Recognition, and Pose Evaluation. The smartphone camera
images poses assumed during training, evaluates them with the aid of the server,
and sends verbal feedback to the user. We used OpenPose (a real-time, two-
dimensional pose estimation method) to track the skeleton in RGB images;
OpenPose recognizes body joints and yields their X and Y positions; we derived
rules for training pose recognition and evaluation. The attribute pose data are
the distances from the joints to the center of the body and the angles between
the vectors.

We constructed a prototype. The smartphone was a Samsung Galaxy S10
running Android Ver. 9; the software prototype was implemented using QT
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Fig. 1. Use scene.

for Android. We used Python API to run OpenPose in the server; all images
were analyzed by NVIDA GeForce RTX 2060 at a speed of about 16.0 fps. The
smartphone and the server were connected to the same local area network; a
UDP connection was used to transfer images.

Fig. 2. The four poses used in the evaluation experiment, in the order in which they
were performed.

Fig. 3. The system architecture.
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3.1 Attribute Pose Data Acquisition

We used OpenPose to acquire skeletal coordinates. OpenPose accepts RGB
image inputs, and outputs the two-dimensional positions of 25 key anatomical
points. We used the coordinates of 15 key points on the trunk (Fig. 4) to calculate
attribute pose data (joint distances and angles between vectors); all data were
employed for pose recognition. For pose evaluation, we used only pose-specific
angles, thus, not all the angles. The joint distances and the between-vector angles
used are shown in Fig. 4. The distances between the elbows, arms, knees, and
ankles, and the center of the body, are indicated by red lines. We calculated 12
different angles: (n0, n1), (n1, n2), (n2, n3), (n0, n4), (n4, n5), (n5, n6), (n7, n8),
(n8, n9), (n9, n10), (n7, n11), (n11, n12), (n12, n13).

3.2 Pose Recognition

Pose recognition employed the k-nearest neighbor algorithm [9], which is a simple
but very accurate non-parametric method. The joint distances and between-
vector angles served as the attributes.

3.3 Pose Evaluation

We evaluated pose accuracy, the time for which the pose was maintained, and
the number of pose repetitions. For example, for pose (a) of Fig. 2, evaluation
proceeds as follows:

Fig. 4. Attribute pose data.
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1. Check whether the angle between the thigh and the back (n7, n9) is 90◦.
2. Check whether the angle between the shin and the thigh (n9, n10) is 180◦.
3. If pose (a) was correct, was it maintained for 10 s?
4. Was pose (a) repeated four times?

In the implementation, we considered the recognition accuracy of OpenPose
and set angle ranges.

4 Experiment 1: OpenPose Recognition Accuracy

To verify OpenPose recognition accuracy in terms of supporting bodyweight
training, we performed a preliminary experiment using OpenPose to analyze
images taken during training.

4.1 Participants

We recruited three graduate students (two males and one females) aged 24 to
27 years, of height 172 to 185 cm.

4.2 Procedure

The participants assumed bodyweight training poses and images were taken
during training. We used OpenPose to identify and display key bodily points;
we checked whether all points were correctly detected and displayed.

The smartphone camera was positioned vertically 2 and 3 m in front the
participants. The three participants assumed six poses at two different distances;
we collected 180 whole-body images totally. The participants first assumed three
poses, including pose (c) of Fig. 2, while facing the camera. Next, they assumed
three poses, including poses (a) and (b) of Fig. 2, with the camera to their right.

4.3 Results and Discussion

We calculated the percentage of the each key point that could be detected cor-
rectly in the 180 images. The recognition accuracies of the three poses when
facing the camera are shown in Table 1. The accuracies when the camera was to
the right are listed in Tables 2 and 3.

Recognition accuracy was high when participants faced the camera. When
the camera was on the right, key left-side points were poorly detected because
the camera could not see them. We assumed that bodyweight training poses
were symmetrical; thus coordinates of the left side could be calculated and very
accurate data could be obtained.

In addition, we also found that when the camera was closer to the participants
(who then tended to fill the image), recognition accuracy decreased.
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Table 1. The recognition accuracy of the three poses evaluated from the front.

Distance/m Head Shoulder Elbow Wrist Hip Knee Ankle Average

2 100 100 100 97.8 100 100 96.7 99.2

3 100 100 100 100 100 100 100 100

Table 2. The right side recognition accuracy of the three poses evaluated from the
right.

Distance/m Head Center r-Sho r-Elb r-Wri r-Hip r-Kne r-Ank Ave

2 100 83.3 100 90 90 70 80 53.3 83.3

3 100 100 100 100 100 96.7 100 100 99.6

5 Experiment 2: System Evaluation

We explored whether the proposed system delivered useful and convenient train-
ing support.

Table 3. The left side recognition accuracy of the three poses evaluated from the right.

Distance/m l-Sho l-Elb l-Wri l-Hip l-Kne l-Ank Ave

2 90 0 0 50 46.7 26.7 35.6

3 100 0 0 100 66.7 53.3 53.3

5.1 Participants

We recruited eight graduate students (P1–P8) (five males and three females
between the ages of 23 and 27 years). Since the proposed body-weight train-
ing system was designed for the beginners in bodyweight training, all of the
participants had little or no experience in bodyweight training.

5.2 Procedure

We first explained the purpose and flow of the experiment. We asked each subject
to confirm that s/he was in good physical condition; we wished to be sure that
all training tasks would be completed. All participants performed four types
of bodyweight training (Fig. 2). Each training exercise required about 10 s; we
scheduled four repetitions. The entire process required about 8 min. Figure 5
shows the experimental conditions during evaluation.

The flow of the experiment and the specific support method are described
using the pose (a) in Fig. 2 as an example. Given the limitations of OpenPose,
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we accepted angles from 80◦ to 100◦ as 90◦ and 170◦ to 190◦ as 180◦. Each par-
ticipant pressed the GUI start button. The words: “Please set the smartphone”
were spoken. Each participant trained while learning how to assume pose (a). If
the pose was correct, a voice began to count the seconds. If the angle between
the thigh and the back was incorrect, the voice said: “Please raise your foot”. If
the angle between the thigh and shin was incorrect, the voice said: “Do not bend
your knees”. If the pose remained incorrect, the second-count ceased until the
user correctly adjusted his/her pose. After correction, the second-count recom-
menced. As each set was completed, the words “One set”, “Two sets”, “Two sets
remaining”, and “The last set” were vocalized. After all sets were completed,
the voice said: “Good job, go to the next pose” and the user moved on. When all
training was completed, the experiment was terminated using the words: “Good
job, the training is finished”.

After the experiment was completed, a questionnaire was administered
(Table 4).

5.3 Results

The answers to questions Q1–Q5 are listed in Table 5. The answers to questions
Q6 and Q7 were as follows (translated from the Japanese):

P1: After becoming accustomed to all of the training actions, I think that the
voice-only training support is convenient and effective.
P2: The proposed system very effectively supports bodyweight training, but I want
more types of supported training actions.
P3: It is convenient because I can use it at home, but it seems that identification
accuracy is poor. I wonder if training is in fact effectively supported. Also, the
system cannot be used in a small room.
P4: It is very important to correct posture, but the whole body must be pho-
tographed; the system cannot be used in a small room.

Table 4. The questionnaire.

No Questions Answers

Q1 Your gender and age Free description

Q2 Do you usually do bodyweight training?
5·4·3·2·1

Always ⇔ Never

Q3 The system could support bodyweight training
5·4·3·2·1

Strongly agree ⇔ Strongly disagree

Q4 The system was convenient
5·4·3·2·1

Strongly agree ⇔ Strongly disagree

Q5 I want to use the system again
5·4·3·2·1

Strongly agree ⇔ Strongly disagree

Q6 Do you have any advice about this system Free description

Q7 Please tell us your sense of use Free description
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Table 5. The questionnaire results.

Q1 Q2 Q3 Q4 Q5

P1 23 Female 2 5 5 5

P2 23 Female 3 5 5 5

P3 26 Male 3 3 3 3

P4 25 Male 3 5 4 4

P5 24 Male 2 5 4 4

P6 24 Female 1 4 4 5

P7 25 Male 3 4 4 4

P8 27 Male 1 4 5 4

Average 2.25 4.38 4.25 4.25

Fig. 5. Experimental conditions during evaluation.

P5: The voice can help me correct poses and I don’t need to look at the screen, so
it is useful. It would be better if there was a function to score after the training
was completed.
P6: The verbal corrections increase my desire to assume a correct posture. Even
when I become tired, it is easy to continue training a few seconds after the verbal
notification.
P7: More training actions would be good. Also, the correct posture ranges should
be adjusted by a user depending on the individual physical situation.
P8: Only simple postures are supported. It is difficult to support more complex
postures.
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5.4 Discussion

On Q3, all participants awarded scores of 4 or more (average 4.38), indicating
that posture evaluation and correction were effective. Q4 and Q5 explored sys-
tem convenience; the average score was 4.25, indicating the system was easy to
use. The answers to Q6 and Q7 showed that it was difficult to support more
complex training poses; this is a topic for the future. The voices should convey
more information. A video offering more specific descriptions of poses before
training might be useful. Visual and verbal feedback could be combined. An
overall training score was requested; we will soon implement this to encourage
users to keep exercising. The score will be based on the differences between the
user and standard poses; the training time; and the number of pose repetitions.
As a user scores more highly, rewards will be given to enhance motivation.

Different voices should be used for correction. Also, the current verbal feed-
back works for poses with long, but not short, hold times. Brief comments are
required to correct short wrong poses. Also, if the user found it difficult to finish
a pose, that pose could not be skipped. The system must deliver feedback when a
user cannot complete his/her current training. We will ask the user if s/he finds
it difficult to complete the pose, and skip that pose if the answer is “Yes”. In
addition, there is a need to distinguish a wrong posture from the state of train-
ing cessation. Finally, we explored only posture evaluation; real-time posture
identification is required in future.

6 Conclusion

We present a voice-based, bodyweight training support system using a smart-
phone and a server. We used skeletal data from OpenPose for pose recognition,
evaluation, and correction. We developed a prototype and evaluated it experi-
mentally. The system was convenient and effective.

In future, we will improve the voices used, deliver more accurate pose correc-
tions, and enhance motivation. We will improve real-time recognition and finally
develop a system supporting all facets of bodyweight training.
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