
Realistic Program Visualization in CafePie

Tohru Ogawa and Jiro Tanaka

Institute of Information Sciences and Electronics

University of Tsukuba

Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573 Japan

WRKUX#VRIWODE�LV�WVXNXED�DF�MS and MLUR#�LV�WVXNXED�DF�MS

ABSTRACT
CafePie is a visual programming environment for

CafeOBJ, an algebraic specification language based on
term rewriting. CafePie shows term rewriting directly by
using two types of visualizations: animated cartoon-like
and Obi-shaped. A more abstract visualization schema is
necessary instead of program understanding at the
programming language level. Therefore we investigate the
visualization schema, which uses more realistic
expressions.

Here we visualize term rewriting with more realistic
expressions by using figures, pictures and images. In
CafeOBJ, rewriting rules are called “equations.” An
equation is composed of operators and variables. We map
operators to realistic expressions so that equations are
expressed as transformations of realistic expressions. We
use visual transformation rules which give the program
pictorial expressions.

Keywords
Visual Programming, Specification Languages,
Computer Human Interaction

1. INTRODUCTION
A visual programming system (VPS) visualizes the

structures of programs in two or more dimensions using
visual expressions such as graphics, pictures and so on.
Much work has been carried out on visual programming
(Myers, 1990). It is important to reflect the user's view
about VPS. Most of users want to be able to frequently edit
and execute the programs. A VPS, in which program can be
edited and executed visually, is desired.

On the other hand, algebraic specification languages
(ASL) are specification languages which express the
models of the real world using elements such as sorts,
operators and equations. We assume specifications written
in ASL as programs. They are executable and the program
executions are performed using term rewriting.

We have already developed a visual programming system
CafePie(Ogawa and Tanaka, 1998a, 1998b; Ninomiya and
Tanaka, 1996) (Pictorial Interactive Editor for CafeOBJ)
for the algebraic specification language CafeOBJ
(Nakagawa et al., 1997). CafeOBJ specification consists of
module structures. Our system visualizes each module. We
use the direct-manipulation techniques for program editing.
Most of editing is performed with only the mouse. The
same visualization schema is used for both program editing
and execution. Since the program editing and execution are
performed in one window, program modifications are
reflected directly in program execution.

2. PROGRAM VISUALIZATION
The “visualization of program structure” means to

express the structure of a program using some pictorial or
graphical objects. Several program visualization systems,
such as PP[4], have already been proposed.

We visualize the program structures of CafeOBJ by
expressing the program elements with pictorial objects. We
call each pictorial object an “Icon.” We have chosen the
following primitive elements for CafeOBJ: Sort, Operator,
Variable and Equation. These elements are expressed as
specific icons on the screen.

We assume terms as the basic data structures of ASL. By
definition, a term is a variable or an operator, which can
have other terms as its arguments. On the other hand, the
relation between a sort and a term is like that of a container
and its contents. The representation of a sort should be
different from that of terms. We visualize a sort by a
rectangle and an element of a term by an oval. Further, to
distinguish operators and variables, we visualize an
operator as a pale blue oval and a variable as an orange
oval. It is important that these icons have colors. Users can
distinguish colored icons easily. We express sorts and
operators, which are the main elements of the module, by
bright colors and the other elements by dark colors. The
visualization rules, which are given by default in CafePie,

for these elements are shown below.

Sort Icon: We use a directed graph to describe the
implication relations of sorts in our CafePie system. Sorts
are represented using nodes and implication relations are
represented using arcs. Many ordered sorts are used in
CafeOBJ. Their relations mean implication. The
implication relations are often described with Ben's
diagram. This diagram is easy to understand as far as it is
used to describe simple relations, but it becomes difficult
when describing complicated relations (the left hand side
of Fig. 1).

Term Icon: Before considering operator or variable
representation, we consider the visualization of terms. We
express terms with tree structures. The components of the
term’s icons, i.e. an operator or a variable, are represented
using a node, and super-sub relations between the
components are represented using an edge (the right-hand
side of Fig. 1).

Fig. 1 Sort and Term Icons

Operator and Variable Icon: An operator, which has a
coarity sort and arguments (arities), is represented with a
pale blue oval and has a label for the operator name. The
labels of arities are arranged at the bottom part of the
operator. The label of coarity is arranged at the top part of
the operator. Arrows are drawn from arities to operator and
from operator to coarity. A variable is represented with the
orange oval, and the sort of the variable is represented at its
lower part (Fig. 2).

Fig. 2 Operator and Variable Icons

Equation Icon: An equation represents a term rewriting
rule. A label is arranged in the center of the equation. The
initial term is arranged on the bottom-left side of the label,
and the rewritten term is on the bottom-right side. To
represent a term rewriting rule, arrows from the left term to
the right term are drawn via the label (Fig. 3).

Fig. 3 Equation Icon

Module Field Icon: A program in CafeOBJ consists of
modules. A Module contains other primitive elements: Sort,
Operator, Variable, Equation. A Module is represented as a
gray rectangle called “Field Icon.” Users edit the module
definition on this special Icon.

3. THE SYSTEM
In CafePie, all program-editing operations are handled in

a uniform manner using direct-manipulation such as drag-
and-drop and double-clicks. Program editing and execution
are both performed in one window, which makes it possible
to execute the program during the editing phase (Ogawa
and Tanaka, 1998a).

The Process of programming in CafePie consists of the
following:

�� Make a module,
�� Declare sorts and relations between sorts on the

module,
�� Declare operators and variables on the module, and
�� Declare equations on the module.

A snapshot of CafePie is shown in Fig. 4. Assistant
Operation Part consists of buttons, and is used for
loading/saving a file, watching the help and so on. Text
Input Part is used to input the names of icons. Working
Part consists of New-Field and Module-Field. Users edit a
program in Working Part. New-Field is used to make a new
icon (such as sort, operator, variable and equation) on the
module. Module-Field shows the current module to edit.

The user pushes the File button to load the file
“stack.mod” (Program 1), which is a specification of
STACK written in CafeOBJ language, and then a visualized
program appears in Module Field of Working Part (Fig. 5).
The user can modify the program using drag-and-drop
operation.

Fig. 4 A snapshot of CafePie

Program 1 STACK specification in CafeOBJ

Program Execution

In CafeOBJ, program execution is carried out using term
rewriting. Our goal is visualizing the processes of term
rewriting to show the execution process in a more intuitive
way.

The execution process includes the following:

�� Make an initial term as input,
�� Send the initial term to the external CafeOBJ

interpreter,
�� Receive the execution result and make the tracing

process for each rewriting step from the received

data, and
�� Show the tracing process.

The term is edited on the Module-Field. Moving the
term onto the label of the module involves the program
execution. The process of the program execution is
carried out as follows. CafePie first sends the module
definitions to the interpreter and then queries the input
term to the interpreter. Finally CafePie receives the
execution trace as a result. The result is processed by
CafePie and is shown in the visualized form. Tracing
result consists of terms, which emphasizes the process of
reductions.

Fig. 5 A program visualized by CafePie

When CafePie gets the result, the input term is rewritten
to the next term. CafePie shows the terms one after another
like an animated cartoon. This is a dynamic representation
and suits to check the rewriting flow at a time. Fig. 6 shows
a process of term rewriting whose initial term is s(s(0)) +
s(s(s(0))) of the module SIMPLE-NAT[1,3] and rewritten
term is s(s(s(s(s(0))))).

Module TRIV { [Elt] }
Module STACK [X: TRIV] {
 [NeStack < Stack]
 signature {
 op empty : -> Stack { Constr }
 op push : Nat Stack -> NeStack { Constr }
 op pop : NeStack -> Stack
 op top : NeStack -> Elt
 }
 axioms {
 var S : Stack
 var E : Elt
 eq pop(push(E, S)) = S.
 eq top(push(E, S)) = E.
 }
}

Fig. 6 Process of term rewriting visualized like an animated

cartoon

After showing the last term, CafePie represents the
tracing diagram in Obi-shape. This is a static display and
suites to check one reduction process more closely. To let
the user know which equation is used for the reduction, the
equation label is represented between the subterms on
which the reduction is carried out. It is an effective
dynamic representation to appeal the term rewriting.

4. REALISTIC EXPRESSION
As explained above, CafePie can map directly the

program codes to graphical objects as shown in Fig. 5. The
process of term rewriting is visualized as tree structures
consisting of icons. For example, CafePie visualizes the
term

 push(E3:Elt, push(E2:Elt,
push(E1:Elt, push(E0:Elt, empty)))),

as shown in Fig. 7. These visualizations are difficult to
understand intuitively because CafePie uses only one-to-
one associations between the program code and the icons.
More realistic expressions of higher abstraction level are
desired.

Fig. 7 STACK structures in CafePie

Visual Transformation Rule

Here we propose to visualize term rewriting with more
realistic expressions, which use figures, pictures and
images. We call these expressions visual objects.
Conceptual images of the program need to be transmitted
to users without presenting the program code. We consider
the means of expressing actual objects. The actual object is
characterized by its property such as shape or behavior. We
pay attention to the shape. Therefore, we propose to use
visual transformation rules so that the user can customize
the shape of visual objects.

In CafePie, rewriting rules are called “equations.” An
equation is composed of operators and variables. There are
two kinds of operators. One is the constructor of the coarity
sort and the other is not. We call the former operator “C-
op” and the latter “NC-op.” In a term rewriting, the result
term consists of C-op. If a term has NC-op, it is not a result
term and it should be rewritten.

Users can map C-op to realistic expression for defining
visual transformation rules. For example, the operators
empty and push in the STACK specification are C-op. They
can be defined using visual transformation rules.

Users often imagine STACK structures as data structures
like piled-up packages. The operator empty is represented
with a rectangle (the right hand side of Fig. 8) instead of
the original visualization (the left hand side of Fig. 8).

Fig. 8 Visualization of the operator empty

The operator push is visualized like the right hand side of
Fig. 9. This figure means that the rectangle with Elt is
arranged at the upper part of Stack.

Fig. 9 Visualization of the operator push

NC-op has rewriting rules called “equations” because

terms, which have the operator, should be rewritten. These
equations can be expressed by using C-op’s realistic
expressions. We consider that NC-op is an action of term
rewriting.

The operator pop is NC-op. It has the equation
pop(push(E, S)) = S. The equation is visualized as shown
in the right hand of Fig. 10. Pop is shown as the label of the
arrow. It means an action. This figure means that the
STACK without the top element is drawn after the pop
action.

Fig. 10 Visualization of the operator pop

The operator top is also NC-op. It has the equation
top(push(E, S)) = E. This is defined like the right hand of
Fig. 11. This figure means that the top element of the
STACK is drawn after the top action.

Fig. 11 Visualization of the operator top

Defining Visual Transformation Rule
We have developed an environment, which can edit these
visual transformation rules on CafePie using the direct-
manipulation. In our approach, these rules are defined by
using no drawing action but a combination of visual
objects which have been prepared. Therefore, the user can
easily define the rules using the same paradigm as the
program editing.
The editing of the rules needs the following two steps:
preparing the visual objects for making the rules and
defining the geometrical relations between the objects.

�� Preparing the visual objects: the system has some
elementary figures such as rectangle and circle, and
the user can make use of some images from files. If
operator has arguments, the user can also use them
as visual objects.

�� Defining the geometrical relations: to define the
geometrical relations, the user creates a relation
between two objects repeatedly. The user can also
handle the related objects as one object.

The relation is given by the drag-and-drop operation.
Suppose there are two objects: A and B. The user moves
B toward A. When the user drops B onto A, dotted lines
appear around A as shown in Fig. 12. These lines show the
expected location of B. The location of B is selected
among any of the nine parts of A by default: the upper left
hand, the upper part, the upper-right hand, the left hand, the
center, the right hand, the lower-left hand, the lower part or
the lower-right hand (Fig. 12).

Fig. 12 Creating a relation between two objects

If B is dropped on the upper or lower part of A, B is
arranged to stick to A. If B is dropped on the right or left
side of A, they are also arranged to be close together. If B
is dropped in the diagonal part of A, B is placed on the
vertex of A.

The size of the dragged element is determined by the
position of B. If the user drops B in the center of A, the
size of B becomes smaller than A (the no.1 of Fig. 13). If B
is dropped in the left or right part of A, the height of B is
modified to have the same height as A (the no. 3 and 4 of
Fig. 13). If B is dropped in the upper or lower part of A, the
width of B is modified to have the same width as A (the no.
2 and 5 of Fig. 13). If B is dropped in the diagonal part of
A, the size of B is changed to be the same size of A (the no.
6,7,8 and 9 of Fig. 13).

Fig. 13 Arrangement plan between two objects

If the user wants to change the location or the size of B,
the user can modify these geometrical values by using
drag-and-drop.

Fig. 14 shows the process of defining the visual
transformation rules of the operator push shown in Fig. 9.

Fig. 14 Process of defining a visual transformation rule

First, the user makes a rectangle. Second, he moves the
argument Elt of push in the center part of the rectangle.
Third, he moves the argument Stack of push at the bottom
part of the rectangle with the argument Elt. And finally, the
visual transformation rule of push is defined. In this way,
these rules are also edited using the same paradigm of

program editing and are performed using drag-and-drop.

The Term Rewriting using Visual Transformation Rules
Users can edit terms by using the visual transformation

rules defined above. For example, the user substitutes the
term
 push(E0:Elt, empty)
for the variable S1:Stack of the term
 push(E3:Elt, push(E2:Elt, push(E1:Elt, S1:Stack)))
 (Fig. 15).

Fig. 15 Term editing using visual transformation rules(1)

After that, the term
 push(E3:Elt, push(E2:Elt, push(E1:Elt, S1:Stack)))
is changed to the result term
 push(E3:Elt, push(E2:Elt,
 push(E1:Elt, push(E0:Elt, empty)))).
This visualization corresponds to Fig. 7.

Fig. 16 shows editing a term which has NC-op. This
figure shows substituting the term
 push(E1:Elt, push(E0:Elt, empty))
for the variable NeStack of the term
 pop(NeStack).
After that, the term pop(NeStack) is also changed to the
term

 pop(push(E1:Elt, push(E0:Elt, empty))).

Fig. 16 Term editing using visual transformation rules(2)

In this way, terms can be edited using new visualization,
introduced by visual transformation rules, while keeping
up the operations paradigm of original editing.

Another Example
New visualization rules can be defined. For example, the

elements of Elt are five expressions shown in Fig. 17.

Fig. 17 Elements of Elt are five expressions

New visual transformation rules of these operators:
empty and push can also be defined. The left hand side of
Fig. 18 shows the new rule of the operator empty. This
figure means “No Exit” because the Exit door has broken
down. The right hand side of Fig. 18 shows the new rule of
the operator push. This figure means a person, who has a
face Elt, is rear of the Stack.

Fig. 18 Other visual transformation rules

Fig. 19 shows the term of the new visualization rules.
Each person has a different expression. Each person cannot
go forward because of the broken door. Only the person
who is at the tail of the line can move. This mechanism
also means the STACK structure. In this visualization,
STACK means the line of people. In this way, programs can
be expressed differently by defining different visual
transformation rules.

Fig. 19 Term expressed

 using the other visual transformation rules

5. RELATED WORKS
Various systems have been proposed, through which

users can watch and analyze term rewriting system (TRS).

ReDux (Bundgen, 1993) is a workbench for TRS
realized by a text-interface. ReDux has various interfaces
with Knuth-Bendix completion algorithm and so on. They
come up with various ideas in the text interface. However
users cannot manipulate terms intuitively.

TERSE (Kawaguchi et al., 1994) is a visual support
environment for TRS. The system can show the process of
term rewriting visually. The system supports the
environment for the program execution, but does not
support program editing. CafePie visually supports not
only program execution but also program editing. Users
often understand the program through the execution and
want to re-edit the program after that. Our main point is
that CafePie can edit and execute the program visually.
CafePie is the first system that shows the TRS execution
dynamically. Moreover, users can easily modify the
program visualization rules.

Visulan (Yamamoto, 1996) is a rule-based visual
language. Bitmap-based visual transformation rules are
used for expressing both programs and data. Visulan does
not say anything about the operations of defining these
rules.

VISPATCH (Harada et al., 1997) is a distributed figure-
rewriting visual language. VISPATCH’s rewriting timing
and location are controlled by the user events. Rules are
also normal figures and can be rewritten. These rules are
defined by using drawing actions. Our system uses a
combination of visual objects so that users can edit these
rules as the same paradigm as the editing operations.

7 SUMMARY AND FURTHER RESEARCH
We have implemented CafePie, a visual programming

environment for CafeOBJ. Term rewritings are visualized
with more realistic expressions by using figures, pictures
and images. We map operators to realistic expressions so
that equations are expressed as transformations of realistic
expressions. We use visual transformation rules which give
the program pictorial expressions so that users can
customize the term expression as they like. These rules are
also edited using the same paradigm of program editing
and are performed using drag-and-drop.

Our system CafePie is useful for the beginners of ASL.
Our goal is to improve the system and to fascinate the
advanced users.

REFERENCES

Ogawa, T., and Tanaka, J., 1998a, Double-Click and Drag-
and-Drop in Visual Programming Environment for
CafeOBJ,” Proceedings of ISFST-98, pp.155-160,
Hangzhou, China.

Myers, B. A., 1990, “Taxonomies of Visual Programming
and Programming Visualization,” Journal of Visual
Languages and Computing, Vol.1-1, pp.97-123,

Nakagawa, A. T., Sawada, T., and Futatsugi, K., 1997,
“CafeOBJ User's Manual,” IPA, Japan.

Tanaka, J., 1997, “PP: Visual Programming System for
Parallel Logic Programming Language GHC,” Parallel and
Distributed Computing and Networks '97, pp.188-193,
Singapore.

Kawaguchi, N., Sakabe, T., and Inagaki, Y., 1994, “TERSE:
Term Rewriting Support Environment,” Workshop on ML
and its Application, ACM SIGPLAN, pp.91-100, Florida.

Bundgen, R., 1993, “Reduce the Redex → ReDuX,”
Rewriting Techniques and Application, LNCS 690, pp.446-
450.

Yamamoto, K., 1996, “Visulan: A Visual Programming
Language for Self-Changing Bitmap,” Proc. of
International Conference on Visual Information Systems,
pp.88-96, Melbourne, Australia.

Harada, Y., Miyamoto, K., and Onai, R., 1997,
“VISPATCH: Graphical rule-based language controlled by
user event,” In Proceedings of the 1997 IEEE Symposium
on Visual Languages, pp.162-163, Capri, Italy.

Ninomiya, T., and Tanaka, J., 1996, “Visual Programming
Environment for an Algebraic Specification Language,”
JSSST’96, pp.213-216 Tsukuba, Japan, in Japanese

Ogawa, T., and Tanaka, J., 1998b, “Drag-and-Drop based
Visual Programming Environment for CafeOBJ,”
JSSST’98, pp.165-168, Tokyo, Japan, in Japanese.

