
Support for Understanding GUI Programs by Visualizing Execution Traces
Synchronized with Screen Transitions

Tatsuya Sato, Buntarou Shizuki, and Jiro Tanaka
Department of Computer Science,

University of Tsukuba
{tatsuya,shizuki,jiro}@iplab.cs.tsukuba.ac.jp

Abstract

To support understanding a specific GUI functionality
in a program, we propose a visualization technique that
presents the correspondence between the screens before and
after the operation, as well as the traces of the source code
executed by the operation. The presented traces include the
executed lines and the method calls, which are fundamen-
tal information for understanding the functionality. They
are represented as highlights that are superimposed on the
entire source code.

1. Introduction

To maintain, reuse, and extend the functionality of a pro-
gram, the developer needs to understand the program. How-
ever, identifying the source code that corresponds to a spe-
cific GUI functionality is difficult for several reasons. Usu-
ally, to understand a functionality, it is vital for the devel-
oper to identify the inputs and outputs, and then to relate
those to the implementation.

However, in the case of a GUI functionality, accord-
ing to the inputs, which are the operations done with the
mouse and keyboard, and the screen states, the source code
is executed dynamically, and the updates on the screen are
displayed as outputs. Therefore, the developer must first
grasp the GUI functionality of the program as a change on
the screen, and understand the implementation based on it.
Moreover, the implementation of one GUI functionality is
scattered in the source code, i.e., it is usually coded in sev-
eral files. Therefore, before it is possible to understand the
functionality, the developer must explore those files, and ex-
tract the corresponding implementation from them.

As an example, assume that the developer wants to un-
derstand the drawing functionality of a drawing tool. The
implementation of the drawing functionality is separate for
each role, such as the drawing processor, the shape object

model, and the event handler. At runtime, the program han-
dles the user’s operations, changes the states of the shape
objects, and draws objects with the states. To understand
this functionality, the developer must acquire the screen
changes during the consecutive mouse operations and the
parts of the executed source code.

Reading static representations such as documents and
source code is not satisfactory, since it does not directly
provide the developer with correspondence among the in-
puts (i.e., GUI operations and screen states), the implemen-
tation (i.e., the scattered source code), and the outputs (i.e.,
the resulting screen states), and thus forces the developer
to imagine the correspondence. On the other hand, a de-
bugger or visualization tool based on dynamic execution
(e.g., [1, 2, 6, 7, 8]) provides techniques for understand-
ing the program based on dynamic analysis. For example,
a debugger makes it possible to trace the execution while
suspending the program transiently by using break points
and issuing the trace step commands. However, these dy-
namic techniques also do not provide the above correspon-
dence, and therefore, understanding the functionality might
be difficult or impossible. Consider the functionality in
which the screen changes during consecutive mouse oper-
ations. When the debugger is used, the execution must be
suspended in order to analyze the program. Therefore, the
developer cannot analyze the functionalities that use con-
secutive operations or include the screen changes during the
operations.

Our key idea for providing support to the developer to
easily understand GUI functionality is to present the cor-
respondence with the operations and the screen states as
the inputs, the screen changes as the outputs, and the exe-
cuted source code as the implementation. We designed and
implemented a system called ORCA (Operation Reaction
Code Analyzer), that visualizes such correspondence and
provides user interfaces for easy access to the correspon-
dences, making it easy to understand the GUI functionali-
ties of a Java GUI program.

Source Code Representation

Screen before

the operation
Thumbnails

Screen after

the operation

Executed parts

during the

operation

Figure 1. Presentation of correspondence be-
tween executed source code parts and the
screen change

2. Visualization Approach and Design

Figure 1 depicts the design of our system to visualize the
correspondence. The system captures the screen image be-
fore and after each operation, and presents the pair of the
two thumbnails as the screen change caused by the opera-
tion, with the entry method name. The name works as the
event name based on the operation. At the same time, the
system highlights the parts of source code that were exe-
cuted while the screen change occurred. Thus, the system
enables the developer to grasp, “Which parts of the source
code were executed while operating the GUI?”

There are two ways of tracing the execution of a pro-
gram and visualizing the information: the offline display
and the online display. In the above approach, the offline
display visualizes the information after the execution by the
operation. On the contrary, the online display immediately
updates the visualized information according to the execu-
tion by the operation. Our approach utilizes both the offline
and online displays. While the user is operating the GUI,
the display visualizes the correspondences immediately af-
ter an operation is performed online dynamically, and then
leaves their results for later browsing offline. This offline
re-browsing is also useful for understanding the functional-
ity requiring the multiple operations.

We use a similar approach to Seesoft[1] to represent the
executed source code parts. Seesoft is a code-based pro-
gram visualization technique. Seesoft visualizes the entire
source code within one screen. Each line of the source code
is represented as one segment, which is colored according to
the result of an analysis. Thus, Seesoft can represent inter-
esting patterns using colors. This representation is effective
to understand patterns between the files or the source code
in the initial stage of development, and also to find the scat-
tered execution parts of the real-time execution such as the

mouse action[1].
In Seesoft, source code is presented per file. How-

ever, because GUI programs are programmed using object-
oriented designs, our system presents the source code per
the class definition. Figure 2 shows the representation of
a class definition. A class definition is represented as the
source code itself with the class name label. By using this
representation, all of the class definitions comprising the
target program are tiled in the display region.

class ClassA {

ClassB classB;

void m1() {

classB.m1();

}

・・・

}

ClassA class name

label

source code

Figure 2. Representation of a class definition

Our strategy to present dynamically analyzed informa-
tion is to superimpose them onto the representation of the
entire source code so that the developer can easily grasp
both. Specifically, the representation of each dynamically
analyzed piece of information is:

Lines of the executed source code: The lines of the exe-
cuted source code are represented as the highlighted
lines in the class definition. In Figure 3, the executed
lines are highlighted with a bright color.

Method calls: A method call is represented as the directed
edge that connects the calling method and the called
method. In Figure 3, the system visualizes the method
call from Class1.m1() to Class2.m1().

class ClassA {

ClassB classB;

void m1() {

classB.m1();

}

void m2() {

.....

}

}

ClassA

class ClassB {

Field field;

…..

void m1() {

…..

}

…..

}

ClassB

An executed

line is

highlighted.

Call Edge

Figure 3. Representation of dynamically ana-
lyzed information

Class hierarchy: The arrangement of each class definition
is based on a tree structure of a parent-child relation-
ship in the class hierarchy. One challenge is how to

display the entire source code within one screen while
maintaining the tree structure. We propose a space-
filling technique that extends TreeMap[5]. Our tech-
nique gives a region for each element. Following the
conventional tree representation where a child is ar-
ranged under its parent, our technique renders a tree as
shown in Figure 4. At the left of this figure is a tree
whose root is ClassA. At the right is the result of the
allocation to this tree.

ClassA

ClassB ClassC

ClassD ClassEClassD ClassE

Base Class

Inherited

Class

mapping ツリー表示領域

ClassA

ClassC

ClassA

ClassC

ClassB

ClassD ClassE

ClassB

ClassD ClassE

Figure 4. Representation of class hierarchy

Displaying the entire source code within one screen
means that when large-scale source code or source code that
includes a complex class hierarchy is displayed, the read-
ability decreases. In such cases, it is difficult for the devel-
oper to focus on an interesting call edge, to read the source
code related to the edge, or to follow the edge before/after
the call.

To help the developer trace for call edges, our system
provides Zooming Presentation. This enlarges the focused
part of the source code while it shrinks the other parts. By
pressing buttons, the developer can change the focus for-
ward/backward along the static graph according to the order
of method calls. While SHriMP[3] also provides a focus +
context technique[4], which enlarges the focused part while
keeping the overview, for browsing source code, Zoom-
ing Presentation adopts our own focus + context algorithm.
The display region is computed according to the importance
given to each class. Figure 5 shows an example of Zoom-
ing Presentation. Assume that ClassC is the most-focused
class. While the left image shows the basic allocation, the
right image shows the allocation that focuses on ClassC.
We can see that the largest region is allocated for ClassC
at the right side of the figure.

3. ORCA system

We implemented ORCA based on our visualization sys-
tem design. An overview of ORCA is shown in Figure 6.
The ORCA user interface consists of a control panel, graph
panel, and thumbnail panel. The graph panel visualizes the
source code, as shown in the middle of the figure, in which

Figure 5. Allocation based on importance

the entire source code is shrunk in order to be displayed
within the screen, thus making it suitable for browsing. In
the source code, a method call and executed lines are high-
lighted. When many or complex method calls are visual-
ized, the displayed edges might make it difficult to grasp
the executed lines. To deal with this problem, ORCA en-
ables the user to turn the method call presentation on and
off. The thumbnail panel presents the screen transitions
caused by the execution of the target program as an array
of thumbnail (shown at the bottom of Figure 6). Whenever
the GUI is operated, the system captures the screen before
and after the operation. The thumbnail panel presents tran-
sitions between subsequent captured screens. In Figure 6,
the highlighted screens show the transitions that are being
examined. When one is selected, the graph panel visual-
izes the executed source code corresponding to the selected
transition.

By pressing buttons on the control panel, the user can
start/restart the target program and do step tracing (shown
at the top of Figure 6). Step tracing allows the developer
to trace one edge of the method calls and examine the visu-
alized information in detail. For each step, ORCA displays
the source code in Zooming Presentation that focuses on the
method call at that point.

The system overview shown in Figure 6 is the result
when the system is running a drawing tool. This drawing
tool consists of roughly 1100 lines of code. The code is or-
ganized into 19 classes, whose inheritance tree has a max-
imum of two depths. If the developer wants to understand
the GUI functionalities of the program, she/he browses the
visualized information while operating its GUI directly.

Zooming Presentation is shown in Figure 7. In the fig-
ure, a method in ClassA calls a method in ClassB. Be-
cause ClassA (upper left) and ClassB (lower right) are the
focused classes in this scene, these classes are zoomed. Ad-
ditionally, ClassC is zoomed because it is the parent of
ClassB. The arrow in the center of the display is the edge
of the focused method call. The lines of code around the
executed ones are also zoomed.

4. Implementation

We built ORCA as an Eclipse plug-in to integrate our
visualization system with an IDE to enable the user to an-

Control Panel

Graph Panel

Thumbnail Panel

Screen transitions

by operations

Executed parts during

the operation

Figure 6. Overview of ORCA

A C

B

Zooming in on

focused classes

and lines

Highlights of

focused call edges

Figure 7. Zooming Presentation based on im-
portance

alyze the target program dynamically with ORCA. To ana-
lyze the behavior of Java programs, the system requires both
the static information (such as class hierarchy and methods
and fields of each class) and the dynamically analyzed infor-
mation (such as method calls and field changes during the
execution). The system acquires the former by using Java
Development Tools API, and the latter by using Java Debug
Interface API. Piccolo.Java1.2 is used to render Zooming
Presentation. Piccolo is a toolkit that supports the building
of a zooming interface. We used Robot class (in the Java
AWT package) to capture screen snapshots for thumbnails.

In our experimental use of ORCA, the above implemen-
tation enabled us to comfortably visualize and examine a
GUI program comprising several thousand lines of code.

5. Conclusion

In this paper, we described ORCA, a visualization sys-
tem that supports to understand a specific GUI function-
ality in a program. Our approach provides the presenta-

tion of the correspondence with each GUI operation, the
screen changes, and the executed source code, which are
fundamental information for understanding the functional-
ity. Thus, the system allows the developer to build a mental
map with the inputs and outputs and the implementation of
the functionality.

References

[1] Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner,
Jr: Seesoft - A Tool For Visualizing Line Oriented Soft-
ware Statistics , IEEE Transactions on Software Engineering,
Vol. 18, No. 11, pp. 957–968, 1992.

[2] Minoru Terada: ETV - a Program Trace Player for Students,
Proceedings of ACM Special Interest Group on Computer Sci-
ence Education 2005, pp. 118–122, 2005.

[3] Margaret A. Storey, Casey Best, and Jeff Michaud: SHriMP
Views - An Interactive Environment for Exploring Java Pro-
grams, Proceedings of IEEE International Workshop on Pro-
gram Comprehension 2001, pp. 111–112, 2001.

[4] George W. Furnas: Generalized Fisheye Views, Proceedings
of ACM Special Interest Group on Computer-Human Interac-
tion’86, pp. 16–23, 1986.

[5] Ben Shneiderman: Tree Visualization with tree-maps - 2-
d space-filling approach, ACM Transactions on Graphics,
Vol. 11, No. 1, pp. 92–99, 1992.

[6] Steven P. Reiss: Visualizing Java in Action, Proceedings of
ACM Software Visualization 2003, pp. 57–65, 2003.

[7] Steven P. Reiss and Manos Renieris: JOVE - Java as it Hap-
pens, Proceedings of ACM Software Visualization 2005, pp.
115–124, 2005.

[8] Paul V. Gestwicki and Bharat Jayaraman: Interactive Visual-
ization of Java Programs, Proceedings of IEEE Human Cen-
tric Computing, Languages, and Environments 2002, pp. 226–
235, 2002.

