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Abstract. We used passive, high-functional radiofrequency identifica-
tion (RFID) tags with magnetic sensors to detect front of face touch
positions without the requirement for a battery. We implemented a pro-
totype system consisting of a goggle-type device equipped with passive
high-functional RFID tags with magnetic sensor, a ring with permanent
magnets, and touch detection software for machine-learning. We evalu-
ated the classification accuracy of the six front of face touch positions
and a ‘no-touch’ case. The discrimination rate when using the learning
data was 83% but the real-time discrimination was only 65%. In future,
we will aim to improve the accuracy, and define more touch points and
gesture inputs.
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1 Introduction

Wearable devices are becoming increasingly common, as are gesture inputs. How-
ever, most gesture input methods require sensors or additional devices for clas-
sification, and a power supply. If power is delivered by wire, the useable space is
reduced. A battery may explode or degrade at excessively high or low tempera-
tures.

We developed a battery-free gesture input method for wearable devices; touch
positions are detected using passive high-functional radiofrequency identification
(RFID) tags with magnetic sensors; the microcomputer and sensors are powered
by radio waves. RFID tags have been used to power e-ink displays and sense
temperature [9], and for attendance management systems [8]. Here, we detect the
touch positions using a goggle-type device equipped with passive, high-functional
RFID tags featuring magnetic sensor and a ring with a permanent magnet. The
user wears the goggles and the ring; when the face is touched with the ring-
bearing finger, the touch position is classified; no other sensor is required. Face-
touching is a natural behavior and touch positions can be defined easily.
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2 Related Work

In this section, we review 1) sensing methods and gesture inputs based on mag-
netism; 2) previous research on battery-free devices; and, 3) work on RFID
technology.

2.1 Sensing Methods and Gesture Inputs based on Magnetism

Many input methods using magnetic sensors have been described. Abra-
catabra [4] described wireless power-free inputs for small devices (such as smart
watches); the position of a finger with an attached magnet was detected. IM6D [5]
uses a magnetic sensor array to measure the three-dimensional position and
direction of a fingertip-mounted electromagnet. Finexus [1] tracks a fingertip-
attached electromagnet in real time by evaluating the magnetic field using sen-
sors strapped to the back of the hand.

2.2 Battery-Free Devices

Grosse-Puppendahl et al. [3] created a battery-free display using a solar cell, a
Bluetooth low-energy (BLE) device, and electronic paper; the display provided
reminders and weather data via a PC or smartphone. Li et al. [7] used low-cost
photodiodes for both ambient lighting and gesture classification; the self-powered
module was accurate under various ambient light conditions. Similarly, for our
device, gestures are inputted using a battery-free goggles. However, our device
is based on RFID technology and used magnetic sensors to detect face touch
positions.

2.3 Input Methods Using RFID Technology

RFID is widely used for object and personal identification. Both power delivery
and information exchange are achieved wirelessly. Tip-tap [6] collects data from
the intersections of arrays attached to the thumb and forefinger to yield discrete
two-dimensional touch inputs, without the requirement for a battery. Based on
Near Field Communication (NFC; a type of RFID), NFC-WISP [9] is used to
power electronic printing devices, temperature sensors and contactless tap cards.
AlterWear [2] is a new battery-free wearable device based on electromagnetic
induction via NFC; the display uses bistable electronic ink.

3 Examples

We explored how inputs may drive music applications and devices with small
screens.
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Fig. 1. (A) Inputs for music applications, (B) Character inputs for devices with small
screens.

3.1 Music Applications

On crowded public transport, it can be difficult to operate a music player. How-
ever, using our method [Fig. 1(A)] the user can play or stop music by touching
the ear, and control the volume by touching the mouth.

3.2 Devices with Small Screens

Character input using a small touch screen (such as that of a smart watch) is
difficult. With our device, character inputs are mapped to facial regions [Fig.
1(B)] and characters are input using the fingertips.

4 Prototype

The prototype features a goggle-type device with passive, high-functional RFID
tags with magnetic sensor; an RFID reader; a ring with a permanent magnet;
and a touch position classifier running on a PC (Fig. 2).

4.1 The Goggle-Type Device and the RFID Reader

The goggle-type device comprises a pair of plastic goggles equipped with two
passive, high-functional RFID tags with magnetic sensor (EVAL01-Magneto-
RM; Farsens1) supported on either side by 3D-printed bars (Fig. 3). The tags
were lie about 3.5 cm distant from goggles; reception is poor if the RFID is too
close to the skin [6].

Our device uses an Impinj Speedway Revolution R420 RFID reader. The
output is 32.5 dBm when power is supplied by an AC adapter. The reader is
connected to a PC. We also used a YAP-102CP as the reader antenna.
1 http://www.farsens.com/en/products/eval01-magnetorm/.

http://www.farsens.com/en/products/eval01-magnetorm/
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Fig. 2. Overview of the prototype.

Fig. 3. The goggle-type device.



Touch Detection Using RFID Tag with Magnetic Sensor 527

4.2 Ring with Permanent Magnets

Fig. 4. Rings with attached magnet.

The goggle-type device uses a magnetic sensor; a finger magnet is thus required.
We devised two three-dimensional-printed rings differing in diameter, with
notches for the magnets. Both rings had a gap at the bottom; they were thus
suitable for fingers varying in size and shape (Fig. 4).

4.3 Touch Position Classifier

The touch position classifier uses a data collecting program written in Java,
and a classifier written in Python. The data collection program first sends read
commands to the RFID tags via RFID reader, and the tags send results to the
software via the reader. Because the geomagnetism influences sensor output, we
subtracted the median geometric value of 100 ‘no-touch’ signals.

Sensor data from both of magnetic sensor tags (‘one-frame’ data) are then
classified. To rule-out over-learning, a frame is discarded if it is identical to the
previous frame. Each frame is classified as one of the predefined touch positions.
The classification model employs the k-nearest-neighbor algorithm of the Python
scikit-learn library. The hyperparameters, established via 5-fold cross-validation
and grid searching, were as follows:

– Number of neighboring points: 7
– Weight: distance
– Distance: Manhattan
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4.4 Sensor Data Reception

We evaluated the data reception rate with the RFID sensor tag or the goggle-
type device placed on a wooden desk. The reader antenna was placed 22 cm
above the desk and read three-axis magnetic sensor data. We quantified the
data received over 5 s and calculated the reception rates as ∼20 Hz for a single
RFID tag and 5–10 Hz for the goggle-type device (two tags). The reception rate
for the goggle-type device allowed adequate classification of touch position, but
the rate fluctuated and the two tags were not equidistant from the reader. In
the future, we will resolve this problem by controlling the reader settings.

4.5 Effect of Magnets

We assessed whether the magnet affected the sensor using the setup described
above. We put a set of two magnets (used for our ring device) on the desk 1,
2, 3, 4, 5, 10, 15, and 20 cm apart from the sensor. We collected 2,000 sets
of data and calculated the median value (Fig. 5). The vertical axis shows the
sensor data (three-axis magnetic vectors) minus the median geomagnetic vector
(calculated using 2,000 sensor data points collected without magnets). The sensor
detects magnets at a distance of 5–10 cm away from the sensor. Thus, the facial
touchpoints should lie within about 10 cm of the sensor.

Fig. 5. Change in magnitude of magnetic vector by distance.

5 Evaluation

We evaluated facial touch accuracy in a single male subject who wore the goggle-
type device and ring with a permanent magnet on the index finger of the right
hand; the subject was in a sitting position.
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5.1 Procedure

In the first learning phase, data were collected for machine-learning. In the clas-
sification phase, whether touch positions were accurately classified was deter-
mined.

In the first phase, 200 magnetic data frames were collected from each touch
point (1,400 frames = 200 × 6 touch points + 200 ‘no-touch’ cases). Figure 6
shows the six touch points. shows the position of the 7 touch points. The subject
was asked to continuously rotate the index finger to prevent over-learning due
to changes in finger angle. Then, 80% of the collected data were used for train-
ing; 20% were reserved for testing. We employed a k-nearest neighbor (KNN)
machine-learning algorithm. We performed 5-fold cross-validation to improve
performance generalization.

Fig. 6. The six touch points on the face.

During the classification phase, the subject touched each facial point 10 times
and also performed ‘no-touch’ 10 times (total of 70 trials) in a random order.
For each touch, the index finger remained in place until 10 data frames were
collected; the median value was used for classfication. The results were recorded,
displayed, and labeled, and the success rate was calculated.

5.2 Results and Discussion

The classification accuracy for the test data collected during the learning phase
was 83%. However, for the 70 frames of magnetic data collected during the
classification phase, the accuracy was only 65%. Figure 7 shows the classification
confusion matrix. The classification accuracy for the test data collected during
the learning phase was high. However, the classification accuracy was lower for
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the data collected during the classification phase. Two vertical points were often
misclassfied, such as ‘eye-left’ and ‘cheek-left’. In the future, we will aim to
improve the training model by adding other features. For example, when we
added two magnitudes calculated from two magnetic vectors of the two sensor
tags to the feature vectors, the classification accuracy improved slightly (Fig. 8).

Fig. 7. Confusion matrix derived from 50 frames of test data classified by the KNN
model. Only three-axis magnetic vectors of the two sensor tags were used as feature
vectors.

Fig. 8. Confusion matrix derived from 50 frames of test data were classified by the
KNN model. Two magnitudes calculated from two magnetic vectors of the two sensor
tags were added to feature vectors.

Sensor data arriving at the RFID reader were often unbalanced. Sometimes,
data from only one tag arrived, possibly because the tag-to-reader distances
differed or the radio waves encountered interference. In the future, we will test
other RFID settings and use tags with multiple sensors.

6 Conclusions and Future Work

We used passive, high-functional RFID tags with magnetic sensor to detect touch
positions, as a form of battery-free gesture input for wearable devices. The pro-
totype includes a goggle-type device, a ring with a magnet, and software for
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detecting touch positions via machine-learning. We defined six touch points on
the face and evaluated the accuracy of touch and no touch classification. The
classification accuracy during learning phase was 83%, but dropped to 65% dur-
ing the classification phase. Thus, the performance must be improved; in the
future, we will enhance the accuracy of real-time classification, and define more
touch points and gesture inputs.
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