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Abstract. We developed a mouth gesture interface featuring a mutual-
capacitance sensor embedded in a surgical mask. This wearable hands-
free interface recognizes non-verbal mouth gestures; others cannot eaves-
drop on anything the user does with the user’s device. The mouth is
hidden by the mask; others do not know what the user is doing. We
confirm the feasibility of our approach and demonstrate the accuracy of
mouth shape recognition. We present two applications. Mouth shape can
be used to zoom in or out, or to select an application from a menu.
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1 Introduction

Touch is the most popular input to mobile devices. This requires one or both hands,
which are not available in a crowded train or when holding luggage. Voice input is
a useful alternative but may not work well in noisy public spaces [1,2]. Non-verbal
mouth/tongue gestures are not affected by noise, but are nonetheless useful inputs.
Prior studies have recognized mouth/tongue gestures using a smartphone camera
[3], pressure sensors [4], and myoelectric potential sensors [5].

We developed a mouth gesture interface featuring a mutual-capacitance sen-
sor embedded in a surgical mask. In East Asia, mask-type interfaces are accept-
able; many people wear surgical masks on a daily basis. Our interface recognizes
non-verbal mouth gestures. Thus, it is robust for acoustic noise, and others can-
not eavesdrop on anything the user does with the user’s device. The mask covers
the user’s mouth; others do not know what the user is doing. Here, we introduce
the mouth gesture interface and its implementation. We evaluate mouth shape
recognition accuracy and offer some useful applications.
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2 Related Work

We employed mouth gesture interfaces featuring mutual-capacitance sensors to
control mobile/wearable devices. We explored mouth shapes, hands-free inputs
to mobile/wearable devices, and mutual-capacitance sensing.

2.1 Recognizing Mouth Shapes

Cameras recognize mouth shape and position. Azh et al. [6] operated a mobile
device using camera-captured lip shapes. Lyons et al. [7] combined lip shapes
and Japanese character inputs to control mobile devices. Vowels were obtained
from lip shapes and consonants from keystrokes. Chan et al. [8] detected mouth
shapes using a head-mounted camera; mouth movement and a hand-operated
pen were used to draw pictures. Koguchi et al. [9] used touch-free lip shape
inputs; a camera recognized shaped vowels.

In addition, some studies have exploited tongue movements. Miyauchi et al.
[10] identified mouth regions by reference to Kinect depth and RGB data and
evaluated tongue protrusion during training of children with Down’s syndrome.
Crawford et al. [11] identified mouth areas using a web camera and recorded
tongue protrusions in real-time by reference to color and textural characteristics.
Tongue movement has also been evaluated without a camera. Cheng et al. [4]
used a fabric, pressure sensor array attached to the outside of the cheek to this
end. Sasaki et al. [5] estimated tongue movement by measuring the myoelectrical
potentials of multichannel electrodes attached to the lower jaw. Similarly, Zhang
et al. [12] recorded tongue movements using six myoelectric potential sensors
attached to the chin and two attached to the cheeks. Goel et al. [13] used a
headset featuring three (forward, left, and right) X-band motion detectors to
record tongue movement. Li et al. [14] placed three micro-radar (forward, left and
right) sensors around the mouth to detect tongue movement using the Doppler
effect.

2.2 Mutual-Capacitance Sensing

Capacitive sensing is important in the field of human-computer interaction (HCI)
[15]; such sensing is employed by mobile, wearable, and stationary devices.
Zimmerman et al. [16] used capacitive sensing to detect humans. Dietz et al. [17]
developed the DiamondTouch system that simultaneously detects the touches
and gestures of many people; the sensors are arrayed. Hinckely et al. [18] attached
capacitive touch sensors to a mouse and a trackball. Rekimoto [19] developed
the SmartSkin system for detecting changes in capacitance at multiple positions
when the human body touched electrode meshes on a horizontal plane. Sato
et al. [20] developed the Touché system that recognizes grip using only a single
electrode; the impedance frequency characteristics change by the touching mode
employed. Tsuruta et al. [21] developed a single-connection, RootCap capacitive
sensor that was activated when multiple electrodes were touched. Wang et al.
[22] distinguished the driver from a passenger when an in-vehicle screen was
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touched, exploiting the capacitances of sensors in the seats and the screen. No
study has yet used capacitive sensing to identify mouth shape.

3 A Mouth Gesture Interface Featuring a Mask-Type
Sensor

Figure 1 shows a schematic of our mouth gesture interface. The user wears a
surgical mask featuring a mutual-capacitance sensor that recognizes mouth ges-
tures and maps them to commands controlling applications. As the mouth is
hidden by the mask, others do not know what the user is doing. For example, a
user can unlock a smartphone without password leakage.

Measure the capacitances
in the mask

Recognize the mouth gestures

Control the
applications

Fig. 1. An overview of our approach. The mask sensor measures capacitances that
correspond to user mouth gestures; these control the applications.

3.1 Mutual-Capacitance Sensing

We use mutual-capacitance sensing to recognize mouth shape. When a user
moves the mouth, the capacitances of touched or approached intersections
change; the interface thus recognizes mouth gestures.
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A mutual-capacitance sensor features multiple intersecting electrodes [19,23];
those facing in one direction collectively serve as a transmitter delivering a sine
wave and those facing in the opposite direction as the receiver. The transmitter
and receiver create an electrical field. When an element approaches the inter-
sections, that element interacts with the electrical field and the intersection
capacitances change. The voltages at each receiver electrode thus also change.

3.2 Mouth Gestures

Mouth gestures can serve as interface inputs in many ways. One of the simplest
mouth gesture sets includes only the open and closed mouth; these gestures are
robustly recognized. The extent of mouth-opening (to which a numerical value
may be assigned using a slider) may serve as an input. We use multiple mouth
shapes as inputs. The gesture set contains six mouth shapes: ‘n’ (the neutral
state) and the Japanese vowels ‘a,’ ‘i,’ ‘u,’ ‘e,’ and ‘o’ (Fig. 2). This allows simple
character input triggering a command or operation. The five gestures other than
‘n’ can select and move a cursor up, down, left, or right; the gesture set can also
execute an application that is pre-planned by sequentially changing mouth shape.
For example, the sequence ‘a-e-a’ activates a smartphone camera (‘camera’ in
Japanese is pronounced ‘ka-me-ra,’ thus with the vowel sequence ‘a-e-a’).

[n] [a] [i]

[u] [e] [o]

Fig. 2. The six mouth shapes. ‘n’ is the neutral state and ‘a,’ ‘i,’ ‘u,’ ‘e,’ and ‘o’ are
Japanese vowels.

4 Implementation

We confirmed the feasibility of mouth gesture recognition via a mutual-
capacitance sensor embedded in a surgical mask. The system features a sensing
circuit and software (Fig. 3). In the sensing circuit, a sine wave is applied to the
transmitter electrodes; then the voltages at the receiver electrodes are measured.
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We used an Analog Discovery 2 instrument1 to both apply the sine wave and
measure voltages. The analyzer is connected to a laptop via a cable and sends
defined voltages to the software. The laptop performs signal pre-processing and
recognizes mouth gestures using a machine-learning algorithm.

Four horizontal wires serve as transmitter electrodes and five vertical wires
serve as receiver electrodes; 49 1 cm2 copper foils are attached to the wires
(Fig. 4). The horizontal wires are connected to a waveform generator via a mul-
tiplexer and the vertical wires are connected to an A/D converter via another
multiplexer. The generator and converter are included in the Analog Discovery
2 instrument. The wire intersection points are insulated using thin transparent
tape. The sensor is covered with plastic wrap to prevent direct mouth contact.
A sine wave of 10 Vpeak-to-peak is delivered at 100 kHz to the transmitter elec-
trodes; the voltages of all intersections are sampled 1,000 times and the data
sent to Python software.

Fig. 3. Our implemented system. A mutual-capacitance sensor is embedded in the
mask. The transmitter electrodes are shown in red and the receiver electrodes in blue.
(Color figure online)

The signals are first pre-processed and then recognized. During pre-
processing, the software removes noise using a band-pass filter that blocks signals

1 https://reference.digilentinc.com/reference/instrumentation/analog-discovery-2/
start.

https://reference.digilentinc.com/reference/instrumentation/analog-discovery-2/start
https://reference.digilentinc.com/reference/instrumentation/analog-discovery-2/start
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of frequencies other than 90 to 110 kHz. We used the SciPy2 “buttord” function
to this end. Next, the software calculates the root mean square voltage (Vrms) at
each intersection using the 1,000 sets of voltage values corresponding to capac-
itances. The Vrms values of all 20 intersections are considered a single frame;
the process requires about 0.18 s. Recognition employs the Random Forest (RF)
classifier of the scikit-learn library3.

5 Preliminary Experiment

We performed a preliminary experiment to determine where the mouth touched
the sensor and to evaluate the accuracy of mouth shape recognition. Three male
volunteers (mean age 23.3 years) participated.

5.1 Procedure

We used the six mouth shapes shown in Fig. 2 (those made while mouthing the
neutral ‘n’ and the five vowels ‘a,’ ‘i,’ ‘u,’ ‘e,’ and ‘o’). As participants wore the
mask, we told them to shape their mouths as instructed and to hold the shapes

Fig. 4. The mutual-capacitance sensor used in the preliminary experiment. The hori-
zontal electrodes served as transmitters and the vertical electrodes as receivers. Copper
foil was cut into 1 cm2 and placed on the wires at 2 cm intervals.

2 https://docs.scipy.org/.
3 https://scikit-learn.org/.

https://docs.scipy.org/
https://scikit-learn.org/
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for about 3 s. We randomized the mouth shape order and acquired 20 frames for
each shape. All participants completed five consecutive sessions each featuring
all six mouth shapes. We thus acquired 600 frames [5(sessions) × 6(shapes) ×
20(frames)] per participant.

5.2 Results and Analyses

Figure 5 shows heatmaps representing the sums of the 20(frames) ×
5(sessions) Vrms values at each intersection for the mouth shapes of Participant
1. The deeper blue points reflect higher Vrms values; the mouth often touched
these points strongly.

We used principal component analysis (PCA) to calculate the contributions
of all intersections (Fig. 6). The most significant points were (in order) [0, 2], [2,
2], [0, 3], [3, 3], [1, 2], and [3, 1]; points [1, 0], [1, 1], [1, 3], and [1, 4] made only
small contributions. Thus, the central regions of the vertical wires well-captured
mouth shapes; the edges of the wires did not. Thus, the edges of the vertical
wires and the second horizontal wire from the top are redundant; their removal
would accelerate data collection and implementation.

We trained the RF classifier to recognize mouth shapes. We randomly chose
80% of the data (480 frames) for training and used the remaining 20% (120
frames) to evaluate recognition accuracy; the average value was 99.2% (Table 1).

Then we performed Leave-One-session-Out Cross-Validation (LOOCV); the
average recognition accuracy was 75.4% (Table 1), less than that of random val-
idation. Changes in mask positions between sessions may explain the difference.
We will collect more training data when the mask is worn in different positions.

Fig. 5. Heatmaps showing the 100-frame Vrms sums at each intersection for each mouth
shape of Participant 1. The darker blue points are associated with higher Vrms values;
the mouth often touched these points strongly. (Color figure online)
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Table 1. The recognition accuracies for each participant.

Participant 1 2 3 Average

Random (%) 99.17 98.33 100.0 99.17

LOOCV (%) 83.67 78.83 63.83 75.44

6 Application Examples

6.1 Zooming in or Out

Zooming in or out is very common; mobile devices employ pinch-in/-out systems.
In our application, the user zooms in using the mouth shape ‘u’ and zooms out
employing ‘o.’ In Fig. 7, the user mouths different vowels, but others do not know
what he is doing.

6.2 Executing Commands

Application or command selection is often desirable. We used the mask-type
interface to move through menus. We assigned the mouth shapes to commands.
The user moves the cursor up by forming a ‘u,’ down by forming an ‘o,’ right
by forming an ‘i,’ left by forming an ‘a,’ and selects the item using ‘e’ (Fig. 8).
Thus, a desired application or command can be chosen in a hands-free manner.

Fig. 6. The contribution ratio of each PCA intersection to the mouth shapes of Par-
ticipant 1.
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In

o : Zooming Out

Fig. 7. A zooming application. The user zooms in using the mouth shape ‘u’ and zooms
out employing ‘o.’

i

Fig. 8. Command selection. The user moves the cursor up by forming a ‘u,’ down by
forming an ‘o,’ right by forming an ‘i,’ left by forming an ‘a,’ and selects the item
using ‘e.’
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6.3 Preliminary Evaluation of the Applications

Zooming three-class classification worked well in terms of command execution;
six-class classification did not. Real-time recognition accuracy must be improved.
The vowel mouth shapes are not completely different: ‘a’ and ‘e’ are similar. Sub-
tle variation in mouth shape caused by changes in facial expression and breathing
patterns triggered misrecognition even when the mouth shape was correct. We
will collect more data. We plan to use a sliding window to stabilize real-time
classification, and to identify mouth shapes that facilitate robust classification.

7 Conclusion and Future Work

We developed a mouth gesture interface; a mutual-capacitance sensor is embed-
ded in a surgical mask. This wearable hands-free interface recognizes non-verbal
mouth gestures; others cannot eavesdrop on anything the user does with the
user’s device. As the mouth is hidden by the mask, others do not know what
the user is doing. We confirmed the feasibility of our approach, and showed that
the mutual-capacitance sensor performed well. We explored two applications.
Mouth shape was used to zoom in and out and to select from a menu of appli-
cations. In the future, we will develop a low-cost, disposable mutual-capacitance
sensor. We will also replace the copper foils and wires with conductive cloth and
threads. Real-time recognition accuracy will be improved. We will also define a
recognizable set of mouth shapes.
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