
Using dependency diagrams in dynamic modelling of object-oriented
systems

Simona Vasilache
Institute of Information Sciences and Electronics

University of Tsukuba, Japan
simona@iplab.is.tsukuba.ac.jp

Jiro Tanaka
Institute of Information Sciences and Electronics

University of Tsukuba, Japan
jiro@is.tsukuba.ac.jp

ABSTRACT
In defining the behaviour of a system, requirement spec-
ifications make use of a number of scenarios that are in-
terrelated in many ways. Most of the current approaches,
even though giving directions on how to translate them into
state machines, treat each scenario separately. In this paper
we propose a method of synthesizing state machines from
multiple scenarios, with respect to the relationships among
them.
We propose a new type of diagrams that are able to illus-
trate the relationships and dependencies among scenarios.
We call these diagramsdependency diagrams. We have no-
ticed that, when trying to synthesize state machines from
scenarios, different relationships between scenarios result
in different state machine structures. By emphasizing these
relationships, representing them and using them directly in
the synthesis process, we manage to overcome this prob-
lem. We also propose a set of rules and steps for the synthe-
sis of state machines from multiple interrelated scenarios,
based on the initial scenarios and on the newly introduced
dependency diagrams, as a means to properly describe the
requirements specifications of a system.

KEY WORDS
object-oriented analysis and design, dynamic modelling,
scenarios, state machines

1 Introduction

One of the most important phases in software develop-
ment is represented by the requirements analysis. The
main task of the requirements analysis is to generate spec-
ifications that describe system behaviour unambiguously,
consistently and completely [1]. Several object-oriented
methodologies, like OMT and UML, [2], [3] make use of
scenarios as a means of capturing requirements specifica-
tions, as well as a means of communication between clients
and software developers. Together with use cases, scenar-
ios have gained considerable popularity during the recent
years. A scenario is a sequence of events that occurs dur-
ing one particular execution of a system [2].
Although popular, scenarios have not received the atten-
tion they actually deserve, more exactly, they have not been
used up to their entire potential. Their usefulness lies not

only in the ability to capture requirements, but in their ap-
plicability when used in conjunction with other models. We
specifically refer to what is called ”behaviour models”, that
is models that describe the behaviour of a system.
When it comes to these dynamic aspects of a system, state
machines (particularly statecharts, originally introduced by
D. Harel [4]), represent a compact way of describing these
aspects. Statecharts are finite state machines extended with
hierarchy and orthogonality, allowing the representation of
a system in a compact and elegant manner. It is because of
this feature that they have been preferred for representing
scenarios.
While scenarios represent a single trace of behaviour of a
complete set of objects, state machines represent the com-
plete behaviour of a single object. The two concepts to-
gether provide an orthogonal view of a system.
Our intention is to provide a method of synthesizing state
machines from multiple scenarios, with regard to the rela-
tionships among them. For this purpose, we will introduce
dependency diagrams, which show all the relationships be-
tween the various scenarios described in the early phase
of software development. Based on these dependency di-
agrams and on the initial scenarios, we will give rules and
steps of synthesis of state machines from multiple interre-
lated scenarios. We will describe in this paper the newly
introduced diagrams and our method of synthesis.

2 Sequence diagrams and state machines

2.1 Scenarios as sequence diagrams

Scenarios are represented as sequence diagrams in
UML[3]. Sequence diagrams represent interactions be-
tween objects from a temporal point of view. An object
is represented by a rectangle and a vertical bar called the
object’s lifeline. Objects communicate by exchanging
messages, represented by horizontal arrows drawn from
the message sender to the message recipient. The message
sending order is indicated by the position of the message
on the vertical axis.

2.2 State machine diagrams

State machine diagrams represent state machines from the
perspective of states and transitions. The representation
used in UML is inspired from Harel’s statecharts [4]. State
diagrams describe which states an object can have during
its life-cycle and the behaviour in those states, along with
what events cause the state to change.
All objects have a state; the state is a result of previous ac-
tivities performed by the object. An object changes state
when something happens, which is called an event. State
diagrams may have a starting point and several end points.
A state is represented as a rounded rectangle; between
states there are state transitions, shown as a line with an
arrow from one state to another. The state transitions may
be labelled with the event causing the transition. When the
event happens, the transition from one state to another is
performed (the transition is ”triggered”). This means that
the system leaves its current state, initiates the actions spec-
ified for the transition and enters a new state.
State machines have proved their usefulness in the dynamic
description of the behaviour of a system. Moreover, they
can be used for generating code directly from them, since
each of them describes the complete behaviour of one ob-
ject.

3 State machines from single scenarios

Synthesizing state machines from single scenarios repre-
sents the basis for the synthesis from multiple scenarios. In
the following, we are going to describe concisely how to
obtain state machines from single scenarios.
A state machine diagram is a graph whose nodes are states
and whose directed arcs are transitions (labelled by event
names).
One state machine diagram describes the behaviour of a
single class of objects. The sequence of events in a se-
quence diagram corresponds to paths through the state ma-
chine diagrams of the corresponding objects [5]. In order
to construct a state machine for a class of objects, we have
to consider the vertical line that corresponds to the objects
of that class. We can define in the following the basic rules
for generating state machine diagrams from single scenar-
ios.
For an object in a sequence diagram, incoming arrows rep-
resent events received by the object and they becometran-
sitions. Outgoing arrows are actions and they becomeac-
tions of the transitions leading to the states. The intervals
between events becomestates. A state reflects the response
of an object to input events. This response may include an
action or a change of state by the object. While events rep-
resent certain points in time, states represent intervals of
time. Before receiving any event, the object is in thede-
fault state.
Fig.1 depicts a simple example of a scenario in a classi-
cal ATM (Automated Teller Machine) system. The ATMs
are shared by a consortium of banks. Each ATM accepts a

 ATM User Consortium Bank

Insert card

Verify account

Display main screen

Bad bank account
Bad account

Request password

Enter password

Take card

Bad account message

Print receipt

Eject card

Request take card

Display main screen

Verify card with bank

Figure 1. Sequence diagram (scenario) in an ATM system

cash card, interacts with the user, communicates with the
central system to carry out the transaction, dispenses cash
and prints receipts. Throughout the paper, we will describe
typical simple scenarios for user interaction with an ATM
machine, like inserting or removing a card, entering a pass-
word, deciding upon a certain type of transaction (with-
drawal, deposit, transfer) and others. Four objects are in-
volved in our scenario:user, ATM, consortiumandbank.
The events in our example are: displaying the main screen
(from the ATM to the user), inserting a card (from the user
to the ATM), requesting password (from the ATM to the
user), entering password (from the user to the ATM), and
so on.
In this scenario, after the user enters the card and then the
password, the ATM verifies the card with the consortium,
which, in turn, verifies it with the bank. The bank sends a
bad bank account event to the consortium, and the consor-
tium sends a bad account event to the ATM. The ATM, in
turn, sends a bad account message event to the user. In the
end, a receipt is issued, the card is ejected and the user is
requested to take the card back. Fig.2 illustrates the state
machine diagram corresponding to the ATM object in the
scenario above. (Display main screenis considered to be
the default state.)Insert card, Enter password, Bad ac-
count, Take cardhave become transitions, whileDisplay
main screen, Request password, Verify account, Bad ac-
count message, Print receipt, Eject cardandRequest take
card are the actions that led to the states with the same
names respectively.

4 State machines from multiple scenarios

4.1 Classification of relationships

According to their definition, scenarios represent partial de-
scriptions of system behaviour [2]. In order to describe a
system completely, a number of scenarios is needed. Un-
derstanding the dependencies helps in understanding the

Insert card

Enter password

Display main screen

 Request password

Bad account

 Verify account

 Bad account msg.

Take card

 Request take card

 Eject card

 Print receipt

Figure 2. State machine diagram for the ATM class

requirements better, as well as obtaining an accurate de-
sign. Traceability is also enhanced, since knowing the de-
pendencies makes it easy to see what other scenarios would
be affected if one scenario is changed [8].
Sometimes, one scenario follows another scenario, or is
conditioned by another one. Many times the order and the
timing of their execution are not arbitrary.
For example, if we consider the scenario depicting the ac-
tion of withdrawing cash, this can be executed only in the
situation of the user possessing a valid card and inputting
the correct password. The scenario of the user applying for
a card with a bank must precede the scenarios involving
transactions with the bank in the user’s name. Therefore,
we consider that in order to be able to understand and de-
scribe the whole system, we need to take into account not
only the scenarios themselves, but also the relationships be-
tween them.
Two or more scenarios can be related in many ways: the
execution of a scenario can depend on the execution time
of another one (e.g. it can only be executed after/before an-
other scenario), the necessary conditions for a scenario to
be executed are described (and have to be fulfilled) in a dif-
ferent one, one scenario represents a part of another, a set
of scenarios are very similar with each other, representing
a variant of a basic scenario and so on.
We classify the relationships/dependencies between sce-
narios as follows:

• time dependencies;

• cause-effect dependencies;

• generalization dependencies.

A time dependency signifies the fact that one scenario has
to be executed at an earlier/later moment in time than an-
other scenario. Only after the scenario that has to be ex-
ecuted first has finished its transitions, the second one can
start its execution. It can also mean that two (or more) sce-
narios must be executed at the same time. For instance,
as described above, a user must first prepare a card and
only then (s)he can perform transactions through the ATM.

Therefore, the scenario of creating a card precedes the sce-
nario of withdrawing cash and the two scenarios are in a
time dependency.
A cause-effect dependency reflects the fact that the execu-
tion of a scenario can take place only the moment certain
conditions (established in another scenario) become valid.
For example, an ATM can satisfy the user’s request for
withdrawing cash only if it has been previously provided
with a number of bills/coins. The scenario of withdrawing
cash depends on the scenario of the ATM machine being
”loaded” with a sufficient amount of cash (considered to
cover the maximum amount that could be withdrawn dur-
ing a whole day). The condition of ”being able to provide
enough cash” is established in a different scenario from the
one where the transaction itself takes place.
A generalization dependency emerges when one scenario
is a constituent part of another one or a variant of it. As a
rough example, we can consider that the scenario of with-
drawing cash is very similar to the scenario of depositing
money. They can be generalized under one scenario, ”cash
operations”, for example, where we have 2 variants with
slight differences between them (in the case of deposit: the
user selects ”deposit” and inserts the money in the special
slot in the ATM; in the case of withdrawal: the user selects
”withdrawal” and the money is ejected through the same
slot).
One could argue that time dependencies and cause-effect
dependencies are equivalent, but we believe that it is im-
portant to emphasize when the dependency arises from a
specific time sequence (like having to insert the card and
password first, and only after that being able to perform
a transaction) and when a dependency arises from certain
conditions that are not explicitly time-related (at least, not
necessarily). As we described above, a user could with-
draw cash only if the ATM has been provided with bills
and coins. Here, it is not so important to emphasize the
time sequence (supplying bills first and then being able to
satisfy the user’s request for cash), as it is important to em-
phasize that having the bills is a necessary condition, which
if it is not met, the operation cannot take place.
When we deal with time (as well as cause-effect) inter-
dependent scenarios, the execution order of the scenarios
defines, in most cases, these dependencies. The execution
order of a number of scenarios falls into one of the follow-
ing categories:

• succession;

• disjunction;

• conjunction;

• recurrence.

Succession refers to the fact that one scenario follows an-
other one. Disjunction indicates that at a certain moment
in time either one or another scenario is executed. Con-
junction shows that two (or more) scenarios are executed at
the same time, while recurrence denotes that a scenario is
executed iteratively a certain number of times.

4.2 Introducing dependency diagrams

In view of the fact that the purpose of our work is obtain-
ing state machine diagrams, the fact that different relation-
ships between scenarios result in different state machine
structures is of considerable importance. This is why we
believe that the relationships between scenarios should not
be ignored. In order to represent these relationships, we
will introducedependency diagrams. The notation used in
these diagrams is based on the notation used in Message
Sequence Charts [12].
One scenario is represented as a rounded rectangle, with
connectors forstart pointandend point(corresponding to
entry and exit points). The positioning in space of different
scenarios shows the order of execution.
The basic notation is illustrated in Fig.3.

Start point End point

Connection node

Start concurrency Synchronized
concurrency

Scenario

Scenario name

Figure 3. Basic notation for dependency diagrams

A simple example of a dependency diagram is shown in
Fig.4. It is based on the same example of ATM, where
we considerScenario startthe initial scenario (where the
user approaches the ATM, inserts the card, the card is vali-
dated and the main options screen is displayed). From this
point, the user can select either of the 3 operations of with-
drawing cash, depositing cash or transferring cash, that is
either ofSc. withdraw, Sc. depositandSc. transfersce-
narios respectively. We also suppose that when the user
changes his(her) password (Sc. chg. pass), the scenario
Sc. videotapetakes place simultaneously (that is, the user
is videotaped during the operation of changing the pass-
word). Fig.4 illustrates 3 alternative scenarios (any of them
can be executed afterScenario start), as well as the con-
currency of 2 scenarios,Scenario chg. passandScenario
videotape.
Several constraints must be kept in mind when representing
the dependency diagrams. Some of them are mentioned in
the following. The dependency diagram must have a sin-
gle start point (but can have several end points). The return
of a loop can only be linked to a connection node. The
end of synchronization point forces the flow of control to

 Sc. transfer Sc. withdraw

 Sc. videotape

 Sc. deposit

 Sc. chg. pass.

Scenario start

Figure 4. Simple dependency diagram for ATM

wait until the end of each of the concurrent scenarios before
continuing. One block containing these concurrent scenar-
ios is considered as one entity, so no derivation and loops
are possible before the resynchronization point.
The different internal elements of scenarios are not repre-
sented, but if an arrow links the border of two scenarios,
this means that there is a connection between two internal
scenario messages and (above the linking arrow) the name
of this linking message must be written.

4.3 Algorithm of transformation

Our methodology proposes the following major phases:

• identify and represent (as sequence diagrams) all sin-
gle scenarios;

• identify and represent (as dependency diagrams) the
relationships/dependencies between all scenarios;

• synthesize the state machines diagrams, based on the
information acquired in the previous two phases.

The third phase involves two steps,for each objectin the
system:
- creating one state machine diagram for each scenario;
- synthesizing the final state machine diagram from all the
state machine diagrams, based on the information in the
dependency diagrams.
The number of final state machine diagrams will be equal
to the number of objects in the system.
We present in the following an overview of the algorithm
used for synthesizing the initial state machine diagrams.
The algorithm is applied in the same way to all the existing
objects. Thus, for each object, it consists of the following
steps:

1. create empty state machine diagrams, one for each
scenario where the object appears;

2. for each state diagram, create all events (correspond-
ing to transitionsto the object);

3. for all transitionsfrom the object, create actions that
will lead to states and create the respective states;

4. set the right time sequence for the transitions.

The algorithm takes as input all scenarios in which the ob-
ject is involved and gives as output an equal number of state
machine diagrams.
Step 1 creates a state diagram for every distinct scenario
involving our object. Considering that we focus on the ob-
ject ATM and since in our example we presented only one
scenario, the one in Fig.1, step 1 will create only one empty
state machine diagram. (After obtaining the final state ma-
chine diagram forATM, we will proceed in the same way
for the other objects, likeUser, ConsortiumandBank).
Step 2 creates all events corresponding to transitions to the
object. In our example, it createsInsert card, Enter pass-
word, Bad account, Take card.
In step 3 the actions that lead to states are created, that is
Display main screen, Request password, Verify account,
Bad account msg., Print receipt, Eject cardand Request
take card. States with the same names are created as well.
During this step the default state has to be specified; in our
case, it isDisplay main screen.
At this point, the transitions are not set into the right time
sequence. This is the task of step 4, where - for all transi-
tions - the source and the destination are identified, that is
all transitions will be associated a starting point and an end
point.
We can notice here that, for example, there is no event re-
ceived by the ATM object in between the statesPrint re-
ceipt, Eject cardandRequest take card. This means that
we could merge the 3 states into a single one, since there is
nothing that could alter this succession of states.

4.4 Synthesizing the final state machine

After creating one state machine diagram for each scenario
where the object appears, we continue with the synthesis
of the final state machine diagram for that object. We will
combine all the initial state machines, making use of the
information in the dependency diagrams.
Based on the classification of relationships between sce-
narios, there are several rules that need to be applied in the
synthesis process:

• In a succession of two scenarios, the resulting state
machine diagram merges the two basic corresponding
state machine diagrams.

• For two scenarios related with a disjunction relation-
ship, their corresponding state machines should be
combined with OR.

• If two scenarios are executed at the same time, their
corresponding state machines must be combined with
AND.

• In the final phase, the state machine diagrams should
be refined, with respect to aggregation of states and
generalization of states.

We feel the need to specify here that a complete state ma-
chine diagram does not have to be extremely complex. At
any level, details can be omitted and can be modelled in
separate lower level diagrams. The concept ofstate hierar-
chy is very useful and can be used to decrease the number
of transitions in a state machine diagram.
The steps and rules above apply to disjoint scenarios only,
because the states of the component scenarios must be dis-
joint for proper composition. However, it is possible that
some scenarios overlap. Most of the times this happens
when scenarios describe variants of the same portion of the
process. The overlapping must be treated before the com-
position.
There are two choices for this: the scenarios that overlap
can be decomposed into mutually disjoint scenarios (sub-
scenarios) or they can be merged into a single, more com-
plex scenario. We consider the first option more appropri-
ate, since it allows an easier synthesis of the state machines.
Subscenarios have proved to be helpful in various situa-
tions. Mainly, as we mentioned above, when common be-
haviour is detected in two or more scenarios, we can split
the scenarios into subscenarios, so that the common part
appears as one single subscenario and therefore can be con-
sidered a unique entity. Also, when we have a complex
process described in one scenario, by splitting it into sub-
scenarios we can create more simple structures, so that the
requirements are understood easier. If we want to empha-
size a certain aspect inside one scenario, we can separate it
clearly from the rest of the scenario, and include it into one
subscenario. Summarizing, subscenarios are used in one of
the following situations:
- common behaviour is detected in several scenarios;
- a complex course of actions appears in a scenario;
- we need to enhance a situation with a concrete and precise
goal inside a scenario [9].
We should pay attention, though, to how many levels we
generate, in case we create subscenarios of subscenarios
and so on.

4.5 Consistency between scenarios and state
machines

The process of synthesis does not end with applying the al-
gorithm and the rules above. Before we can say that we
obtained a ”correct” final state machine diagram for each
object, we need to address the issue of consistency between
the state machines and the scenarios. We have to make sure
that the behaviour of the final state machine diagrams re-
flects the information contained in the scenarios, so that we
respect the requirements specifications. There are several
issues that we need to consider and we emphasize some of
them in the following.

Detecting implied scenarios.

After the synthesis of each state machine diagram for each
object, the diagrams may present sets of behaviours that do
not appear in the scenarios themselves. This unexpected
behaviour and the resulting possible scenarios are called
”implied scenarios” [15]. They are called implied because
they are not described in the scenario specification, and
therefore they allow unexpected behaviour, with respect to
the original specifications.
In our approach, the detection of implied scenarios is per-
formed manually, in the final phase, when the user checks
if unexpected (and/or undesired) behaviour is reflected in
the final state machine diagrams. If such a situation occurs,
the state diagrams are corrected manually and the implied
scenarios removed.

Messages exchanged between scenarios

There are situations when two scenarios can exchange mes-
sages between them. They could be combined into one sce-
nario, but often, for clarifying reasons, as well as for sim-
plicity reasons, this is not done. When illustrating the re-
lationships between them in the dependency diagrams, the
messages that are exchanged between the involved scenar-
ios have to be represented carefully. Here it is important to
identify correctly the origin and the destination of the mes-
sage, in order to obtain a correct state machine diagram.
We have specified in section 4.1 that the name of the mes-
sage linking the border of two scenarios must appear in the
dependency diagram.
We have to consider the above aspects when creating the
state machine diagram corresponding to the objects in-
volved in the exchange of messages. We must identify the
origin and the destination of the messages, as well as the
objects involved.
An example is given in Fig.5, where two scenarios,Sce-
nario withdrawandScenario check (bank)exchange two
messages between them, related to the amount of with-
drawal and the balance after the operation.

Conflicts between scenarios

During the phase of constructing the dependency diagrams
involving so many different scenarios, conflicts between
these scenarios are most probably detected. This is the time
when they should be solved, and this is where the designer
will take the decision related to these conflicts, so that the
dependency diagrams will be drawn accordingly. This is
not an automatic process, the user has the responsibility to
give the appropriate indications as to how to solve the con-
flicts.
We are currently in the phase of developing a system that
semi-automatically synthesizes state machine diagrams for
all objects. This is an interactive process, because users
must provide the information that cannot be automatically

Sc. check(bank) Sc. withdraw

Scenario start

Send amount

Send balance

Figure 5. Dependency diagram for ATM with messages
exchanged between two scenarios

inferred (like solving the conflicts between scenarios or re-
moving unwanted behaviour).

5 Related work

Several papers deal with the transformation of scenario
type models into behaviour models. SCED [16] is a tool for
automatic generation of statecharts from single scenarios.
In [13], an algorithm for generating UML statecharts from
sequence diagrams is given, but the relationships between
the sequence diagrams (as representations of scenarios) are
limited to the introduction of hierarchy. Schonberger et. al
[17] describe an algorithm for model transformation, more
precisely an algorithm for transforming collaboration dia-
grams into state diagrams.
Collaboration diagrams describe the interaction among ob-
jects, with the focus on space. This means that the relation-
ships (the links) among objects (in space) are of particular
interest and explicitly shown in the diagram. Sequence di-
agrams (as representation of scenarios) on the other hand,
although they also describe how objects interact and com-
municate with each other, focus on time. They show how
messages are sent and received between a set of objects in
order to perform a function. Although the two kinds of di-
agrams are similar (and called collectivelyinteraction dia-
grams), we believe that sequence diagrams are more suited
for use in the analysis phase, as they allow an easier repre-
sentation of the requirements (when we think of scenarios
in the usage of a system, it seems more natural and it re-
quires less effort to focus on the time flow in the develop-
ment of events).
Ryser and Glinz introduced in [8] a new kind of chart, de-
pendency chart, and a new notation to model the depen-
dencies between scenarios. However, the charts only show
the dependencies between various scenarios, without giv-
ing directions about the way they could be used for transla-
tion into state machine diagrams.

Actually, we can observe that most work in progress related
to object-oriented software development produces models
that are only loosely coupled. Most methods describe how
to specify models, yet do not sufficiently guide the devel-
oper in the task of transforming one model type into an-
other.

6 Conclusions and future work

We have described a method of synthesizing state machine
diagrams from multiple scenarios, with regard to the re-
lationships among them. We have introduced dependency
diagrams as a means of showing all the relationships be-
tween scenarios. Our approach offers complete require-
ments specifications, an accurate design, as well as an im-
proved traceability. We are currently in the process of de-
veloping a semi-automatic and interactive system that syn-
thesizes state machine diagrams from multiple interrelated
scenarios, with the help of the information contained in the
dependency diagrams.

7 Acknowledgements

The authors would like to thank Yann Jacquinot for his con-
tribution to the development of this work.

References

[1] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima,
C. Chen, Formal approach to scenario analysis,IEEE
Software11(2), 1994, 33-41.

[2] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W.
Lorensen.Object-oriented modeling and design(Pren-
tice Hall, 1991).

[3] Rational Software Corporation.Unified Modeling Lan-
guage (UML), http://www.rational.com.

[4] D. Harel, Statecharts: A visual formalism for com-
plex systems.Science of Computer Programming8(3),
1987, 231-274.

[5] J. Ali and J. Tanaka, Constructing statecharts from
event trace diagrams,Technical report of IEICE,
KBSE98-33, 1998, 41-47.

[6] J. Ali and J. Tanaka, An object-oriented approach to
generate executable code from the OMT-based dy-
namic model,Journal of Integrated Design and Pro-
cess Science2(4), 1998, 65-77.

[7] J. Ali and J. Tanaka, Implementing the dynamic be-
haviour represented as multiple state diagrams and ac-
tivity diagrams,Journal of Computer Science and In-
formation Management (JCSIM)2 (1), 2001, 22-34.

[8] J. Ryser, and M. Glinz, Using dependency charts to im-
prove scenario-based testing.Proceedings of the 17th
International Conference on Testing Computer Soft-
ware (TCS2000), Washington D.C., 2000.

[9] J. C. S. P. Leite, G. D. S. Hadad, J. H. Doorn, G. N.
Kaplan, A scenario construction process,Requirements
Engineering5, 2000, 38-61.

[10] S. Vasilache and J. Tanaka, Synthesizing statecharts
from multiple interrelated scenarios,ISFST2001,
ZhengZhou, China, 2001, 158-163.

[11] S. Vasilache and J. Tanaka, Translating OMT state di-
agrams with concurrency into SDL diagrams,Proceed-
ings of the International Symposium for Future Soft-
ware Technology (ISFST2000), Guiyang, China, 2000,
21-26.

[12] L. Helouet et C. Jard, La manipulation formelle de
scenarios,Modelisation des systemes reactifs, Vol. 0,
2001.

[13] J. Whittle and J. Schumann, Generating statechart
designs from scenarios.Proceedings of International
Conference on Software Engineering (ICSE2000),
Limerick, Ireland, 2000, 314-323.

[14] Object Management Group, Object Constraint Lan-
guage Specification, http://www.omg.org.

[15] H. Muccini, An approach for detecting implied sce-
narios, Scenarios and state machines: models, al-
gorithms, and tools, ICSE2002 Workshop, Orlando,
Florida, USA, 2002.

[16] K. Koskimies, T. Mannisto, T. Systa, J. Tuomi, Auto-
matic support for dynamic modeling of object-oriented
software.IEEE Software15(1), 1998, 87-94.

[17] S. Schonberger, R. K. Keller, I. Khriss, Algorithmic
support for model transformation in object-oriented
software development,Concurrency and Computation:
Practice and Experience, 13(5), 2001, 351-383.

[18] J. Whittle and J. Schumann, Generating statechart de-
signs from scenarios.Scenario-based round-trip engi-
neering, OOPSLA2000 Workshop, Tampere University
of Technology, 2000.

[19] I. Jacobson,Object-oriented software engineering: A
use case driven approach, (Addison Wesley, Reading,
Massachusetts, 1992).

[20] R. J. A. Buhr, R. S. Casselman.Use case maps for
object-oriented systems(Prentice Hall, 1996).

[21] F. Bordeleau, J. P. Corriveau, On the need for ”state
machine implementation” design patterns.Scenarios
and state machines: models, algorithms, and tools,
ICSE2002 Workshop, Orlando, Florida, USA, 2002.

