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ABSTRACT

In de£ning the behaviour of a system, requirement speci£-
cations make use of a number of scenarios that are interre-
lated in many ways. Current approaches, even though giv-
ing directions on how to translate them into statecharts, treat
each scenario separately. In this paper we propose a method
of synthesizing statecharts from multiple scenarios, with re-
spect to the relationships among them. We describe a set of
rules for the synthesis of statecharts from multiple scenarios,
as a means to properly describe the requirements speci£ca-
tions of a system.
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INTRODUCTION

Many popular object-oriented methodologies (OMT [13], UML
[12]) make use of scenarios as a means of capturing require-
ments speci£cations, as well as a means of communication
between users and software developers. Together with use
cases, scenarios have gained considerable popularity during
the recent years. A scenario is a sequence of events that oc-
curs during one particular execution of a system [13]. Sce-
narios may represent a concrete sequence of interactions steps
(instance scenario) or a set of possible interactions steps (type
scenario) [14]. Jacobson introduced the term use case for
type scenarios [8] and later introduced it into UML. In our
paper we will refer only to instance scenarios.
When it comes to the dynamic aspects of a system, state ma-
chines (particularly statecharts, originally introduced by D.
Harel [5]) represent a compact way of describing these as-
pects. Statecharts are £nite state machines extended with hi-
erarchy and orthogonality (parallelism), allowing the repre-
sentation of a system in a compact and elegant manner. It is
because of this feature that they have been preferred for rep-
resenting scenarios.
While scenarios represent a single trace of behaviour of a
complete set of objects, state machines (which we are going
to refer to as statecharts from now on) represent the com-
plete behaviour of a single object. The two concepts together
provide an orthogonal view of a system.
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Figure 1: Scenario for an ATM

OMT NOTATION AND AN EXAMPLE

Scenarios are represented as sequence diagrams in UML [12]
and as event trace diagrams in OMT [13]. Throughout our
paper (and in the coming example) we are going to focus on
the OMT notation.
To illustrate our ideas, let us consider the example of an
ATM (Automated Teller Machine). The ATMs are shared
by a consortium of banks. Each ATM accepts a cash card,
interacts with the user, communicates with the central sys-
tem to carry out the transaction, dispenses cash and prints
receipts. We describe typical scenarios for user interaction
with an ATM machine, like inserting or removing a card, en-
tering a password, deciding upon a certain type of transaction
(withdrawal, deposit) and so on.
Let us consider one possible scenario, described in the event
trace diagram in Fig.1. The event trace diagram shows each
object as a vertical line, and each event as a horizontal arrow
from the sending to the receiving object. Four objects are
involved in our scenario: user, ATM, consortium and bank.
The events in our example are: displaying the main screen
(from the ATM to the user), inserting a card (from the user to
the ATM), requesting password (from the ATM to the user),
entering password (from the user to the ATM), and so on.
A state corresponds to the interval between two events re-
ceived by an object. It re¤ects the response of an object
to input events. This response may include an action or a
change of state by the object. While events represent certain



points in time, states represent intervals of time.
In this scenario, after the user enters the card and then the
password, the ATM veri£es the card with the consortium,
which, in turn, veri£es it with the bank. The bank sends a
bad bank account event to the consortium, and the consor-
tium sends a bad account event to the ATM. The ATM, in
turn, sends a bad account message event to the user. In the
end, a receipt is issued, the card is ejected and the user is
requested to take the card back.

SYNTHESIZING STATECHARTS FROM SINGLE SCE-
NARIOS

Synthesizing statecharts from single scenarios represents the
basis for the synthesis from multiple scenarios. In the follow-
ing, we are going to describe concisely how to obtain state-
charts from single scenarios.
Statecharts are the ones that connect events and states. When
an event is received, the next state depends on the current
state as well as the event. A change of state caused by an
event is called a transition. When a transition is triggered,
the system leaves its current state, initiates the actions speci-
£ed for the transition and enters a new state.
A statechart is a graph whose nodes are states and whose di-
rected arcs are transitions (labeled by event names).
One statechart describes the behaviour of a single class of ob-
jects. The sequence of events in an event trace diagram corre-
sponds to paths through the statecharts of the corresponding
objects [1]. In order to construct a statechart for a class of ob-
jects, we have to consider the vertical line that corresponds
to the objects of that class. Based on [1], we can de£ne the
basic rule for generating statecharts from single scenarios:

Rule 1
For an object in an event trace diagram, incoming arrows rep-
resent events received by the object and they become transi-
tions. Outgoing arrows are actions and they become actions
of the transitions leading to the states. The intervals between
events become states. Before receiving any event, the object
is in the default state. Fig.2 illustrates the statechart corre-
sponding to the ATM object in the scenario given as example
in Fig.1. (Display main screen is considered to be the default
state.) Insert card, Enter password, Bad account, Take card
have become transitions, while Display main screen, Request
password, Verify account, Bad account message, Print re-
ceipt, Eject card and Request take card are the actions that
led to states with the same names respectively.

SYNTHESIZING STATECHARTS FROM MULTIPLE
SCENARIOS

Step 1
The £rst step in synthesizing statecharts from multiple sce-
narios is creating a statechart from each single scenario. This
is done according to Rule 1, presented in the previous sec-
tion.
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Figure 2: Statechart for the ATM class

Multiple scenarios
According to their de£nition, scenarios represent partial de-
scriptions of system behaviour [13]. In order to describe a
system, a number of scenarios is needed. Sometimes, one
scenario follows other scenario, or is conditioned by another
one. Many times the order and the timing of their execution
are not arbitrary [14].
For example, if we consider the scenario depicting the ac-
tion of withdrawing cash, this can be executed only in the
situation of the user possessing a valid card and inputting the
correct password. The scenario of the user applying for a
card with a bank must precede the scenarios involving trans-
actions with the bank in the user’s name. Therefore, we con-
sider that in order to be able to understand and describe the
whole system, we need to take into account not only the sce-
narios themselves, but also the interrelations between them.
Two or more scenarios can be related in many ways: the ex-
ecution of a scenario can depend on the execution time of
another one (e.g. it can only be executed after/before another
scenario), the necessary conditions for a scenario to be ex-
ecuted are described (and have to be ful£lled) in a different
one, one scenario represents a part of another, a set of scenar-
ios are very similar with each other, representing a variant of
a basic scenario and so on.
The relationships/dependencies between scenarios can be clas-
si£ed as follows:

• time dependencies;
• cause-effect dependencies;
• generalization dependencies.

A time dependency signi£es the fact that one scenario has to
be executed at an earlier/later moment in time than another
scenario. Only after the scenario that has to be executed £rst
has £nished its transitions, the second one can start its execu-
tion. It can also mean that two (or more) scenarios must be
executed at the same time.
For instance, as described above, a user must £rst prepare
a card and only then (s)he can perform transactions through
the ATM. Therefore, the scenario of creating a card precedes
the scenario of withdrawing cash and the two scenarios are
in a time dependency.



A cause-effect dependency re¤ects the fact that the execution
of a scenario can take place only the moment certain condi-
tions (established in another scenario) become valid.
For example, an ATM can satisfy the user’s request for with-
drawing cash only if it has been previously provided with a
number of bills/coins. The scenario of withdrawing cash de-
pends on the scenario of the ATM machine being ”loaded”
with a suf£cient amount of cash (considered to cover the
maximum amount that could be withdrawn during a whole
day). The condition of ”being able to provide enough cash”
is established in a different scenario from the one where the
transaction itself takes place.
A generalization dependency (or abstraction, as it is described
in [6]) emerges when one scenario is a constituent part of an-
other one or a variant of it.
As a rough example, we can consider that the scenario of
withdrawing cash is very similar to the scenario of deposit-
ing money. They can be generalized under one scenario,
”cash operations”, for example, where we have 2 variants
with slight differences between them (in the case of deposit:
the user selects ”deposit” and inserts the money in the spe-
cial slot in the ATM; in the case of withdrawal: the user se-
lects ”withdrawal” and the money is ejected through the same
slot).
We have seen in the previous section the basic rules for ob-
taining a statechart from a single event trace diagram. When
dealing with multiple scenarios (thus with multiple event trace
diagrams), a single statechart is obtained by combining all
the statecharts created from different scenarios (event trace
diagrams). In the following, we will de£ne the necessary
steps and the rules for merging statecharts generated from
scenarios related to each other.

Time dependency between scenarios
When we deal with time (as well as cause-effect) inter-dependent
scenarios, the execution order of the scenarios de£nes, in
most cases, these dependencies. The execution order of a
number of scenarios falls into one of the following categories:

• succession;
• disjunction;
• conjunction;
• recurrence.

Succession refers to the fact that one scenario follows an-
other one. Disjunction indicates that at a certain moment in
time either one or another scenario is executed. Conjunc-
tion shows that two (or more) scenarios are executed at the
same time, while recurrence denotes that a scenario is exe-
cuted iteratively a certain number of times. (J. Ryser and M.
Glinz use in [14] the terms ”sequence”, ”alternative”, ”con-
currency” and ”iteration”.)
All these considered, we can advance to the next step in cre-
ating a statechart from multiple scenarios.

Step 2
In a succession of 2 scenarios, the resulting statechart merges
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Figure 3: Scenario for withdrawing cash

the 2 basic corresponding statecharts. The one correspond-
ing to the scenario that has to be executed £rst will precede
the one corresponding to the succeeding scenario. If the
succeeding scenarios have common transitions to common
states, they should not appear twice; this allows us to de£ne
the next rule for merging scenarios:

Rule 2
If a transition is common to the 2 statecharts, it will be taken
only once in the £nal statechart. If we consider two simple
scenarios, one for changing the user password and one for
withdrawing cash afterwards, they share the following states
and events: requesting password, inserting password, con£r-
mation, as well as ejecting the card and requesting the user
to take the card. Therefore, they are going to be considered
only once in the £nal statechart.

Step 3
The next step in the synthesis of statecharts is the represen-
tation of the disjunction relationship between two scenarios.
This can be achieved using OR type substates.

Rule 3
Two scenarios related with a disjunction relationship should
be combined with OR.

For example, after the user introduces the card, then the pass-
word, and the account and password are con£rmed, several
scenarios are possible (from the user’s point of view): with-
drawing cash, depositing cash, transferring money into a dif-
ferent account etc.
Let us consider the scenario of withdrawing cash, represented
in Fig.3. The scenarios of depositing cash and transferring
money into a different account are very similar to the sce-
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nario above. For space reason, we will not represent them
here. The event ok account takes the system into the Display
options menu state. According to the user’s choice, one of
the states withdraw cash, deposit cash, transfer money will
be reached next. The concept of cluster is involved [5]; we
represent a single superstate as a rectangle, and inside it we
£gure the corresponding states of the subscenarios. This way
we obtain multilevel statecharts. We can cluster, therefore,
the 3 states into a new superstate, named TRANSACTION.
The semantics of the state TRANSACTION is the OR (actu-
ally, it is exclusive OR, that is XOR) of the 3 states mentioned
above.
The result is illustrated in Fig.4. The rectangle (which we
purposely £gured with thick black lines) is the one that clus-
ters the OR type substates. The 3 possible actions that lead
to a transition are Request withdraw, Request deposit and Re-
quest transfer. The user can decide upon only one of them
when the options menu is displayed; according to the user’s
decision (the action), the corresponding transition takes place
(Request withdraw, Request deposit or Request transfer).

Step 4
Advancing to the next step, we will merge scenarios con-
nected with a conjunction type dependency. The following
rule applies in this situation:

Rule 4
If two scenarios are executed at the same time, they must be
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Figure 5: Statechart with AND type substates

combined with AND type substates.

This type of combining the states captures the property that,
being in a state, the system must be in all of its substates.
Concurrent states become active at the same time whenever
the state they transited from (which is called superstate [1])
becomes active. The notation used in statecharts is the ac-
tual splitting of the rectangle representing the superstate into
components using dashed lines. The two (or more, if that is
the case) components represent the two concurrent scenarios.
As an example, let us consider 2 scenarios: one of them de-
picts the user requesting a transaction and the other one, si-
multaneous to this one, shows the video camera (that is part
of the ATM) recording the user’s actions. Previous to the ex-
ecution of these scenarios, the card has been inserted by the
user. The video camera starts recording as soon as the user
inserts the card into the ATM machine.
The superstate will be named ATM active. The 2 subscenar-
ios are named TRANSACTION and RECORDING (but we
will not detail them here.)
Fig.5 illustrates the statechart including the two concurrent
scenarios. When we deal with recurrence, that is with the re-
peating of a scenario a certain number of times, an arc point-
ing from the corresponding scenario’s terminal state to the
initial state is used. The iteration is performed either an es-
tablished number of times, or until a certain condition is ful-
£lled. This can be represented by specifying the condition on
a label situated on top of the arrow depicting the transition.
For example, if we consider the scenario describing the repet-
itive entering of an incorrect password by the user, we can
either allow the user to try as many times as (s)he desires,
or we can consider that the ATM will eject the card after 3
consecutive mistakes. In both cases, we represent the itera-
tion by adding a transition from the Request password state
to itself, like in Fig.6.
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Cause-effect dependencies between scenarios
Sometimes, several scenarios can only be executed when cer-
tain conditions (established in other scenarios) are true. The
conditions can be written as labels on top of the arrows show-
ing the corresponding transition between the involved states,
like in Fig.4. According to [6], the general syntax of an ex-
pression labeling a transition in a statechart can be de£ned as
e[c]/a, where e is the event that triggers the transition, c is the
condition that guards the transition from being taken unless it
is true when e occurs, and a is an action that is carried out if
and when the transition is taken. The condition that has to be
true in our case: the user has inserted the card properly into
the ATM machine. (This condition is tested in another sce-
nario, not presented here, where the user, for instance, could
insert the card upside-down.)
We can also represent directly a condition, by showing the
states corresponding to the conditioned scenario as being pre-
ceded by the states that correspond to the scenario that holds
the condition.
An example is given in Fig.7, which illustrates the fact that
it is impossible to enter the Request password state unless
Card properly inserted state has been already reached.

Introducing hierarchy. Generalization dependencies be-
tween scenarios

Step 5
The next step in the synthesis of the statechart is the re£ne-
ment.
The concept of state hierarchy can be used to decrease the
number of transitions in a statechart. In the case of 2 sce-
narios, where one is a variant of the other, or it represents
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Figure 8: Scenarios for ATM

a subscenario of another scenario, the dependency between
them can be represented by generalization. When we want
to synthesize subscenarios that are part of a certain scenario
in statecharts, we use, as previously described, the concept
of clustering. Since scenarios represent instances of a more
general behaviour, it becomes useful to introduce generaliza-
tions into the generated statechart [16]. As an example, let us
consider the two scenarios in Fig.8. We can see that the event
Cancel can occur in one of 2 states: Request password and
Verify account. It can be generalized, such that it can occur in
any state in which the card is inserted. Cancel cannot occur
in the situation of the card already ejected by the ATM. The
corresponding statechart is shown in Fig.9. Hierarchy was,
therefore, introduced, by partitioning the statechart over the
2 possible states in which the card can be: either inserted, or
already ejected by the ATM.

Other considerations

The steps presented so far do not represent the strict order in
which the synthesis of the statechart has to be performed. A
strict order cannot be imposed, since the synthesis is differ-
ent case by case. Sometimes, it is more convenient to con-
sider £rst the conjunction dependency between statecharts
and only afterwards the succession, for instance. The only
exception is the £rst step, where statecharts for single sce-
narios are created. Also, it comes natural that the re£nement
step is the last one that has to occur, after all the other aspects
are covered.
The steps (and rules) described here do not offer, unfortu-
nately, a means of checking whether all the scenarios have
been integrated and whether all the dependencies have been
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preserved in the process. A a manual veri£cation is almost
always necessary in the £nal stage of the statecharts synthe-
sis, but it can become time consuming if performed over the
entire process by the developer. As part of our current work,
a system that integrates all the rules and steps is in the early
phases of development. In the future, the system could offer
an automatic veri£cation of the preservation of all the states,
transitions and dependencies inside and among different sce-
narios.

RELATED WORK
Ryser and Glinz introduced in [14] a new kind of chart (de-
pendency chart) and a new notation to model the dependen-
cies between scenarios. However, the charts only show the
dependencies between various scenarios, without giving di-
rections about the way they are translated into statecharts.
SCED [9] is a tool for automatic generation of statecharts
from single scenarios. In [16], an algorithm for generating
UML statecharts from sequence diagrams is given, but the
relationships between the sequence diagrams (as representa-
tions of scenarios) are limited to the introduction of hierar-
chy.

CONCLUSIONS AND FUTURE WORK
We have taken into consideration the synthesis of statecharts
from multiple scenarios, connected with each other and de-
pending on each other in different ways. We have de£ned a
set of rules for synthesizing statecharts from all the existing
scenarios in the requirements de£nition of a system.
In the future, we intend to continue our work of implement-
ing a system that integrates all these rules, allowing for the
automatic generation of statecharts from multiple interrelated
scenarios, as well as the automatic testing of the consistency
between the scenarios and the statecharts.
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