
 Translating OMT state diagrams

with concurrency into SDL diagrams �
�

Simona Vasilache and Jiro Tanaka
Institute of Information Sciences and Electronics

University of Tsukuba, Tennodai 1-1-1,
Tsukuba, JAPAN

Tel. (+81)-298-535165

�������	
������������������������
��

�

�

ABSTRACT

�

Defining a complete methodology for the developing of an

application is a challenge for many software engineering

specialists. Although many such methodologies have been

developed, few of them take into consideration all the

aspects that can come up while developing complex

applications. Many times, although a general outline for the

methodology is being defined, for some important features,

like concurrency, no handling solution is given. Our paper

proposes a methodology that takes into consideration the

concurrency while integrating the object-oriented analysis

and specification design, by using the OMT methodology for

the requirements analysis, an extension of OMT*, OMT*+,

for system design and the formal description technique SDL

for detailed design. We propose the translation of OMT state

diagrams with concurrency into SDL diagrams with

concurrent processes.

�

KEYWORDS�

�

object-oriented methodology, OMT, object-oriented

analysis, OMT*, SDL, concurrency

�

INTRODUCTION

�

Many object-oriented methodologies covering the

development life cycle of an application have been proposed

during the last years. D. Sinclair et. al. integrated the

object-oriented methodology OMT with the formal

description technique SDL (Specification and Description

Language) [6]. The methodology combines the strength of

object-oriented analysis in the early phases and the strong

back-end given by SDL.

Object Modeling Technique (OMT) is a popular

methodology that focuses on creating a model of objects

from the real world and then using this model to develop

object-oriented software. SDL is a powerful specification

language, based on an appealing graphical syntax, developed

by CCITT-ITU. Because of its precise and complete

definitions, it represents an efficient support for verification.

Since its version in 1992, SDL-92, it supports

object-orientation, including also some features not seen in

many other object-oriented languages (like specialization

and redefinition of behaviour).

Involving OMT mainly in analysis and SDL in design, the

methodology bridges the gap between these two important

phases.

�

METHODOLOGY MILESTONES�

�

The initial phase of the developing of the application is the

requirements analysis. The fact that OMT is rigorous, but not

formal makes it ideal for the initial system specification.

After the system requirements, we have to advance to system

design. Since the system design will be translated into SDL,

which has a formally defined semantics, and considering that

OMT is informal, we need a formally defined subset of

OMT. Therefore, the model created in OMT is refined and

transformed into OMT*. OMT* is a subset of OMT

containing less, but well defined, syntactical constructs. The

detailed design phase involves transforming the OMT*

description into SDL and developing the SDL description

until it contains all the information needed to describe the

functionality of the system.

�

OMT* AND ITS RESTRICTIONS

�

OMT is used for the requirements analysis. Because OMT

does not have a defined semantics, it is not suited for design.

Only a small subset of OMT constructs have a clear and

unambiguous representation in SDL. In order to meet the

requirements of system design, a dialect of OMT, OMT*, has

been introduced [6]. OMT* is a substantial subset of the

most commonly used OMT constructs. The concepts in

OMT* can be translated into SDL directly, according to

certain transformation rules. The translation of an OMT*

specification into SDL is based on the definition of the

transformational semantics given in [8]. OMT* represents a

bridge between the informal description in OMT and the

formal description in SDL.

The model created in OMT is refined through several

iterations into OMT*. This involves, among other things,

adding design details, removing classes which are part of the

environment etc.

The syntax of OMT* contains a number of restrictions,

compared to OMT. These restrictions are reflected both in

the object model and dynamic model diagrams. The majority

of these restrictions apply to the object model (e.g. the

multiple inheritance is substituted with simple inheritance

with aggregation). As for the dynamic model, the OMT*

state diagrams are restricted to state diagrams that do not

contain concurrent substate diagrams. Since we consider

concurrency a very important aspect, almost inherent in most

of the dynamic model state diagrams, we propose the

possibility to use and translate concurrent substate diagrams

from OMT into SDL.

�

OMT’S DYNAMIC MODEL

�

In OMT, the dynamic model is the guide to concurrency.

State transition diagrams are used here; they are graphs with

states represented as nodes and transition between states

represented as arcs. State diagrams in OMT are refined into

state diagrams in OMT*, but, as we have mentioned, OMT*

is restricted not to contain diagrams with concurrent

substates. We propose the refinement of OMT diagrams into

what we will call OMT*+ diagrams (OMT* diagrams with

concurrency). The OMT state diagrams with concurrency are

therefore refined and transformed into OMT*+ diagrams.

The same rules for transforming OMT* into SDL apply in

the case of OMT*+.

To make our idea more understandable, let us consider the

example of a simple air conditioning system, operated with a

remote control device (Fig. 1).��
�

�
�

�

�

�

�

�

�

�

�

�

�

�

Fig.1. Remote control for an air conditioning system�
�

�

�

The remote control device contains several buttons for mode

(heater mode or cooler mode), speed (low, medium or high),

direction of the air stream and On/Off. We consider a

Controller as keeping control of the entire system. The

OMT*+ state diagram of the Controller is represented in Fig.

2 [1].

Speed

-Heater

-Cooler

 2

 4

 1

 3

-Low

-Med

-High

Mode

On/Off

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 2. State diagram of the Controller

�

A state diagram may contain several concurrent states that

become active simultaneously whenever their superstate

becomes active. Any transition into a state where concurrent

subdiagrams are involved activates each one of the existing

subdiagrams.

In our example, we have two possible states: Off and

Operating. These states are activated alternatively whenever

the On/Off button is activated.

Concurrency occurs within the Operating state, which is a

combination of 3 concurrent substates: Mode, Speed and

Direction. They all become active at the same time whenever

the Operating state gets activated. Each of the concurrent

states has a number of (non-concurrent) substates (Cooler,

Heater for Mode, respectively Medium, High for Speed; for

Direction, we have 4 possibilities: 1, 2, 3 or 4). Concurrency

within a single composite state of an object is shown, just

like in OMT, by partitioning the composite state into

subdiagrams with dotted lines [5].

�

SDL REPRESENTATION

�

When representing a system in SDL, we have 3 hierarchical

levels: system level (where the whole system is represented),

block level (where the system is divided into smaller parts

called blocks - each block contains a number of processes)

and process level (the lowest level - each process contains a

number of states).

Our air conditioning system contains 1 block (ACRemote)

with 3 processes: one process for mode selection

(SelectMode) , one for speed selection (SelectSpeed) and a

third one for direction selection (SelectDir).

The block level representation is shown in Fig. 3.

Speed

High

speedBut

Med Low
speedBut speedBut

Heater Cooler
modeBut

modeBut

Mode

Operating

ShowDirection
Dir

Direction

Off

on/offBut

on/offBut

[ChgDir1,

ChgDir2,

ChgDir3

ChgDir4]

Fig.3 Block diagram representation

[SetSpeed]

SelectMode

[ChgMdHeat,

ChgMdCool]

Block ACRemote

SelectSpeed

[ChgSpdLow,

ChgSpdMed,

ChgSpdHigh]

[SetDir]

SelectDir

[SetMode]

Processes describe the dynamic behaviour of the system in

SDL. The SelectMode, SelectSpeed and SelectDir processes

correspond to the Mode substate, Speed substate and

Direction substate, respectively, in the OMT*+ state

transition diagram.

Processes in the system and the environment communicate

with each other by sending signals through the signal routes

and channels. Signals can be of two types: input signals and

output signals. All the input and output signals have to be

declared at the highest level they are going to be used.

Input signals result from the events that trigger the transition

from a state into another state. In our case, what determines

the transitions is the pressing of mode button, speed button

and direction button. We will have, therefore, setMode,

setSpeed and setDir as input signals.

The SetMode signal corresponds to the activation of the

mode button (modeBut in the state transition diagram),

SetSpeed corresponds to the activation of the speed button

(speedBut), while SetDir corresponds to the pressing of the

Direction button (Dir). �

The output signals in our system are the ones sent to the

environment, resulting from changing the state into Cooler

or Heater (for the mode), Low, Med and High (for the speed)

and 1,2,3,4 for the direction. In the SelectMode process, we

have ChgMdHeat, ChgMdCool as output signals. For the

SelectSpeed process, the output signals involved are:

ChgSpdLow, ChgSpdMed, ChgSpdHigh, while for the

SelectDir process, the output signals are SetDir1, SetDir2,

SetDir3 and SetDir4.

In the block level representation, the signals travel on signal

routes and are transferred concurrently. We have no relative

ordering of different processes except the ordering implied

by the sending and the reception of signals. This implies that

anytime any of the input signals mentioned can be sent and

this has as effect the activation of the corresponding process,

having no effect on the other processes. The processes

involved are acting in this way concurrently.

In our example, any of the signals mentioned can be sent

anytime; for instance, if the SetSpeed signal is sent (speedBut

is pressed), the SelectSpeed process will be activated, while

this will have no effect on the SelectMode and SelectDir

processes.

�

CONCURRENCY IN SDL

�

The model of concurrency used in SDL assumes that

processes behave independently, that is the status in one

process is not known by other processes in the system.

The problem we are trying to solve is finding an

implementation method for concurrent processes.

Let us consider how we could implement two independent

concurrent processes, P1 (with n1 states) and P2 (with n2

states). In a description, we can choose either to describe the

resulting behaviour as one process or as two concurrent

processes.

If we consider describing the behaviour as one process, we

can obtain a process graph which will represent the

cross-product behaviour P1*P2 of the independent

behaviours [3].

Some aspects need to be considered here, like:

- size: P1*P2 (n1 x n2) is larger than the sum of P1 and P2 (n1 +

n2) – this is often referred to as “state explosion” [3];

- clarity: hard to overview;

- modularity: adding a new process to the behaviour product

is much more complex than adding a concurrent process

described separately.

We conclude here that describing the resulting behaviour of

the concurrent processes as only one process (considering

the cross-product behaviour of the processes) becomes

extremely difficult, especially when more than 2 such

concurrent processes are involved. Therefore, we should

partition the system such that independent behaviours are

expressed by separate concurrent processes.��

�

IMPLEMENTATION

�

We propose as a solution for handling the concurrency the

implementation of SDL processes in modules that

communicate with each other. Each signal may be

represented as a submodule belonging to the receiving

process. The receiving SDL process is implemented with one

such submodule for each input signal.

The communication between the modules can follow a

manner similar to the procedure calls [3].

In our example, we are interested in the representation of

SDL at the block level (Fig. 3 - ACRemote block).

We propose the implementation of each process as a module,

with each signal as a submodule belonging to its process .

The implementation scheme is represented in Fig. 4.

We will have this way one module for SelectMode , one for

SelectSpeed and one other module for SelectDirection.

In the SelectMode module we will have, therefore,

submodules for SetMode, ChgMdHeat and ChgMdCool. In

the same way, we will have SetSpeed, ChgSpdLow,

ChgSpdMed and ChgSpdHigh implemented by submodules

with the same names, respectively, and SetDir, ChgDir1,

ChgDir2, ChgDir3, ChgDir4 as submodules of the SelectDir

module.

The modules we use imply a transfer of control from the

calling to the called module.

The activation of each process is based on the classical

procedure calls. When a signal is sent, the receiver will take

priority over the sender and finish its transitions before

control is returned to the sender. In our example, when the

signal SetSpeed is sent, for instance, the receiving

SelectSpeed process will finish its transitions before control

is returned to the SetSpeed signal.

For each process, there may be one submodule for each input

signal or there may be one common submodule with the

signal type encoded as a parameter (like a parameter in a

procedure).

We chose this approach because this way we can

communicate both information and transfer control at the

same time. We implement the asynchronous communication

of SDL by means of synchronous communication.

�

Correspondence between the OMT*+ diagrams and our

representation

�

In our method we proposed the implementation of each SDL

process and its signals as separate modules (submodules). In

the OMT*+ state diagrams with concurrency, each substate

out of the concurrent ones is implemented as one module

(one process in the classical SDL representation). This

means that for each of the concurrent substates in Fig.2,

Mode, Speed and Direction we will have one module –

SelectMode, SelecSpeed and SelectDir

The events in the state transition diagrams, in turn, are

becoming signals in SDL and are implemented, in our

approach, as submodules of the receiving module (process).

Concretely, the SetMode submodule corresponds to the

modeBut event, the SetSpeed submodule corresponds to

speedBut event, while SetDir submodule corresponds to Dir

event.

�

Process SelectMode

ChgMdHeat

ChgMdCool

[SetMode]

Fig.4.Signals and processes implemented as separate modules

ChgSpdLow

ChgSpdMed

ChgSpdHigh

[SetSpeed]

Process SelectSpeed Process SelectDir

[SetDir]

ChgDir2

ChgDir3

ChgDir4

ChgDir1

This mechanism has the advantage that the modules

communicating in this manner offer the possibility of easy

implementation in almost any programming language of the

SDL specifications with concurrency problems. The

implementation phase is actually the phase following design

and, through our approach, it becomes straightforward and

easy to perform.�

�

CONCLUSIONS AND FUTURE WORK

�

Our method is based on combining an object-oriented based

analysis with a specification based design. Since in the

previous methodology [6] OMT* does not support

concurrent substate diagrams, OMT*+, an extension of

OMT*, has been introduced. OMT*+ contains mainly the

same constructs as OMT*, but, in addition, it supports

representation of concurrency. We use OMT for

requirements analysis, OMT*+ for system level design and

SDL for detailed design. As for the implementation, we have

proposed that SDL concurrent processes be implemented

through modules communicating with each other. We have

explained the correspondence between the OMT*+ state

transition diagrams with concurrency and our representation

In conclusion, we have a method of translating the OMT

state transition diagrams with concurrency into SDL

diagrams with concurrent processes, with a method of

implementation for these processes.

Problems to be solved still remain, like the ones occurring

from the restrictions imposed in OMT*. Not all the concepts

in OMT can be translated into OMT*, and research can be

carried out in finding solutions for these.

Also, we have in mind looking for solutions for the

validation, other than the one given in [7], which consists of

simulation of the SDL design using Message Sequence

Charts.

�

REFERENCES

�

1. Ali, J., Tanaka, J. An Object Oriented Approach to

Generate Executable Code from the OMT-based

Dynamic Model. Journal of Integrated Design and

Process Science , Vol.2, No.4 (1998), 65-77.

2. Ali, J. Automatic Code generation for Object Oriented

Models, Ph.D. Dissertation, University of Tsukuba

(1998).

3. Braek, R., Haugen, O. Engineering Real-Time Systems,

Prentice-Hall (1993).

4. Clyde, S. W. Notes on object-oriented modeling and

design, Brigham Young University (1992).

5. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F.,

Lorensen, W. Object-Oriented Modeling and Design,

Prentice-Hall (1991).

6. SDL Forum Society: http://www.sdl-forum.org/.

7. Synclair, D., Clynch, G., Stone, B. An Object-Oriented

Methodology from Requirements to Validation.

International Conference on Object Oriented

Information Systems, 18-20 December 1995, Dublin,

Ireland, Proceedings, 265-286.

��� Wasowski, M., Witaszek, D., Verschaeve, K.,

Wydaeghe, B., Holz, E., Jonckers, V. Methodology (The

Complete OMT*), HUB Report (1995).�

�

�

�

