
Framework for Interpreting Handwritten Strokes
using Grammars

Buntarou Shizuki1, Kazuhisa Iizuka1, and Jiro Tanaka1

Institute of Information Sciences and Electronics, University of Tsukuba
1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
{shizuki,iizuka,jiro}@iplab.is.tsukuba.ac.jp

Abstract. To support the rapid development of pen-based structured
diagram editors, we propose a framework for describing such editors.
The framework uses grammar to describe the context, i.e., the positional
relationship between handwritten strokes and other objects, which can be
used to interpret ambiguous results of pattern matching, and to describe
the syntax of the target diagrams. We implemented the framework by
extending our visual system, which supports the rapid prototyping of
structured diagram editors.

1 Introduction

Diagrams are used frequently. Examples used in UML software design include
class diagrams, sequence diagrams, and statecharts. Other examples are dia-
grams that represent data structures, such as binary trees, stacks, and lists.
Organization charts are widely used in daily life. Consequently, it would be con-
venient if there were a system that would allow users to sketch such diagrams on
tablet computers and electronic whiteboards using a stylus. The system would
then interpret the handwritten strokes to recognize the structure of the diagrams,
and then make them neater or transform them into other styles.

One big problem with developing such systems is the ambiguity that is in-
herent in handwritten strokes. Often, a single stroke cannot be interpreted from
its shape alone. However, the context of where a stroke is drawn can eliminate
some choices, and sometimes eliminate the ambiguity. For example, assume that
we are editing a binary tree. In this context, if a linear stroke is made within a
circular stroke, we might recognize the circular stroke as a circle, whereas the
linear stroke might be either the letter “l” or the number “1”.

Diagram editors that can analyze handwriting must be able to perform the
following two functions:

Recognize handwritten strokes: The editor must recognize a given hand-
written stroke using both the shape of the stroke and its context.

Parse the relationships between strokes: A spatial parser parses the rela-
tionships between recognized strokes that have been input in a random,
unordered fashion. The parser recognizes the structure of strokes and then
performs follow-up actions based on its interpretation of the results.

Fig. 1. A binary tree editor generated from its description

circle = 0.90

digit 0 = 0.90

digit 6 = 0.78

digit 8 = 0.78

circle

pattern
matcher

spatial parser
using

grammars

handwritten stroke

0
digit0

Fig. 2. The interpretation of handwritten strokes depending on the context

To help the systematic development of spatial parsers, spatial parser gener-
ators have been proposed, such as SPARGEN[1], VLCC[2], and Penguins[3]. A
spatial parser generator generates the parser automatically from the specifica-
tions of the target diagram. A grammar is used to describe these specifications.
However, no framework to assist in the systematic development of both of these
functions has been proposed.

To provide developers with the means to develop structured diagram editors
with these two functions, we propose a framework that recognizes ambiguous
handwritten strokes that are drawn as parts of structured diagrams. The frame-
work adopts an approach that uses grammar to describe: 1) the syntax of the
target domain, and 2) how handwritten strokes should be interpreted. The spa-
tial parser then selects appropriate candidates from several possible candidates
from a pattern matcher using the grammatical description given by the devel-
oper. We have implemented the proposed framework. Fig. 1 shows a structured
diagram editor for editing binary trees that was produced using our framework.

2 The Interpretation of Handwritten Strokes using
Grammar

Fig. 2 illustrates the proposed framework for interpreting handwritten strokes
using grammar. The pattern matcher performs its pattern-matching algorithm
for each handwritten stroke every time a stroke is drawn. The matcher then
produces an n-best list for each stroke. The spatial parser then parses the stroke
with other existing strokes and objects to find plausible choices in the n-best list
according to a given grammatical description. When the parser can select one

1 3

5

+*
Fig. 3. An example of a diagram: a binary tree

choice, then the stroke has been recognized. When the parsing fails, the parser
leaves the stroke on the canvas for future analysis.

For example, consider a diagram editor for binary trees. When the circular
stroke illustrated in Fig. 2 is drawn on the canvas, the pattern matcher produces
an n-best list of probabilities, which includes 0.90 for a circle, 0.90 for the digit
0, 0.78 for the digit 6, 0.78 for the digit 8, and so forth. The spatial parser will
select the digit 0 if a stroke is drawn within a circle, since the stroke can be
considered the label of a node. If the stroke is drawn around some text, the
parser will select a circle pattern.

Note that the framework uses both the shape of the stroke and its context,
i.e., the positional relationships involving the handwritten strokes and other
objects, to recognize a given handwritten stroke. This recognition enables the
selection of one choice from multiple choices, even if the choices have the same
or lower probabilities than others, such as the digit 0 and the circle in Fig. 2.

Below, Section 2.1 describes the grammar that we use in this paper, with a de-
scription of a sample structured diagram editor. Section 2.2 introduces a special
token that enables the developer to describe rules for recognizing a handwritten
stroke depending on its context.

2.1 Describing structured diagram editors using grammar

We use a grammar that is based on CMGs[4]. In this grammar, a rule has the
form:

P ::= P1, · · · , Pn where C with Attr and Action

This means that the non-terminal symbol P can be composed of the multiset
of symbols Pi(i = 1, · · · , n) when the attributes of all of the symbols satisfy
constraint C. The attributes of P are assigned in Attr. It also executes Action
after performing the application. Note that Action is our extension of the original
CMGs for convenience.

The two rules listed below are the specifications for binary trees (see Fig. 3),
and they are used as examples to provide explanations in the remainder of this
paper.

Rule 1
Node::=C:Circle,T:Text where (

close(C.mid,T.mid)
) {

Table 1. The attributes of a gesture token

name value

pattern n-best list from the pattern matcher

start x-y coordinates of the starting point

end x-y coordinates of the ending point

bound bounding box of the handwritten stroke

length length of the handwritten stroke

time turnaround time for inputting the stroke

cp = C.mid;
r = C.radius;

} { }

Rule 2
Node::=N1:Node,N2:Node,N3:Node,L1:Line,L2:Line where (

inCircle(L1.start,N1.cp,N1.r) && inCircle(L1.end,N2.cp,N2.r) &&
inCircle(L2.start,N3.cp,N3.r) && inCircle(L2.end,N2.cp,N2.r)

) {
cp = N2.cp;
r = N2.r;

} { }

The first rule indicates that a node consists of a circle and some text. The
midpoints of the circle and text should be close together. close(P1,P2) is the
user-defined function that tests whether the distance between P1 and P2 is within
a given threshold. If so, the circle and text are reduced to a node. The attribute
cp of the node is defined as specifying the connection point. This connection
point is the point at which an edge might be connected within a tolerable error
r, which is defined by the midpoint and radius of the circle. cp and r are for
later use. This rule does not specify any action.

The second rule defines the composition of the nodes. It specifies a composite
node consisting of three nodes, N1, N2, and N3, and two lines, L1 and L2. L1 must
start near the connection point N1 and end near N2. The condition is checked by
calling the user-defined function inCircle(P,C,R). The function tests whether
a given point P lies within a circle with center point C and radius R. Similarly, L2
should start near the connection point N3 and end near that of N2. The connection
point for the composite node itself is assigned as the connection point of N2.

By providing the spatial parser generator with these two rules, close(), and
inCircle(), a structured diagram editor specialized for editing binary trees can
be developed.

2.2 A handwritten stroke as token

Now, we introduce gesture tokens to enable grammar descriptions that refer to
handwritten strokes. A gesture token is instantiated for each handwritten stroke

every time a stroke is drawn. Each token holds an n-best list that the pattern
matcher produces. In addition, the token holds information that is derived di-
rectly from the stroke, such as the bounding box, the stroke, and the coordinates
of the starting point. Table 1 shows the attributes that a gesture token holds.
Attribute pattern is the n-best list and the others are derived from the stroke.

Gesture tokens can be referred to in the same ways as other kinds of tokens
that correspond to graphical objects such as circles and lines. This enables the
developer to specify what should happen when a handwritten stroke is drawn,
based on the shape of the stroke and the positional relationship between the
stroke and other objects, such as graphical objects that are already drawn on
the canvas and even other handwritten strokes.

2.3 Rules using gesture tokens

To explain how gesture tokens can be used in grammatical descriptions and how
handwritten strokes can be processed, this section presents a simple rule that
is described using a gesture token. This rule transforms a handwritten stroke
into a circle, as illustrated in Fig. 4, if the pattern matcher determines that the
probability that the stroke has a circular shape exceeds 0.5.

_CreateCircle::=G:Gesture where (

findGesture(G,"circle",0.5)

) {} {

createCircle(G.bound);

delete(G);

}

Fig. 4. The transformation of a circular
stroke into a graphical object

This rule indicates that CreateCircle consists of a gesture token G. G should
be circular. The user-defined findGesture(G,N,P) checks this condition. The
function tests whether a given gesture token, G, has a candidate named N whose
probability exceeds P. When this constraint holds, the rule creates a circle that is
inscribed within the bounding box of the stroke using createCircle(B), where
B is the bounding box of the circle being created.

Note that the rule deletes the handwritten stroke using delete(G). As a
result, the corresponding handwritten stroke disappears from the canvas. Simul-
taneously, the non-terminal symbol CreateCircle disappears, since its criteria
are no longer satisfied. This scheme systematically deletes unnecessary hand-
written strokes (G in this rule) and pseudo-tokens (CreateCircle in this rule)
that are introduced for the description of rules.

3 Context-dependent interpretation

When the user draws a handwritten stroke on a structured diagram editor, the
context of the stroke can be classified into the following three categories:

(1) Syntax for the target diagram that the structured diagram editor supports

(2a) Existing tokens around the handwritten stroke that are already recognized
as parts of the target diagram

(2b) Existing gesture tokens around the handwritten stroke that are not yet rec-
ognized as parts of the target diagram

Since category (1) is the precondition of a structured diagram editor, all the
rules assume the context of category (1). A rule that assumes only the context
of category (1) can be described by placing only a gesture token as the rule’s
multiset of symbols Pi. An example of a rule in this category is the rule described
in Section 2.3, which creates a circle that forms a binary tree. This rule assumes
only the syntax of binary trees. A rule that assumes the context of categories
(1) and (2a) should use tokens other than gesture tokens. A rule that assumes
the context of categories (1) and (2b) should use two or more gesture tokens.
The next two subsections describe examples of these two kinds of rules.

3.1 Interpretation depending on existing tokens

A rule for recognizing handwritten strokes depending on the existing tokens of
the target diagrams uses tokens of the syntax other than gesture tokens. As an
example of such rules, we show the rule for recognizing a linear handwritten
stroke drawn between two nodes like Fig. 5 as an edge between the two nodes
on a binary tree editor.

_CreateEdge::=G:Gesture,

N1:Node,N2:Node where (

findGesture(G,"line",0.3) &&

inCircle(G.start,N1.cp,N1.r) &&

inCircle(G.end,N2.cp,N2.r)

) {} {

createLine(N1.cp,N2.cp);

delete(G);

}

Fig. 5. The interpretation of a linear
stroke between two nodes

This rule holds that CreateEdge consists of a gesture token and two nodes.
The shape of the gesture token should be linear. The probability of the pattern
should exceed 0.3. The stroke should run from the connection point (see Sec-
tion 2.1) of one node to the connection point of another. This condition is checked
by calling the user-defined function inCircle(). If these conditions hold, a line
object is created between the connection points of the two nodes. Finally, the
gesture token is deleted. The line object that this rule creates is then processed
using the second rule described in Section 2.1. As a result, a composite node
consisting of the three nodes appears on the canvas.

Note that this rule requires very low probabilities, e.g., 0.3 is the threshold
for recognizing a linear handwritten stroke between two nodes as an edge. This
means that ambiguous strokes sketched roughly by the user can be recognized.
This powerful recognition is achieved by referring to the context.

3.2 Interpretation depending on existing gesture tokens

A rule for recognizing handwritten strokes depending on other handwritten
strokes uses two or more gesture tokens. As an example of such a rule, we show a
rule for recognizing two handwritten strokes, a circular stroke and a stroke inside
the circular stroke, as a circle and a text label that form a node of a binary tree,
as depicted in Fig. 6.

_CreateNode::=G1:Gesture,

G2:Gesture where (

findGesture(G1,"circle",0.5) &&

insideOf(G2.bound,G1.bound)

) {} {

C = createCircle(G1.bound);

createText(getString(G2),C.mid);

delete(G1);

delete(G2);

}

(a) (b)

(c)

(d) (e)

Fig. 6. The interpretation of a circular
stroke and a stroke written inside the cir-
cular stroke

This rule claims that if two gesture tokens G1 and G2 exist, and G2 is inside
G1, an inscribed circle in the bounding box of G1 is created. Moreover, new text
is placed at the center of the circle. Function getString(G) is used to obtain
the text string. It returns a string that corresponds to the textual pattern with
the highest score out of the textual patterns in the n-best list of G.

Note that this rule enables the user to draw the two strokes in any order.
For example, when the user draws the circular stroke first (Fig. 6a), and then
the inner stroke (Fig. 6b), the rule transforms the two strokes in the manner
depicted in Fig. 6c. The same result is obtained when the user draws the inner
stroke (Fig. 6d) and then the circular stroke (Fig. 6e). Therefore, the proposed
framework can provide the user with natural recognition.

4 Another Example

This section shows another example of a structured diagram editor that is de-
fined in this framework. Fig. 7 illustrates a network diagram editor that is defined
using nine rules. The user can handwrite a network node, a network segment,
and a connector that connects the network node with the network segment.

Fig. 7. Another example: a network diagram editor

pattern
database

pattern
matchercanvas

spatial
parser

action
performer

handwritten stroke

gesture token

result of parsing

grammatic
description

token

updated tokens

Fig. 8. Schematic diagram of the system

Recognized nodes, segments, and connectors are automatically connected and
tidied into squares, horizontal lines, and vertical lines, respectively. Since the con-
straint solver maintains all connections and alignments, all objects connected to
a dragged object are automatically moved for maintaining the structure. There-
fore, the user can drag objects while maintaining the syntax of the diagram.

Note that the user can handwrite such an annotation using free strokes such
as the “GW” with two arrows shown in Fig. 7, since the framework leaves all
handwritten strokes that are not recognized by the given rules.

5 Implementation

Fig. 8 is a system structure that implements the proposed framework. The figure
illustrates the components and the flow of data between the components. Below
is a description of how each of the components performs:

Canvas feeds the raw data of a handwritten stroke into the pattern matcher,
i.e., the coordinates of the sampled points, and receives a gesture token.
Moreover, when the state of the canvas changes, i.e., new tokens are cre-
ated, existing tokens are deleted, or the attributes of the existing tokens are
changed, the canvas requests that the spatial parser parse them.

Pattern matcher tries to match a stroke with the patterns registered in the
pattern database. The matcher returns the n-best list of the match and the
raw data of the stroke as a gesture token.

Spatial parser searches for applicable rules in the grammatical description. If
the parser finds one, it applies the rule and asks the action performer to
perform the rule’s action, if any. If the parser cannot find any applicable
rule, the gesture token remains on the canvas for future use. This mecha-
nism enables the recognition of handwritten strokes that depend on other
handwritten strokes, as described in Section 3.2.

Action performer executes the action of the applied rule and updates the
state of the canvas, if necessary.

We implemented the proposed framework using this system structure. Cur-
rently, we have implemented the pattern matcher using the recognizer distributed
as a part of SATIN[5]. We used Tcl/Tk, C, and Java for the implementation.

6 Related Work

Several frameworks have been proposed for processing a handwritten stroke de-
pending on its context.

Electronic Cocktail Napkin[6] supports the recognition of the configuration
of handwritten strokes in a drawing. The recognizer parses handwritten strokes
depending on the context, with user-defined production rules. Therefore, the
target application domain is similar to ours. However, the system only allows
several built-in gestures. In our framework, the developer can define new gestures
by describing rules.

Artkit[7] is a toolkit that supports the implementation of interactions using
handwritten input. The toolkit supports handwritten input using sensitive re-
gions. A sensitive region has a set of acceptable shapes of handwritten input
and algorithms for processing the drawn input. In Translucent Patches[8], the
notion of patches corresponds to the context. Each patch defines how handwrit-
ten strokes should be processed and displayed. Strokes drawn within the region
that a patch covers are processed using the patch. Flatland[9] is an electronic
whiteboard system. A context is defined as a behavior that defines how strokes
are processed and displayed. A handwritten stroke drawn by the user is added
to a segment, which can have a behavior. This means that the recognition of
new strokes is determined by the behavior. Plugging another behavior into the
segment can change the recognition of a stroke. The system provides several
behaviors. Unlike these systems, our proposed framework has the capacity to
define context as a grammatical description.

DiaGen[10] and Electronic Cocktail Napkin provide syntax-directed editing,
which enables the user to reshape a diagram, while maintaining the syntax of
the diagram. This framework can also support syntax-directed editing. We use
a constraint solver for this end. Rules can request the spatial parser to maintain
the conditions while objects are dragged, once objects are parsed to form a
non-terminal symbol. Currently, we use SkyBlue[11] as the constraint solver.

Our implementation can also realize the beautification described in [12] using
the capabilities of the constraint solver in Action. For example, we can align two
leaf nodes to make a composite node on a binary tree editor. This beautification
requires only the addition of a command in the Action of the second rule in
Section 2.1, which constrains the y coordinates of N1 and N2 to be the same.

7 Discussion

About recognition The proposed framework does not exclude existing algorithms
for recognition and interfaces for resolving ambiguity in handwritten strokes. By
incorporating such algorithms and interfaces, it is possible to achieve higher
precision in recognition. One example is the incorporation of the n-best list
interface for higher precision in character recognition. Then, the developer can
define a rule that activates the n-best list interface on nodes of binary trees. The
interface will show the possible recognition of the text, asking the user to indicate

an intended choice. When the user selects the choice from the list, recognition
of the text is fixed.

About description The framework enables a developer to define powerful rules for
recognizing handwritten strokes by utilizing a parsing algorithm that is derived
from CMGs. Moreover, the developer can describe both rules for recognition and
rules defining the syntax of a diagram in one specification language. However,
our current implementation forces the developer to embed some “magic num-
bers” directly in the grammatical description, such as 0.5 in the rule described
in Section 2.3, to define the threshold for recognition. Since such parameters are
dependent on the pattern database, the developer may have to re-tune the pa-
rameters in the rules when new patterns are registered in the pattern database.
We are now investigating how to separate such numeric parameters from the
grammatical description to allow developers to tune parameters more easily.

8 Summary

We proposed a framework to support the rapid development of pen-based struc-
tured diagram editors that support the recognition of a handwritten stroke de-
pending on its context. The framework uses CMGs to describe the context or
positional relationships of handwritten strokes and other objects, which in turn
can be used to interpret the ambiguous results of pattern matching and to de-
scribe the syntax of target diagrams.

References

1. Golin, E.J., Magliery, T.: A compiler generator for visual languages. IEEE VL’93
(1993), 314–321

2. Costagliola, G., Tortora, G., Orefice, S., Lucia, A.D.: Automatic generation of
visual programming environments. Computer 28 (1995) 56–66

3. Chok, S.S., Marriott, K.: Automatic construction of intelligent diagram editors.
ACM UIST’98 (1998) 185–194

4. Marriott, K.: Constraint multiset grammars. IEEE VL’94 (1994) 118–125
5. Hong, J.I., Landay, J.A.: SATIN: a toolkit for informal ink-based applications.

ACM UIST’00 (2000) 63–72
6. Gross, M.D., Do, E.Y.L.: Ambiguous intentions: a paper-like interface for creative

design. ACM UIST’96 (1996) 183–192
7. Henry, T.R., Hudson, S.E., Newell, G.L.: Integrating gesture and snapping into a

user interface toolkit. ACM UIST’90 (1990) 112–122
8. Kramer, A.: Translucent patches. JVLC 7 (1996) 57–77
9. Igarashi, T., Edwards, W.K., LaMarca, A., Mynatt, E.D.: An architecture for

pen-based interaction on electronic whiteboards. AVI 2000 (2000) 68–75
10. Minas, M., Viehstaedt, G.: DiaGen: A generator for diagram editors providing

direct manipulation and execution of diagrams. IEEE VL’95 (1995) 203–210
11. Sannella, M.: SkyBlue: a multi-way local propagation constraint solver for user

interface construction. ACM UIST’94 (1994) 137–146
12. Chok, S.S., Marriott, K., Paton, T.: Constraint-based diagram beautification.

IEEE VL’99 (1999) 12–19

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 2400
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 2400
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

