

Bridging the Gap between Analysis and Design

Using Dependency Diagrams

Simona Vasilache, Jiro Tanaka
University of Tsukuba, Japan

{simona,jiro}@iplab.cs.tsukuba.ac.jp

Abstract

Requirements specifications often make use of a
number of scenarios that are interrelated and that depend
on each other in many ways. However, they are often
treated separately, one by one. We propose a new type of
diagrams, named dependency diagrams, which are able
to illustrate the various kinds of relationships existing
between scenarios. We make use of a scenario matrix for
each scenario and we describe the transformation
process of scenarios into state machines, based on the
information in the scenario matrices, and that in the
dependency diagrams. The result is a number of state
machines that can be used for detailed design models and
code can further be generated from them. Using our
approach, we can bridge the gap between analysis and
design and we can bring the developer one step closer to
the implementation.

1. Introduction

The requirements of a system constitute the

constraints, desires and hopes we have concerning the
system under development [1].

As a first phase in the software development process,
the requirements analysis is a crucial one, because it
represents the starting point from where the whole
application will be developed and ultimately put into
practice. The main task of the requirements analysis is to
generate specifications that describe the behaviour of a
system unambiguously, consistently and completely [2].
UML [3], as well as other notations and object-oriented
methodologies, make use of scenarios as a handy means
of capturing requirements specifications. They are also
helpful as a means of communication between users and
software developers. Their usefulness relies not only on
the ability to capture requirements, but also on their
applicability when used in conjunction with other models.
We specifically refer to what is called "behaviour
models", that is models that describe the behaviour of a
system. When it comes to these behavioural aspects, state

machines (particularly statecharts, originally introduced
by D. Harel [4]), represent a compact and elegant way of
describing them. While scenarios represent a single trace
of behaviour of a complete set of objects, state machines
represent the complete behaviour of a single object. The
two concepts together provide an orthogonal view of a
system.

During the software development process, there is
often a gap between analysis and design; it is often
difficult to understand and have an overview of all the
behavioural aspects of all the parts that will constitute the
objects in the system. State machines can be used not
only for behavioural requirements specifications, but also
for detailed design models close to implementation [19].
Together with class diagrams, the information contained
in the state machines can be used during design, allowing
the representation of the behavioural aspects in a compact
and elegant manner. Moreover, code can be generated
from these state machines. Our contribution smoothens
the transition from analysis to design and helps with the
implementation process.

Scenarios are generally not independent of each other;
various relationships and dependencies connect them. We
make a classification of these relationships and in order to
represent them we propose a new type of diagrams. We
have called these diagrams dependency diagrams. We
propose an algorithm of transformation of scenarios into
state machines based on the information in the scenario
matrix of each scenario (a matrix of tuples including all
the messages exchanged between all objects part of that
scenario) and on the information in the dependency
diagrams. In this paper we detail this transformation,
along with an example illustrating the whole process.

The remainder of the paper is organized as follows:
section 2 offers an overview of scenarios and state
machines, while section 3 describes the dependency
diagrams and their properties. In section 4 we describe
the scenario matrix, we detail the algorithm of
transformation of scenarios into state machines, and
furthermore we offer an example that illustrates our
approach. Section 5 deals with related work and is
followed by conclusions in section 6.

2. Scenarios and state machines

2.1. Scenarios as sequence diagrams

A scenario is a sequence of events that occurs during

one particular execution of a system [2], it is one
particular “story” of using a system. In UML, scenarios
are represented as sequence diagrams. Sequence diagrams
illustrate how objects interact with each other. They focus
on showing the sequence of messages sent between
objects, that is the interaction between objects from a
temporal point of view.

Sequence diagrams have two axes: the vertical axis
shows time and the horizontal axis shows a set of objects.
An object is represented by a rectangle and a vertical bar
called the object's lifeline. Objects communicate by
exchanging messages, represented by horizontal arrows
drawn from the message sender to the message recipient.
The message sending order is indicated by the position of
the message on the vertical axis.

Scenarios represent a powerful means of expressing
the requirements specification of a system.

2.2. State machines

The representation used in UML for state machine

diagrams, called statechart diagrams, is inspired from
Harel's statecharts [4]. State machine diagrams describe
which states an object can have during its life cycle and
the behaviour in those states, along with what events
cause the state to change. All objects have a state that is a
result of previous activities performed by the object. An
object changes state when something happens, which is
called an event.

State machine diagrams have proved their usefulness
in the dynamic description of the behaviour of a system.
Together with class diagrams, they can be used during
design models and, furthermore, they can be used for
generating code directly from them.

3. Dependency diagrams

3.1. Dependency diagram notation

In order to describe completely the requirements

specification, a number of scenarios are needed; this is
because one scenario represents only one particular
“story” of the use of a system. These scenarios are not
independent of each other, several relationships and
dependencies interconnect them. When transforming the
scenarios into state machines, different relationships
between scenarios result in different state machine
structures. This fact is of considerable importance and

this is what determines us to believe that the relationships
between scenarios should be taken into account and
should be given a proper representation.

In order to be able to represent and make use of the
relationships existing between these various scenarios, we
have introduced dependency diagrams. The notation used
in these diagrams is based on the notation used in
Message Sequence Charts [5]. One scenario is
represented as a rounded rectangle, with connectors for
start point and end point (corresponding to entry and exit
points). The positioning in space of different scenarios
shows the order of execution. A connection node
(represented as a circle) helps connecting different
branches. Fig. 1 shows the basic notation used in
dependency diagrams.

Fig.1. Basic notation for dependency diagrams

3.2. Representation of dependencies

Depending on the application, the number of scenarios

varies; however small the number of all possible
scenarios, relationships and dependencies exist between
them. In numerous cases the order and the timing of the
execution of scenarios is not random, but well established.
Two or more scenarios can be related in many ways: the
execution of a scenario can depend on the execution time
of another one (e.g. it can only be executed after/before
another scenario), the necessary conditions for a scenario
to be executed are fulfilled in a different one, one
scenario represents a part of another, a set of scenarios are
very similar with each other, representing a variant of a
basic scenario, and so on.

To illustrate our point, let us consider a simplified
example of an ATM (Automated Teller Machine). A
consortium of banks shares the ATMs. Each ATM
accepts a cash card, interacts with the user, communicates
with the central system to carry out the transaction,
dispenses cash and prints receipts. We will use
(simplified) typical scenarios for user interaction with an
ATM machine, like inserting or removing a card, entering
a password, deciding upon a certain type of transaction

Connection node
Scenario name

Scenario

End point Start point

Synchronized
concurrency

Start
concurrency

(withdrawal, deposit or transfer) etc. For example, if we
consider the scenario depicting the action of withdrawing
cash, this can be executed only in the situation of the user
possessing a valid card. The scenario of the user
applying for a card with a bank must precede the
scenarios involving transactions with the bank in the
user’s name.

We have made a classification of the dependencies
between scenarios as follows:

- time dependencies;
- cause-effect dependencies;
- generalization dependencies.
Time dependencies reflect the fact that scenarios are

related in terms of time, that is one scenario has to be
performed before/after/simultaneously with another
scenario. For instance, as described above, a user must
first prepare a card and only then (s)he can perform
transactions through the ATM. Therefore, the scenario of
creating a card precedes the scenario of withdrawing cash
and the two scenarios together reflect a time dependency.

A cause-effect dependency illustrates the fact that the
execution of a scenario can take place only the moment
certain conditions (established in another scenario)
become valid. For instance, an ATM can satisfy the user’s
request for withdrawing cash only if it has been
previously provided with a large enough number of bills
and coins. The scenario of withdrawing cash depends on
the scenario of the ATM machine being “loaded” with a
sufficient amount of cash (considered to cover the
maximum amount that could be withdrawn during a
whole day). The condition of “being able to provide
enough cash” is established in a different scenario from
the one where the transaction itself takes place.

Although from the point of view of the representation
in the dependency diagrams, the time dependency and
cause-effect dependency are equivalent (they can be
represented in the same way), our belief is that it is
important to differentiate between them. We want to
emphasize when the dependency arises from a specific
time sequence (like having to insert the card and
password first, and only after that being able to perform a
transaction) and when a dependency arises from certain
conditions that are not explicitly time-related (at least, not
necessarily). For instance, a user could withdraw cash
only if the ATM has been provided with bills and coins.
We believe it is not so important to emphasize the time
sequence (supplying the bills and coins first and then
being able to satisfy the user’s request for cash), as it is
important to emphasize that having the bills is a necessary
condition, which if it is not met, the operation cannot take
place.

Finally, a generalization dependency (or abstraction,
as it is described in [6]) appears when one scenario is a
part of another one or a variant of it. Two scenarios can

be very similar and they can be generalized under one
scenario.

The execution order of a number of scenarios
(defining the time dependencies) falls into one of the
following categories: succession (one scenario follows
another one), disjunction (at a certain moment in time
only one of the scenarios involved is executed),
conjunction (the scenarios are executed simultaneously)
and recurrence (a scenario is executed a certain number of
times). (A similar classification has been made in [6]; the
authors used the terms “sequence”, “alternative”,
“concurrency” and “iteration”.)

A simple example of a dependency diagram is shown
in Fig. 2. It is based on the same example of ATM
introduced earlier. Here we consider Scenario start as the
initial scenario. The user approaches the ATM, inserts the
card, the card is validated and the main options screen is
displayed. From this point, the user can select any of the 3
operations of withdrawing cash, depositing cash or
transferring cash, that is either Scenario withdraw or
Scenario deposit or Scenario transfer respectively. We
also suppose that when the user changes his(her)
password (Scenario chg. pass.), the scenario Scenario
videotape takes place simultaneously, that is, the user is
being videotaped during the operation of changing the
password. (Although this is a simplified version of an
ATM system, it facilitates the illustration of the points we
intend to make).

Fig. 2 illustrates time-dependencies between several
scenarios, namely succession (Scenario start precedes the
other ones), the disjunction of 3 scenarios, Scenario
withdraw, Scenario deposit and Scenario transfer (any of
them can be executed after Scenario start), as well as the
conjunction of 2 scenarios, Scenario chg. pass. and
Scenario videotape.

Fig.2. Dependency diagram for several scenarios

of an ATM system

Scenario start

Scenario
chg. pass.

Scenario
videotape

Scenario
withdraw

Scenario
deposit

Scenario
transfer

We consider that dependency diagrams offer several
benefits in the process of requirements analysis and
throughout the whole development process of a system.

By representing the relationships between various
scenarios, we can easily tell what other scenarios would
be affected if one scenario were changed. This contributes
considerably to the enhancement of traceability. Also, we
beneficiate of an improved readability; by seeing how the
different scenarios are related to each other, we can have
a better overview of the requirements of the system.

Furthermore, by carefully representing all the possible
relationships, we can easily generate a multitude of test
cases. We know that, as Dijkstra famously stated three
and a half decades ago, “Program testing can be used to
show the presence of bugs, but never to show their
absence” [23]. We cannot find the errors only on the basis
of testing, but, nevertheless, by providing the opportunity
to derive numerous test cases, we can narrow down the
number of possible inconsistencies and errors in the
intended system.

4. Algorithm of transformation

4.1. Scenario matrix representation

In a scenario, more exactly in its representation as a

sequence diagram, there are a number of messages
exchanged between objects. Each such message is a tuple:
(Oi, Oj, Mijk,W).

Oi and Oj belong to the set of all objects involved in
the system. Mijk depicts the message exchanged between
object i and object j. There can be more messages
exchanged between the same objects, so k is used to
denote these different messages. Oi represents the source
of the message, while Oj represents the destination.

W symbolizes the type of message and its value can
be: 0 if the message is simple, 1 if the message is
synchronous or 2 if it is asynchronous. A simple message
denotes a flat flow of control; the control is passed from
one object to another, without any details about the
communication (these details are either not known or not
relevant). A synchronous message means that the
operation that handles the message is completed before
the caller resumes execution. An asynchronous message
reflects that there is no explicit return to the caller; the
sender continues to execute after sending the message
without waiting for it to be handled (this is typically used
in real-time systems where objects execute concurrently).

Therefore, we can represent a scenario as a matrix of
tuples including all the messages exchanged between all
objects part of that scenario.

For example, if we consider the ATM system, let us
assume a scenario Sc1 (represented in Fig. 3) where 4
objects are involved: User, ATM, Consortium and Bank.

Fig.3. Scenario (sequence diagram) for an ATM

In this scenario, after the user enters the card and then

the password, the ATM verifies the card with the
consortium, which, in turn, verifies it with the bank. The
bank sends a bad bank account event to the consortium,
and the consortium sends a bad account event to the ATM.
The ATM in turn sends a bad account message event to
the user. In the end, a receipt is issued, the card is ejected
and the user is requested to take the card back. The
messages exchanged in this example scenario are:
displaying the main screen (from the ATM to the user),
inserting a card (from the user to the ATM), requesting
password (from the ATM to the user), entering password
(from the user to the ATM), and so on.

Let us represent the objects User, ATM, Consortium
and Bank as O1, O2, O3 and O4 respectively. Our scenario
Sc1 will therefore be represented in the scenario matrix in
Fig. 4. (All the messages involved in this scenario are
synchronous messages.) There are 4 objects involved in
this scenario; from this scenario only, we can synthesize 4
state machine diagrams, one for each object.

O2, O1, M211, 1
O1, O2, M121, 1
O2, O1, M212, 1
O1, O2, M122, 1
O2, O3, M231, 1
O3, O4, M341, 1
O4, O3, M431, 1

Sc1 = O3, O2, M321, 1
O2, O1, M213, 1
O2, O1, M214, 1
O2, O1, M215, 1
O2, O1, M216, 1
O1, O2, M123, 1
O2, O1, M211, 1

Fig.4. Scenario matrix for scenario in Fig.3

In a complete description of this system, if we assume
that there are N scenarios, with a total number of P
objects, we will have N matrixes including all the
transitions between objects. The total number of state
machine diagrams will be equal to the total number of
objects in all scenarios. We will therefore have a number
of P final state machine diagrams.

4.2. Algorithm main phases

Our ultimate purpose is the synthesis of state

machines, one for each object existing in the collection of
scenarios. The algorithm of synthesis of state machine
involves the following major phases:

I. identify and represent (as sequence diagrams) all
single scenarios;

II. identify and represent (as dependency diagrams)
the relationships between all scenarios;

III. synthesize the state machines diagrams, based on
the information acquired in the previous two
phases.

As stated above, the number of state machine
diagrams will be equal to the total number of objects
involved in all the scenarios. For each object, the
synthesis of state machine (phase III) involves two steps:

1. creating the initial state machines, that is one state
machine diagram for each scenario;

2. synthesizing the final state machine diagram by
combining all the initial state machine diagrams.

For the creation of the initial state machines, the
sequence of events in one sequence diagram corresponds
to paths through the initial state machine diagrams of the
corresponding objects. We have to consider the vertical
line that corresponds to the desired object. For an object
in a sequence diagram, incoming messages represent
events received by the object and they become transitions
in the state machine diagram. Outgoing messages are
actions and they become actions of the transitions leading
to the states. The intervals between events become states.
Before receiving any event, the object is in the default
state.

Sequentially, when we create initial state machines,
we have to do the following:

1. create empty state machine diagrams, one for each
scenario where the object appears;

2. for each state diagram, create all events
(corresponding to transitions to the object);

3. for all transitions from the object, create actions
that will lead to states and create the respective
states;

4. set the right time sequence for the transitions.
In general, for an object Ox, we first have to identify

all scenarios where Ox is a participant. For each tuple (Oi,
Oj, Mijk, W) where Ox appears we will have:

- In case of (Ox, Oj, Mxjk, W), that is Ox is the
originator of the message, a state Sxjk (with the
same name as Mxjk) is born;

- In case of (Oi, Ox, Mixk, W), that is Ox is the
receiver of the message, a transition Tixk (with the
same name as Mixk) is born.

In this manner we will obtain two lists for the state
machine of object Ox: one containing all the states and
one containing all the transitions of the state machine.

Returning to our example, let us focus on the scenario
matrix that appears in Fig. 4. If we want to create the state
machine for object ATM (that is object O2), we will
obtain the following list of states: S211 (Display main
screen), S212 (Request password), S231 (Verify account),
S213 (Bad account msg.), S214 (Request take card), S215
(Eject card), S216 (Print receipt), and finally again S211
(Display main screen). The following is the list of
transitions for object O2 (that is the ATM object): T121
Insert card), T122 (Enter password), T321 (Bad account),
T123 (Take card).

The last step in creating the initial state machine is
setting the right time sequence. The scenario matrix
preserves the time sequence in the sequence diagrams,
where time flows from top to bottom. Thus, we will
follow the time sequence in scenario matrix Sc1.

The resulting state machine of object ATM,
synthesized from scenario Sc1, appears in Fig. 5

The default state has to be specified; in our case, it is
Display main screen.

Fig.5. State machine diagram for object ATM (O2)

We can observe here that there is no event received by

the ATM object in between the states Print receipt, Eject
card and Request take card. This means that we could
merge the 3 states into a single one, since there is nothing

that could alter this succession of states.

4.3. Synthesis of final state machine

In order to obtain the final state machines (one for

each object involved in the totality of scenarios), we will
make use of the information in the dependency diagrams.
As described previously, the dependency diagrams show
the possible relationships existing between scenarios.
Based on the classification of relationships between
scenarios, there are several rules that need to be followed:

- In a succession of two scenarios, the two
corresponding state machine diagrams will merge in
the final state machine diagram.

- If a transition is common to two scenarios, it will be
taken only once in the final state machine.

- For two scenarios related with a disjunction
relationship, their corresponding state machines
should be combined with OR.

- If two scenarios are executed at the same time, their
corresponding state machines must be combined
with AND.

Finally, the state machine diagrams need to be refined,
with respect to aggregation of states and generalization of
states.

To illustrate the synthesis of a state machine, let us
consider 3 scenarios of using the ATM: one for
withdrawing cash, one for depositing cash and one for
transferring money. The scenario for withdrawing cash,
Scenario_withdraw_initial, and its corresponding
scenario matrix are represented in Fig. 6.

Fig.6. Sequence diagram and scenario matrix for

Scenario_withdraw_initial

Scenarios Scenario_deposit_initial and

Scenario_transfer_initial, for depositing cash and
transferring money, have a similar representation. In the
case of each of these 3 scenarios, in the beginning, the
user inserts the card and password and they are validated
by the bank. This part is common to all 3 scenarios and
therefore we will separate it and call it Scenario start. We
will call the remaining parts of each of the 3 scenarios
Scenario withdraw, Scenario deposit and Scenario
transfer respectively.

Scenario start precedes all the other scenarios, thus
we deal with a succession relationship. The other 3
scenarios are related by disjunction (only one of them can
take place at a certain moment in time). The relationships
between all these scenarios appear in the dependency
diagram in Fig. 7.

Fig.7. Dependency diagram for scenarios

Scenario start, Scenario withdraw, Scenario
deposit and Scenario transfer

Based on this dependency diagram and on the

corresponding scenario matrixes (one of them appearing
in Fig. 6 and the other two similar to it, although not
represented here), and following the proposed algorithm,
we will obtain a state machine diagram as the one in Fig.
8. This state machine is already refined and we will
explain how we achieved this in the following. The event
OK account takes the system into one of the states where
cash can be withdrawn, cash can be deposited or money
can be transferred. Because they have the same entry and
the same exit actions, they can be combined into a
superstate. We represent a single superstate as a rectangle,
and inside it we figure the corresponding states resulting
from each scenario. We thus obtain multilevel state
machines. As introduced by Harel in [4], we use the
concept of cluster. We can cluster, therefore, the 3 sets of
states (corresponding to each possible action: withdraw,
deposit or transfer) into a new superstate, named
“transaction”. The semantics of the superstate
“transaction” is the OR of the 3 states mentioned above.

Scenario start

Scenario
transfer

Scenario deposit Scenario
withdraw

O2, O1, M211, 1
O1, O2, M121, 1
O2, O1, M212, 1
O1, O2, M122, 1
O2, O3, M231, 1
O3, O4, M341, 1
O4, O3, M431, 1
O3, O2, M321, 1
O2, O1, M213, 1

Scw = O1, O2, M123, 1
O2, O1, M214, 1
O1, O2, M124, 1
O2, O1, M215, 1
O2, O1, M216, 1
O2, O1, M217, 1
O2, O1, M218, 1
O1, O2, M125, 1
O2, O1, M211, 1

Fig.8. State machine for object ATM

The rectangle (which we figured on purpose with a

thicker black line) is the one that clusters the OR type
substates. The 3 possible actions that lead to transitions
are Request withdraw, Request deposit and Request
transfer. The user can decide upon only one of them at a
certain moment in time; according to the user’s decision
(the action), the corresponding transition takes place
(Request deposit, Request withdraw or Request transfer).

In our example we only constructed the state machine
for one object, ATM. In the same manner, we can obtain
the state machine diagrams for the other 3 objects that can
be found in the scenarios (User, Consortium and Bank).

4.4. Various issues

When creating the scenario matrices, it is important to

know what kinds of messages are involved, that is simple,
synchronous or asynchronous messages. All the messages
in our example are synchronous, so the operation that
handles the message is completed before the caller
resumes execution. This happens in the case of numerous
scenario messages, but it is not always the case. Dealing
with asynchronous messages raises the problem of setting
the right time sequence (the last step in creating the initial
state machines), making the issue more complex.

Another important issue appears after drawing the
dependency diagrams, when we might have several
messages, external to the scenarios, but which appear as a
result of the relationships between them. These messages

appear explicitly in the dependency diagrams. After we
identify the tuple for each of these messages, (Oi, Oj,
Mijk, W), we can apply the same rules as the ones above
and integrate the corresponding states and/or transitions
into the final state machine. However, we will have to
carefully consider the exact timing of occurrence of the
corresponding messages and, since this is an inter-
scenario message, we will have to identify its place inside
the originating scenarios, as well as inside the receiving
scenario.

The process of synthesis does not end with applying
the algorithm and the rules defined. Before we can say
that we obtained a correct and complete final state
machine diagram for each object, we need to address the
issue of consistency between the state machines and the
scenarios. We have to make sure that the behaviour of the
final state machine diagrams reflects the information
contained in the scenarios, so that we respect the
requirements specifications. This is a task that involves
the detection of implied scenarios, the unwanted
behaviour appearing in the state machines and the
possible conflicts that might arise. Only after solving
these problems the process of synthesis can reach its end.

The state machine diagrams obtained can be used for
the implementation. They offer a dynamic view of the
system, whereas a static view can be found in the class
diagram of the system. Attached to this class diagram, the
state machine diagrams can express the design model of
the system and can facilitate the code generation. There
are several tools and research papers (e.g. [20], [21], [22])
that deal with generating code from state machine
diagrams.

5. Related work

The problem of transforming scenario type models

into behaviour models is dealt with in several papers. In
[8], an algorithm for generating UML statecharts from
sequence diagrams is given, but the relationships between
the sequence diagrams (as representations of scenarios)
are limited to the introduction of hierarchy. SCED [9] is a
tool for automatic generation of statecharts from single
scenarios. Schonberger et al. [10] describe an algorithm
for model transformation, more precisely an algorithm for
transforming collaboration diagrams into state diagrams.
Collaboration diagrams describe the interaction among
objects, with the focus on space. This means that the links
among objects in space are of particular interest and
explicitly shown in the diagram. Sequence diagrams (as
representation of scenarios) on the other hand, although
they also describe the way objects interact and
communicate with each other, focus on time. Although
the two kinds of diagrams are similar (and called together
interaction diagrams), we favour the main use of

sequence diagrams during the analysis phase, as they
allow an easier representation of the requirements (when
we think of the usage of a system, i.e. of scenarios, we
mainly focus on the time flow in the development of
events).

In [6], Ryser and Glinz introduced a new kind of chart,
dependency chart, and a new notation to model the
dependencies between scenarios. However, the charts
only show the dependencies between various scenarios,
without giving directions about the way they could be
used for translation into state machine diagrams.

We can actually observe that there is much work
going on introducing methods that describe how to
specify models; however, these methods do not
sufficiently guide the developer in the task of
transforming one model type into another, leaving,
therefore, a gap between various phases of the application
development, especially between analysis and design.

6. Conclusions

In this paper we have offered an instrument addressed

to helping analysts and designers with the dynamic
aspects of developing an application, based on scenarios
and state machines. We have introduced dependency
diagrams illustrating the various dependencies and
relationships that exist between scenarios. They present
the advantage of an enhanced traceability, a better
overview and improved testing. We have also introduced
a scenario matrix as a representation of all the messages
exchanged between all objects in a scenario. Based on the
information in the scenario matrices and the dependency
diagrams, we have proposed a method of synthesizing
state machines form multiple interrelated scenarios. Our
approach bridges the gap between analysis and design
and brings the developer one step closer to the actual
implementation of the desired system.

References

[1] D. Harel, “From Play-In Scenarios to Code: An Achievable
Dream”, Fundamental Approaches to Software Engineering
(FASE2000), LNCS 1783, Springer-Verlag, 2000, pp. 22-34.
[2] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, C. Chen,
“Formal approach to scenario analysis”, IEEE Software 11(2),
1994, pp. 33-41.
[3] UML Resource Page, http://www.uml.org/.
[4] D. Harel, “Statecharts: A visual formalism for complex
systems”, Science of Computer Programming, 8(3), 1987, pp.
231-274.
[5] L. Helouet, C. Jard, “La manipulation formelle de scenarios”,
Modelisation des systemes reactifs, Vol. 0, 2001.
[6] J. Ryser and M. Glinz, “Using dependency charts to improve
scenario-based testing”, Proceedings of the 17th International

Conference on Testing Computer Software (TCS2000),
Washington D.C., 2000.
[7] J. Ali and J. Tanaka, “Constructing statecharts from event
trace diagrams”, Technical report of IEICE, KBSE98-33, 1998,
pp. 41-47.
[8] J. Whittle and J. Schumann, “Generating statechart designs
from scenarios”, Proceedings of International Conference on
Software Engineering (ICSE2000), Limerick, Ireland, 2000, pp.
314-323.
[9] K. Koskimies, T. Mannisto, T. Systa, J. Tuomi, “Automatic
support for dynamic modeling of object-oriented software”,
IEEE Software, 15(1), 1998, pp. 87-94.
[10] S. Schonberger, R. K. Keller, I. Khriss, “Algorithmic
support for model transformation in object-oriented software
development”, Concurrency and Computation: Practice and
Experience, 13(5), 2001, pp. 351-383.
[11] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W.
Lorensen, Object-oriented modeling and design, Prentice Hall,
1991.
[12] J. C. S. P. Leite, G. D. S. Hadad, J. H. Doorn, G. N. Kaplan,
“A scenario construction process”, Requirements Engineering, 5,
2000, pp. 38-61.
[13] H. Muccini, “An approach for detecting implied scenarios”,
Scenarios and state machines: models, algorithms, and tools,
ICSE2002 Workshop, Orlando, Florida, USA, 2002.
 [14] S. Vasilache and J. Tanaka, “Using dependency diagrams
in dynamic modelling of object-oriented systems”, Proceedings
of the 7th IASTED Conference on Software Engineering and
Applications SEA2003, Marina del Rey, USA, 2003, pp. 277-
283.
[15] Craig Larman, Applying UML and patterns, Prentice Hall,
2002.
[16] F. Bordeleau, J. P. Corriveau, “On the need for "state
machine implementation" design patterns”, Scenarios and state
machines: models, algorithms, and tools, ICSE2002 Workshop,
Orlando, Florida, USA, 2002.
[17] I. Jacobson, Object-oriented software engineering: A use
case driven approach, Addison Wesley, Reading, Massachusetts,
1992.
[18] M. Barnett, W. Grieskamp, W. Schulte, N. Tillmann, M.
Veanes, “Validating Use-Cases with the AsmL Test Tool”,
Proceedings of the Third International Conference on Quality
Software (QSIC2003), Dallas, USA, 2003.
[19] M. Mutz, M. Huhn, “Automated Statechart Analysis for
User-defined Design Rules”, Informatik-Bericht Nr. 2003-10,
2003.
[20] Fujaba Case Tool, http://www.fujaba.de/
[21] A. Knapp and S. Merz, “Model Checking and Code
Generation for UML State Machines and Collaborations”,
Proceedings of the 5th Workshop on Tools for System Design
and Verification,Reisenburg, Germany, 2002, pp. 59-64.
[22] I.A. Niaz and J. Tanaka, “Mapping UML Statecharts to
Java Code”, Proceedings of IASTED International Conference
on Software Engineering (SE 2004), Innsbruck, Austria, Feb.
2004, pp.111-116.
[23] E. W. Dijkstra, “Notes on structured programming”, T.H. –
Report 70-WSK-03, 1970.

