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Abstract 
 

Requirements specifications often make use of a 
number of scenarios that are interrelated and that depend 
on each other in many ways. However, they are often 
treated separately, one by one. We propose a new type of 
diagrams, named dependency diagrams, which are able 
to illustrate the various kinds of relationships existing 
between scenarios. We make use of a scenario matrix for 
each scenario and we describe the transformation 
process of scenarios into state machines, based on the 
information in the scenario matrices, and that in the 
dependency diagrams. The result is a number of state 
machines that can be used for detailed design models and 
code can further be generated from them. Using our 
approach, we can bridge the gap between analysis and 
design and we can bring the developer one step closer to 
the implementation.  
 
 
1. Introduction 

 
The requirements of a system constitute the 

constraints, desires and hopes we have concerning the 
system under development [1].  

As a first phase in the software development process, 
the requirements analysis is a crucial one, because it 
represents the starting point from where the whole 
application will be developed and ultimately put into 
practice. The main task of the requirements analysis is to 
generate specifications that describe the behaviour of a 
system unambiguously, consistently and completely [2]. 
UML [3], as well as other notations and object-oriented 
methodologies, make use of scenarios as a handy means 
of capturing requirements specifications. They are also 
helpful as a means of communication between users and 
software developers. Their usefulness relies not only on 
the ability to capture requirements, but also on their 
applicability when used in conjunction with other models. 
We specifically refer to what is called "behaviour 
models", that is models that describe the behaviour of a 
system. When it comes to these behavioural aspects, state 

machines (particularly statecharts, originally introduced 
by D. Harel [4]), represent a compact and elegant way of 
describing them. While scenarios represent a single trace 
of behaviour of a complete set of objects, state machines 
represent the complete behaviour of a single object. The 
two concepts together provide an orthogonal view of a 
system. 

During the software development process, there is 
often a gap between analysis and design; it is often 
difficult to understand and have an overview of all the 
behavioural aspects of all the parts that will constitute the 
objects in the system. State machines can be used not 
only for behavioural requirements specifications, but also 
for detailed design models close to implementation [19]. 
Together with class diagrams, the information contained 
in the state machines can be used during design, allowing 
the representation of the behavioural aspects in a compact 
and elegant manner. Moreover, code can be generated 
from these state machines. Our contribution smoothens 
the transition from analysis to design and helps with the 
implementation process. 

Scenarios are generally not independent of each other; 
various relationships and dependencies connect them. We 
make a classification of these relationships and in order to 
represent them we propose a new type of diagrams. We 
have called these diagrams dependency diagrams. We 
propose an algorithm of transformation of scenarios into 
state machines based on the information in the scenario 
matrix of each scenario (a matrix of tuples including all 
the messages exchanged between all objects part of that 
scenario) and on the information in the dependency 
diagrams. In this paper we detail this transformation, 
along with an example illustrating the whole process.  

The remainder of the paper is organized as follows: 
section 2 offers an overview of scenarios and state 
machines, while section 3 describes the dependency 
diagrams and their properties. In section 4 we describe 
the scenario matrix, we detail the algorithm of 
transformation of scenarios into state machines, and 
furthermore we offer an example that illustrates our 
approach. Section 5 deals with related work and is 
followed by conclusions in section 6. 



2. Scenarios and state machines 
 

2.1. Scenarios as sequence diagrams 
 
A scenario is a sequence of events that occurs during 

one particular execution of a system [2], it is one 
particular “story” of using a system. In UML, scenarios 
are represented as sequence diagrams. Sequence diagrams 
illustrate how objects interact with each other. They focus 
on showing the sequence of messages sent between 
objects, that is the interaction between objects from a 
temporal point of view. 

Sequence diagrams have two axes: the vertical axis 
shows time and the horizontal axis shows a set of objects. 
An object is represented by a rectangle and a vertical bar 
called the object's lifeline. Objects communicate by 
exchanging messages, represented by horizontal arrows 
drawn from the message sender to the message recipient. 
The message sending order is indicated by the position of 
the message on the vertical axis.  

Scenarios represent a powerful means of expressing 
the requirements specification of a system. 

 
2.2. State machines 

 
The representation used in UML for state machine 

diagrams, called statechart diagrams, is inspired from 
Harel's statecharts [4]. State machine diagrams describe 
which states an object can have during its life cycle and 
the behaviour in those states, along with what events 
cause the state to change. All objects have a state that is a 
result of previous activities performed by the object. An 
object changes state when something happens, which is 
called an event.  

State machine diagrams have proved their usefulness 
in the dynamic description of the behaviour of a system. 
Together with class diagrams, they can be used during 
design models and, furthermore, they can be used for 
generating code directly from them. 

 
3. Dependency diagrams 

 
3.1. Dependency diagram notation 

 
In order to describe completely the requirements 

specification, a number of scenarios are needed; this is 
because one scenario represents only one particular 
“story” of the use of a system. These scenarios are not 
independent of each other, several relationships and 
dependencies interconnect them. When transforming the 
scenarios into state machines, different relationships 
between scenarios result in different state machine 
structures. This fact is of considerable importance and 

this is what determines us to believe that the relationships 
between scenarios should be taken into account and 
should be given a proper representation.  

In order to be able to represent and make use of the 
relationships existing between these various scenarios, we 
have introduced dependency diagrams. The notation used 
in these diagrams is based on the notation used in 
Message Sequence Charts [5]. One scenario is 
represented as a rounded rectangle, with connectors for 
start point and end point (corresponding to entry and exit 
points). The positioning in space of different scenarios 
shows the order of execution. A connection node 
(represented as a circle) helps connecting different 
branches. Fig. 1 shows the basic notation used in 
dependency diagrams. 

 
  
 
 
 
 
 
 
 
 
 
 

 
Fig.1. Basic notation for dependency diagrams 

 
3.2. Representation of dependencies 

 
Depending on the application, the number of scenarios 

varies; however small the number of all possible 
scenarios, relationships and dependencies exist between 
them. In numerous cases the order and the timing of the 
execution of scenarios is not random, but well established. 
Two or more scenarios can be related in many ways: the 
execution of a scenario can depend on the execution time 
of another one (e.g. it can only be executed after/before 
another scenario), the necessary conditions for a scenario 
to be executed are fulfilled in a different one, one 
scenario represents a part of another, a set of scenarios are 
very similar with each other, representing a variant of a 
basic scenario, and so on. 

To illustrate our point, let us consider a simplified 
example of an ATM (Automated Teller Machine). A 
consortium of banks shares the ATMs. Each ATM 
accepts a cash card, interacts with the user, communicates 
with the central system to carry out the transaction, 
dispenses cash and prints receipts. We will use 
(simplified) typical scenarios for user interaction with an 
ATM machine, like inserting or removing a card, entering 
a password, deciding upon a certain type of transaction 
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(withdrawal, deposit or transfer) etc. For example, if we 
consider the scenario depicting the action of withdrawing 
cash, this can be executed only in the situation of the user 
possessing a valid card.  The scenario of the user 
applying for a card with a bank must precede the 
scenarios involving transactions with the bank in the 
user’s name.  

We have made a classification of the dependencies 
between scenarios as follows: 

-  time dependencies; 
-  cause-effect dependencies; 
-  generalization dependencies. 
Time dependencies reflect the fact that scenarios are 

related in terms of time, that is one scenario has to be 
performed before/after/simultaneously with another 
scenario. For instance, as described above, a user must 
first prepare a card and only then (s)he can  perform 
transactions through the ATM. Therefore, the scenario of 
creating a card precedes the scenario of withdrawing cash 
and the two scenarios together reflect a time dependency. 

A cause-effect dependency illustrates the fact that the 
execution of a scenario can take place only the moment 
certain conditions (established in another scenario) 
become valid. For instance, an ATM can satisfy the user’s 
request for withdrawing cash only if it has been 
previously provided with a large enough number of bills 
and coins. The scenario of withdrawing cash depends on 
the scenario of the ATM machine being “loaded” with a 
sufficient amount of cash (considered to cover the 
maximum amount that could be withdrawn during a 
whole day). The condition of “being able to provide 
enough cash” is established in a different scenario from 
the one where the transaction itself takes place. 

Although from the point of view of the representation 
in the dependency diagrams, the time dependency and 
cause-effect dependency are equivalent (they can be 
represented in the same way), our belief is that it is 
important to differentiate between them. We want to 
emphasize when the dependency arises from a specific 
time sequence (like having to insert the card and 
password first, and only after that being able to perform a 
transaction) and when a dependency arises from certain 
conditions that are not explicitly time-related (at least, not 
necessarily). For instance, a user could withdraw cash 
only if the ATM has been provided with bills and coins. 
We believe it is not so important to emphasize the time 
sequence (supplying the bills and coins first and then 
being able to satisfy the user’s request for cash), as it is 
important to emphasize that having the bills is a necessary 
condition, which if it is not met, the operation cannot take 
place.  

Finally, a generalization dependency (or abstraction, 
as it is described in [6]) appears when one scenario is a 
part of another one or a variant of it. Two scenarios can 

be very similar and they can be generalized under one 
scenario. 

The execution order of a number of scenarios 
(defining the time dependencies) falls into one of the 
following categories: succession (one scenario follows 
another one), disjunction (at a certain moment in time 
only one of the scenarios involved is executed), 
conjunction (the scenarios are executed simultaneously) 
and recurrence (a scenario is executed a certain number of 
times). (A similar classification has been made in [6]; the 
authors used the terms “sequence”, “alternative”, 
“concurrency” and “iteration”.) 

A simple example of a dependency diagram is shown 
in Fig. 2. It is based on the same example of ATM 
introduced earlier. Here we consider Scenario start as the 
initial scenario. The user approaches the ATM, inserts the 
card, the card is validated and the main options screen is 
displayed. From this point, the user can select any of the 3 
operations of withdrawing cash, depositing cash or 
transferring cash, that is either Scenario withdraw or 
Scenario deposit or Scenario transfer respectively. We 
also suppose that when the user changes his(her) 
password (Scenario chg. pass.), the scenario Scenario 
videotape takes place simultaneously, that is, the user is 
being videotaped during the operation of changing the 
password. (Although this is a simplified version of an 
ATM system, it facilitates the illustration of the points we 
intend to make).  

Fig. 2 illustrates time-dependencies between several 
scenarios, namely succession (Scenario start precedes the 
other ones), the disjunction of 3 scenarios, Scenario 
withdraw, Scenario deposit and Scenario transfer (any of 
them can be executed after Scenario start), as well as the 
conjunction of 2 scenarios, Scenario chg. pass. and 
Scenario videotape. 

 
Fig.2. Dependency diagram for several scenarios 

of an ATM system 
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We consider that dependency diagrams offer several 
benefits in the process of requirements analysis and 
throughout the whole development process of a system. 

By representing the relationships between various 
scenarios, we can easily tell what other scenarios would 
be affected if one scenario were changed. This contributes 
considerably to the enhancement of traceability. Also, we 
beneficiate of an improved readability; by seeing how the 
different scenarios are related to each other, we can have 
a better overview of the requirements of the system. 

Furthermore, by carefully representing all the possible 
relationships, we can easily generate a multitude of test 
cases. We know that, as Dijkstra famously stated three 
and a half decades ago, “Program testing can be used to 
show the presence of bugs, but never to show their 
absence” [23]. We cannot find the errors only on the basis 
of testing, but, nevertheless, by providing the opportunity 
to derive numerous test cases, we can narrow down the 
number of possible inconsistencies and errors in the 
intended system. 

 
4. Algorithm of transformation 
 
4.1. Scenario matrix representation 

 
In a scenario, more exactly in its representation as a 

sequence diagram, there are a number of messages 
exchanged between objects. Each such message is a tuple: 
(Oi, Oj, Mijk,W).  

Oi and Oj belong to the set of all objects involved in 
the system. Mijk depicts the message exchanged between 
object i and object j. There can be more messages 
exchanged between the same objects, so k is used to 
denote these different messages. Oi represents the source 
of the message, while Oj represents the destination.  

W symbolizes the type of message and its value can 
be: 0 if the message is simple, 1 if the message is 
synchronous or 2 if it is asynchronous. A simple message 
denotes a flat flow of control; the control is passed from 
one object to another, without any details about the 
communication (these details are either not known or not 
relevant). A synchronous message means that the 
operation that handles the message is completed before 
the caller resumes execution. An asynchronous message 
reflects that there is no explicit return to the caller; the 
sender continues to execute after sending the message 
without waiting for it to be handled (this is typically used 
in real-time systems where objects execute concurrently). 

Therefore, we can represent a scenario as a matrix of 
tuples including all the messages exchanged between all 
objects part of that scenario.  

For example, if we consider the ATM system, let us 
assume a scenario Sc1 (represented in Fig. 3) where 4 
objects are involved: User, ATM, Consortium and Bank. 

 

 
 

Fig.3. Scenario (sequence diagram) for an ATM 
 
In this scenario, after the user enters the card and then 

the password, the ATM verifies the card with the 
consortium, which, in turn, verifies it with the bank. The 
bank sends a bad bank account event to the consortium, 
and the consortium sends a bad account event to the ATM. 
The ATM in turn sends a bad account message event to 
the user. In the end, a receipt is issued, the card is ejected 
and the user is requested to take the card back.  The 
messages exchanged in this example scenario are: 
displaying the main screen (from the ATM to the user), 
inserting a card (from the user to the ATM), requesting 
password (from the ATM to the user), entering password 
(from the user to the ATM), and so on.  

Let us represent the objects User, ATM, Consortium 
and Bank as O1, O2, O3 and O4 respectively. Our scenario 
Sc1 will therefore be represented in the scenario matrix in 
Fig. 4. (All the messages involved in this scenario are 
synchronous messages.) There are 4 objects involved in 
this scenario; from this scenario only, we can synthesize 4 
state machine diagrams, one for each object. 

 
O2, O1, M211, 1 
O1, O2, M121, 1 
O2, O1, M212, 1 
O1, O2, M122, 1 
O2, O3, M231, 1 
O3, O4, M341, 1 
O4, O3, M431, 1 

Sc1  =      O3, O2, M321, 1 
O2, O1, M213, 1 
O2, O1, M214, 1 
O2, O1, M215, 1 
O2, O1, M216, 1 
O1, O2, M123, 1 
O2, O1, M211, 1 

 
Fig.4. Scenario matrix for scenario in Fig.3 



In a complete description of this system, if we assume 
that there are N scenarios, with a total number of P 
objects, we will have N matrixes including all the 
transitions between objects. The total number of state 
machine diagrams will be equal to the total number of 
objects in all scenarios. We will therefore have a number 
of P final state machine diagrams. 

 
4.2. Algorithm main phases 

 
Our ultimate purpose is the synthesis of state 

machines, one for each object existing in the collection of 
scenarios. The algorithm of synthesis of state machine 
involves the following major phases: 

I. identify and represent (as sequence diagrams) all 
single scenarios; 

II. identify and represent (as dependency diagrams) 
the relationships between all scenarios; 

III. synthesize the state machines diagrams, based on 
the information acquired in the previous two 
phases. 

As stated above, the number of state machine 
diagrams will be equal to the total number of objects 
involved in all the scenarios. For each object, the 
synthesis of state machine (phase III) involves two steps: 

1. creating the initial state machines, that is one state 
machine diagram for each scenario; 

2. synthesizing the final state machine diagram by 
combining all the initial state machine diagrams. 

For the creation of the initial state machines, the 
sequence of events in one sequence diagram corresponds 
to paths through the initial state machine diagrams of the 
corresponding objects.  We have to consider the vertical 
line that corresponds to the desired object. For an object 
in a sequence diagram, incoming messages represent 
events received by the object and they become transitions 
in the state machine diagram. Outgoing messages are 
actions and they become actions of the transitions leading 
to the states. The intervals between events become states.  
Before receiving any event, the object is in the default 
state. 

Sequentially, when we create initial state machines, 
we have to do the following: 

1. create empty state machine diagrams, one for each 
scenario where the object appears; 

2. for each state diagram, create all events 
(corresponding to transitions to the object); 

3. for all transitions from the object, create actions 
that will lead to states and create the respective 
states; 

4. set the right time sequence for the transitions. 
In general, for an object Ox, we first have to identify 

all scenarios where Ox is a participant. For each tuple  (Oi, 
Oj, Mijk, W) where Ox appears we will have: 

- In case of  (Ox, Oj, Mxjk, W), that is Ox is the 
originator of the message, a state Sxjk (with the 
same name as Mxjk) is born; 

- In case of  (Oi, Ox, Mixk, W), that is Ox is the 
receiver of the message, a transition Tixk (with the 
same name as Mixk) is born. 

In this manner we will obtain two lists for the state 
machine of object Ox: one containing all the states and 
one containing all the transitions of the state machine.  

Returning to our example, let us focus on the scenario 
matrix that appears in Fig. 4. If we want to create the state 
machine for object ATM (that is object O2), we will 
obtain the following list of states: S211  (Display main 
screen), S212  (Request password), S231  (Verify account), 
S213  (Bad account msg.), S214  (Request take card), S215  
(Eject card), S216  (Print receipt), and finally again S211  
(Display main screen). The following is the list of 
transitions for object O2 (that is the ATM object): T121  
Insert card), T122  (Enter password), T321  (Bad account), 
T123  (Take card). 

The last step in creating the initial state machine is 
setting the right time sequence. The scenario matrix 
preserves the time sequence in the sequence diagrams, 
where time flows from top to bottom. Thus, we will 
follow the time sequence in scenario matrix Sc1. 

The resulting state machine of object ATM, 
synthesized from scenario Sc1, appears in Fig. 5 

The default state has to be specified; in our case, it is 
Display main screen. 

 

 
 

Fig.5. State machine diagram for object ATM (O2) 
 
We can observe here that there is no event received by 

the ATM object in between the states Print receipt, Eject 
card and Request take card. This means that we could 
merge the 3 states into a single one, since there is nothing 



that could alter this succession of states. 
 

4.3. Synthesis of final state machine 
 
In order to obtain the final state machines (one for 

each object involved in the totality of scenarios), we will 
make use of the information in the dependency diagrams. 
As described previously, the dependency diagrams show 
the possible relationships existing between scenarios. 
Based on the classification of relationships between 
scenarios, there are several rules that need to be followed: 

- In a succession of two scenarios, the two 
corresponding state machine diagrams will merge in 
the final state machine diagram.  

- If a transition is common to two scenarios, it will be 
taken only once in the final state machine. 

- For two scenarios related with a disjunction 
relationship, their corresponding state machines 
should be combined with OR. 

- If two scenarios are executed at the same time, their 
corresponding state machines must be combined 
with AND. 

Finally, the state machine diagrams need to be refined, 
with respect to aggregation of states and generalization of 
states. 

To illustrate the synthesis of a state machine, let us 
consider 3 scenarios of using the ATM: one for 
withdrawing cash, one for depositing cash and one for 
transferring money. The scenario for withdrawing cash, 
Scenario_withdraw_initial, and its corresponding 
scenario matrix are represented in Fig. 6. 

 
 

 

 
 
Fig.6. Sequence diagram and scenario matrix for 

Scenario_withdraw_initial 

 
Scenarios Scenario_deposit_initial and 

Scenario_transfer_initial, for depositing cash and 
transferring money, have a similar representation. In the 
case of each of these 3 scenarios, in the beginning, the 
user inserts the card and password and they are validated 
by the bank. This part is common to all 3 scenarios and 
therefore we will separate it and call it Scenario start. We 
will call the remaining parts of each of the 3 scenarios 
Scenario withdraw, Scenario deposit and Scenario 
transfer respectively. 

Scenario start precedes all the other scenarios, thus 
we deal with a succession relationship. The other 3 
scenarios are related by disjunction (only one of them can 
take place at a certain moment in time). The relationships 
between all these scenarios appear in the dependency 
diagram in Fig. 7. 

 
 
 
Fig.7. Dependency diagram for scenarios 

Scenario start, Scenario withdraw, Scenario 
deposit and Scenario transfer 

 
Based on this dependency diagram and on the 

corresponding scenario matrixes (one of them appearing 
in Fig. 6 and the other two similar to it, although not 
represented here), and following the proposed algorithm, 
we will obtain a state machine diagram as the one in Fig. 
8. This state machine is already refined and we will 
explain how we achieved this in the following. The event 
OK account takes the system into one of the states where 
cash can be withdrawn, cash can be deposited or money 
can be transferred. Because they have the same entry and 
the same exit actions, they can be combined into a 
superstate. We represent a single superstate as a rectangle, 
and inside it we figure the corresponding states resulting 
from each scenario. We thus obtain multilevel state 
machines. As introduced by Harel in [4], we use the 
concept of cluster. We can cluster, therefore, the 3 sets of 
states (corresponding to each possible action: withdraw, 
deposit or transfer) into a new superstate, named 
“transaction”. The semantics of the superstate 
“transaction” is the OR of the 3 states mentioned above. 

Scenario start 

Scenario 
transfer

Scenario deposit Scenario 
withdraw

O2, O1, M211, 1 
O1, O2, M121, 1 
O2, O1, M212, 1 
O1, O2, M122, 1 
O2, O3, M231, 1 
O3, O4, M341, 1 
O4, O3, M431, 1 
O3, O2, M321, 1 
O2, O1, M213, 1  

Scw  =     O1, O2, M123, 1 
O2, O1, M214, 1 
O1, O2, M124, 1 
O2, O1, M215, 1 
O2, O1, M216, 1 
O2, O1, M217, 1  
O2, O1, M218, 1 
O1, O2, M125, 1 
O2, O1, M211, 1



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8. State machine for object ATM 
 
The rectangle (which we figured on purpose with a 

thicker black line) is the one that clusters the OR type 
substates. The 3 possible actions that lead to transitions 
are Request withdraw, Request deposit and Request 
transfer. The user can decide upon only one of them at a 
certain moment in time; according to the user’s decision 
(the action), the corresponding transition takes place 
(Request deposit, Request withdraw or Request transfer). 

In our example we only constructed the state machine 
for one object, ATM. In the same manner, we can obtain 
the state machine diagrams for the other 3 objects that can 
be found in the scenarios (User, Consortium and Bank).  

 
4.4. Various issues 

 
When creating the scenario matrices, it is important to 

know what kinds of messages are involved, that is simple, 
synchronous or asynchronous messages. All the messages 
in our example are synchronous, so the operation that 
handles the message is completed before the caller 
resumes execution. This happens in the case of numerous 
scenario messages, but it is not always the case. Dealing 
with asynchronous messages raises the problem of setting 
the right time sequence (the last step in creating the initial 
state machines), making the issue more complex. 

Another important issue appears after drawing the 
dependency diagrams, when we might have several 
messages, external to the scenarios, but which appear as a 
result of the relationships between them. These messages 

appear explicitly in the dependency diagrams. After we 
identify the tuple for each of these messages, (Oi, Oj, 
Mijk, W), we can apply the same rules as the ones above 
and integrate the corresponding states and/or transitions 
into the final state machine. However, we will have to 
carefully consider the exact timing of occurrence of the 
corresponding messages and, since this is an inter-
scenario message, we will have to identify its place inside 
the originating scenarios, as well as inside the receiving 
scenario. 

The process of synthesis does not end with applying 
the algorithm and the rules defined. Before we can say 
that we obtained a correct and complete final state 
machine diagram for each object, we need to address the 
issue of consistency between the state machines and the 
scenarios. We have to make sure that the behaviour of the 
final state machine diagrams reflects the information 
contained in the scenarios, so that we respect the 
requirements specifications. This is a task that involves 
the detection of implied scenarios, the unwanted 
behaviour appearing in the state machines and the 
possible conflicts that might arise. Only after solving 
these problems the process of synthesis can reach its end. 

The state machine diagrams obtained can be used for 
the implementation. They offer a dynamic view of the 
system, whereas a static view can be found in the class 
diagram of the system. Attached to this class diagram, the 
state machine diagrams can express the design model of 
the system and can facilitate the code generation. There 
are several tools and research papers (e.g. [20], [21], [22]) 
that deal with generating code from state machine 
diagrams. 

 
5. Related work 

 
The problem of transforming scenario type models 

into behaviour models is dealt with in several papers. In 
[8], an algorithm for generating UML statecharts from 
sequence diagrams is given, but the relationships between 
the sequence diagrams (as representations of scenarios) 
are limited to the introduction of hierarchy. SCED [9] is a 
tool for automatic generation of statecharts from single 
scenarios. Schonberger et al. [10] describe an algorithm 
for model transformation, more precisely an algorithm for 
transforming collaboration diagrams into state diagrams. 
Collaboration diagrams describe the interaction among 
objects, with the focus on space. This means that the links 
among objects in space are of particular interest and 
explicitly shown in the diagram. Sequence diagrams (as 
representation of scenarios) on the other hand, although 
they also describe the way objects interact and 
communicate with each other, focus on time. Although 
the two kinds of diagrams are similar (and called together 
interaction diagrams), we favour the main use of 



sequence diagrams during the analysis phase, as they 
allow an easier representation of the requirements (when 
we think of the usage of a system, i.e. of scenarios, we 
mainly focus on the time flow in the development of 
events).  

In [6], Ryser and Glinz introduced a new kind of chart, 
dependency chart, and a new notation to model the 
dependencies between scenarios. However, the charts 
only show the dependencies between various scenarios, 
without giving directions about the way they could be 
used for translation into state machine diagrams.  

We can actually observe that there is much work 
going on introducing methods that describe how to 
specify models; however, these methods do not 
sufficiently guide the developer in the task of 
transforming one model type into another, leaving, 
therefore, a gap between various phases of the application 
development, especially between analysis and design.  

 
6. Conclusions 

 
In this paper we have offered an instrument addressed 

to helping analysts and designers with the dynamic 
aspects of developing an application, based on scenarios 
and state machines. We have introduced dependency 
diagrams illustrating the various dependencies and 
relationships that exist between scenarios. They present 
the advantage of an enhanced traceability, a better 
overview and improved testing. We have also introduced 
a scenario matrix as a representation of all the messages 
exchanged between all objects in a scenario. Based on the 
information in the scenario matrices and the dependency 
diagrams, we have proposed a method of synthesizing 
state machines form multiple interrelated scenarios. Our 
approach bridges the gap between analysis and design 
and brings the developer one step closer to the actual 
implementation of the desired system. 
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