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ABSTRACT 

 
Requirements specification is one of the most important 
phases in developing a software application. In defining 
the behaviour of a system, requirements specifications 
make use of a number of scenarios that are interrelated in 
many ways. Current approaches, even though giving 
directions on how to translate them into state machines, 
treat each scenario separately. Because different 
relationships between scenarios result in different state 
machines, we believe it is significant to emphasize and 
represent these relationships. In order to illustrate them 
we propose a new type of diagrams named dependency 
diagrams. We offer a set of rules and steps for the 
synthesis of state machines from multiple inter-related 
scenarios, based on the initial scenarios and on the newly 
introduced dependency diagrams, as a means to properly 
describe the requirements specifications of a system. 
  
Keywords: requirements specification, dynamic 
modelling, scenarios, state machines 
 
 

1. INTRODUCTION 
 

Requirements analysis represents a crucial phase in the 
software development process. The main task of the 
requirements analysis is to generate specifications that 
describe the behaviour of a system unambiguously, 
consistently and completely. [1]. Several popular 
object-oriented methodologies and notations (like OMT 
[1], UML [2]) make use of scenarios as a means of 
capturing requirements specifications, as well as a means 
of communication between users and software developers. 
A scenario is a sequence of events that occurs during one 
particular execution of a system [1], it is one particular 
“story” of using a system. During the recent years, 
scenarios have gained considerable popularity. However, 
we believe that they have not yet received the attention 
they actually deserve and they have not been used up to 
their entire potential. Their usefulness lies not only in the 
ability to capture requirements, but also in their 
applicability when used in conjunction with other models. 

We specifically refer to what is called "behaviour models", 
that is models that describe the behaviour of a system. 
State machines (particularly statecharts, originally 
introduced by D. Harel [4]), represent a compact way of 
describing the aspects concerning the behaviour of a 
system. They allow the representation of the dynamic 
aspects in a compact and elegant manner and it is because 
of this feature that they have been preferred for 
representing scenarios.  
While scenarios represent a single trace of behaviour of a 
complete set of objects, state machines represent the 
complete behaviour of a single object. The two concepts 
together provide an orthogonal view of a system.  
Scenarios are generally not independent of each other; 
various relationships and dependencies connect them. We 
make a classification of these relationships and in order to 
represent them we propose a new type of diagrams. We 
call these diagrams dependency diagrams.  
Based on these dependency diagrams and on the initial 
scenarios, we give rules and steps of synthesis of state 
machines from multiple interrelated scenarios. We will 
describe in this paper the newly introduced diagrams and 
our method of synthesis. 
 
 

2. SEQUENCE DIAGRAMS AND STATE 
MACHINE DIAGRAMS 

 
Scenarios as sequence diagrams  
In UML, scenarios are represented as sequence diagrams. 
Sequence diagrams illustrate how objects interact with 
each other. They focus on showing the sequence of 
messages sent between objects, that is the interaction 
between objects from a temporal point of view. 
Sequence diagrams have two axes: the vertical axis shows 
time and the horizontal axis shows a set of objects. An 
object is represented by a rectangle and a vertical bar 
called the object's lifeline. Objects communicate by 
exchanging messages, represented by horizontal arrows 
drawn from the message sender to the message recipient. 
The message sending order is indicated by the position of 
the message on the vertical axis.  
 



 
State machine diagrams 
State machine diagrams represent state machines from the 
perspective of states and transitions. The representation 
used in UML’s state diagrams is inspired from Harel's 
statecharts [4]. State diagrams describe which states an 
object can have during its life cycle and the behaviour in 
those states, along with what events cause the state to 
change. All objects have a state; the state is a result of 
previous activities performed by the object. An object 
changes state when something happens, which is called an 
event. 
State diagrams may have a starting point and several end 
points. A state is represented as a rounded rectangle; 
between states there are state transitions, shown as a line 
with an arrow from one state to another. The state 
transitions may be labelled with the event causing the 
state transition. When the event happens, the transition 
from one state to another is performed (the transition is 
"triggered"). This means that the system leaves its current 
state, initiates the actions specified for the transition and 
enters a new state. A state transition normally has an event 
attached to it, but not necessarily. If an event is attached 
to a state transition, the transition will be performed when 
the event occurs. If a state transition does not have an 
event specified, the attached state will change when the 
internal actions in the source state are executed. Therefore, 
when all the actions in a state are performed, a transition 
without an event will automatically be triggered.  
State machine diagrams have proved their usefulness in 
the dynamic description of the behaviour of a system. 
Moreover, they can be used for generating code directly 
from them, since each of them describes the complete 
behaviour of one object. 
 
 
3. RELATIONSHIPS BETWEEN SCENARIOS; 
DEPENDENCY DIAGRAMS 
 
Classification of relationships 
Since a scenario represents a particular “story” of the 
execution of a system, in order to describe a system 
completely we need to know all the possible scenarios. 
Depending on the application, the number of scenarios 
varies; however small the number of all possible scenarios 
is, relationships, dependencies exist between them. 
Sometimes, one scenario follows other scenario or is 
conditioned by another one. Many times the order and the 
timing of their execution are not arbitrary.  
To illustrate our point, let us consider a simplified 
example of an ATM (Automated Teller Machine). A 
consortium of banks shares the ATMs. Each ATM 
accepts a cash card, interacts with the user, communicates 
with the central system to carry out the transaction, 
dispenses cash and prints receipts. We will use 
(simplified) typical scenarios for user interaction with an 
ATM machine, like inserting or removing a card, entering 
a password, deciding upon a certain type of transaction 
(withdrawal, deposit or transfer) and so on. 
For example, if we consider the scenario depicting the 
action of withdrawing cash, this can be executed only in 
the situation of the user possessing a valid card.  The 
scenario of the user applying for a card with a bank must  

 
precede the scenarios involving transactions with the bank 
in the user’s name. 
This is why we consider that in order to be able to 
understand and describe the whole system, we need to 
take into account not only the scenarios themselves, but 
also the interrelations between them.  
When trying to synthesize state machines from scenarios, 
different relationships between scenarios result in 
different state machine structures. This fact is of 
considerable importance and in order to consider all the 
implications, we make a classification of the relationships 
and dependencies between scenarios as follows: 

-  time dependencies; 
-  cause-effect dependencies; 
-  generalization dependencies. 

The execution order of a number of scenarios (defining 
the time dependencies) falls into one of the following 
categories: succession (one scenario follows another one), 
disjunction (at a certain moment in time either one of the 
scenarios is executed), conjunction (the scenarios are 
executed simultaneously) and recurrence (a scenario is 
executed a certain number of times). 
 
Introducing dependency diagrams 
In order to be able to represent and make use of these 
relationships, we introduce dependency diagrams. The 
notation used in these diagrams is based on the notation 
used in Message Sequence Charts [5]. One scenario is 
represented as a rounded rectangle, with connectors for 
start point and end point (corresponding to entry and exit 
points). The positioning in space of different scenarios 
shows the order of execution. 
A simple example of a dependency diagram is shown in 
Fig.1. It is based on the same example of ATM, where we 
consider Scenario start the initial scenario (where the user 
approaches the ATM, inserts the card, the card is 
validated and the main options screen is displayed). From 
this point, the user can select either of the 3 operations of 
withdrawing cash, depositing cash or transferring cash, 
that is either of Sc. withdraw, Sc. deposit and Sc. transfer 
scenarios respectively. We also suppose that when the 
user changes his(her) password (Sc. chg. pass.), the 
scenario Sc. videotape takes place simultaneously (that is, 
the user is videotaped during the operation of changing 
the password). 
Fig.1 illustrates 3 alternative scenarios (any of them can 
be executed after Scenario start), as well as the 
concurrency of 2 scenarios, Scenario chg. pass. and 
Scenario videotape.  
Several constraints must be kept in mind when 
representing the dependency diagrams. Some of them are 
mentioned in the following. The dependency diagram 
must have a single start point (but can have several end 
points). The return of a loop can only be linked to a 
connection node. The end of synchronization point forces 
the flow of control to wait until the end of each of the 
concurrent scenarios before continuing. One block 
containing these concurrent scenarios is considered as one 
entity, so no derivation and loops are possible before the 
resynchronization point. 
 
 



 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Dependency diagram for several scenarios of an 
ATM system 

 
 

By representing the relationships between various 
scenarios, we can easily tell what other scenarios would 
be affected if one scenario were changed. This contributes 
considerably to the enhancement of traceability. 

 
 

4. SYNTHESIS OF STATE MACHINES FROM 
MULTIPLE SCENARIOS 

 
In a scenario, more exactly in its representation as a 
sequence diagram, there are a number of messages 
exchanged between objects. Each such message is a tuple: 
(Oi, Oj, Mijk), where Oi and Oj belong to the set of all 
objects involved in the system and Mijk depicts the 
message exchanged between object i and object j. There 
can be more messages exchanged between the same 
objects, so k is used to denote these different messages. 
Therefore a scenario will be a matrix of tuples including 
all the messages exchanged between all objects part of 
that scenario. 
For example, if we consider the ATM system, let us 
assume a scenario (represented in Fig.2) where 4 objects 
are involved: user, ATM, consortium and bank. We will 
represent these objects as O1, O2, O3 and O4.  
The messages exchanged in our example are: displaying 
the main screen (from the ATM to the user), inserting a 
card (from the user to the ATM), requesting password 
(from the ATM to the user), entering password (from the 
user to the ATM), and so on. In this scenario, after the 
user enters the card and then the password, the ATM 
verifies the card with the consortium, which, in turn, 
verifies it with the bank. The bank sends a bad bank 
account event to the consortium, and the consortium 
sends a bad account event to the ATM. The ATM, in turn, 

sends a bad account message event to the user. In the end, 
a receipt is issued, the card is ejected and the user is 
requested to take the card back. 

Scenario 
videotape 

Scenario 
chg.pass. 

Scenario 
withdraw 

Scenario 
deposit

Scenario 
transfer 

Scenario start 
 
 
 

 
 

Fig. 2 Sequence diagram (scenario) of an ATM system 
 
 
Our scenario S1 will therefore be the following matrix: 
 
 O2, O1, M211 
 O1, O2, M121 
 O2, O1, M212 
 O1, O2, M122 
 O2, O3, M231 
 O3, O4, M341 
 O4, O3, M431 

S1 =  O3, O2, M321 
O2, O1, M213 
O2, O1, M214 
O2, O1, M215 
O2, O1, M216 

 O1, O2, M123 
 O2, O1, M217 
 
There are 4 objects involved in this scenario; from this 
scenario only, we can synthesize 4 state machine 
diagrams (one for each object). 
In a complete description of this system, there are N 
scenarios, with a total number of P objects. We will have 
N matrixes including all the transitions between objects. 
The total number of state machine diagrams will be equal 
to the number of objects in all scenarios. We will 
therefore have a number of P final state machine 
diagrams. 
 
Algorithm of synthesis 
In order to synthesize the state machine diagrams for all 
objects, our methodology proposes the following phases: 
I. identify and represent (as sequence diagrams) all 

single scenarios; 
II. identify and represent (as dependency diagrams) 

the relationships between all scenarios; 
III. synthesize the state machines diagrams, based on 

the information acquired in the previous two 
phases. 



The synthesis of the state machine diagrams involves two 
steps, for each object in the system: 

The number of initial state machines for an object Oi will 
be equal to the number of scenarios in which the object Oi 
is involved.  1. creating one initial state machine diagram for each 

scenario; Sequentially, the steps of creating initial state machines 
are the following: 2. synthesizing the final state machine diagram from all 

the state machine diagrams, based on the 
information in the dependency diagrams.  

1. create empty state machine diagrams, one for each 
scenario where the object appears; 
2. for each state diagram, create all events (corresponding 
to transitions to the object); 

  
Creation of initial state machines 

3. for all transitions from the object, create actions that 
will lead to states and create the respective states; 

The creation of the initial state machines represents the 
basis for the synthesis of the final state machine. In the 
following, we are going to succinctly describe how to 
obtain these state machines. 

4. set the right time sequence for the transitions. 
Specifically, step 1 creates a state diagram for every 
distinct scenario involving our object. Considering that 
we focus on the object ATM and since in our example we 
presented only one scenario, the one in Fig.1, step 1 will 
create only one empty state machine diagram. (After 
obtaining the final state machine diagram for ATM, we 
proceed in the same manner for the other objects, like 
User, Consortium and Bank). 

State machines are the ones that relate events and states. 
When an event is received, the next state depends on the 
current state as well as the event. A change of state caused 
by an event is called a transition. When a transition is 
triggered, the system leaves its current state, initiates the 
actions specified for the transition and enters a new state. 
A state machine diagram is a graph whose nodes are states 
and whose directed arcs are transitions (labeled by event 
names).  

Step 2 creates all events corresponding to transitions to 
the object. In our example, it creates Insert card, Enter 
password, Bad account, and Take card.  One state machine diagram describes the behaviour of a 

single class of objects. The sequence of events in a 
sequence diagram corresponds to paths through the state 
machine diagrams of the corresponding objects [6]. In 
order to construct a state machine for a class of objects, 
we have to consider the vertical line that corresponds to 
the objects of that class.  

In step 3 the actions that lead to states are created, that is 
Display main screen, Request password, Verify account, 
Bad account msg., Print receipt, Eject card and Request 
take card. States with the same names are created at this 
moment as well.  
During this step the default state has to be specified; in 
our case, it is Display main screen.  Based on [6], we can define the basic rules for generating 

state machines from single scenarios: At this point, the transitions are not set into the right time 
sequence. This is the task of step 4, where - for all 
transitions - the source and the destination are identified, 
so all transitions will be associated a starting point and an 
end point.  

For an object in a sequence diagram, incoming arrows 
represent events received by the object and they become 
transitions. Outgoing arrows are actions and they become 
actions of the transitions leading to the states. The 
intervals between events become states.  Before 
receiving any event, the object is in the default state. 

We can notice here that, for example, there is no event 
received by the ATM object in between the states Print 
receipt, Eject card and Request take card. This means that 
we could merge the 3 states into a single one, since there 
is nothing that could alter this succession of states. 

Fig.3 illustrates the state machine diagram corresponding 
to the ATM object in the scenario given as example in 
Fig.2. (Display main screen is considered to be the default 
state.)  

Synthesis of final state machines 

 

In order to obtain the final state machines, we need to 
combine all the initial state machines, making use of the 
information in the dependency diagrams. 
As described before, the dependency diagrams show the 
possible relationships existing between scenarios. Based 
on the classification of relationships between scenarios, 
there are several rules that need to be followed: 
� In a succession of two scenarios, the resulting state 

machine diagram merges the two basic 
corresponding state machine diagrams. 

� If a transition is common to 2 scenarios, it will be 
taken only once in the final state machine. 

� For two scenarios related with a disjunction 
relationship, their corresponding state machines 
should be combined with OR. 

� If two scenarios are executed at the same time, their 
corresponding state machines must be combined 
with AND. 

� In the final phase, the state machine diagrams should 
be refined, with respect to aggregation of states and 
generalization of states. 

 
Fig.3. State machine diagram for object ATM 



Let us consider 3 scenarios of using the ATM: one for 
withdrawing cash, one for depositing cash and one for 
transferring money. They are all preceded by a common 
scenario, that is the scenario where the user inserts the 
card and password and they are validated by the bank. 
The dependency diagram given as an example in section 3 
shows that the 3 scenarios are related by disjunction. Only 
one of them can take place at a certain time. (Due to space 
limitation we will not represent them here.) Based on 
these scenarios and on the dependency diagram 
illustrating the relationships between them, we will obtain 
a state machine diagram as the one in Fig. 4. 

Summarizing, if we have a total number N of scenarios, 
with a total number P of objects, for each of these objects, 
the number of initial state machines will be less than or 
equal to N (since each object does not necessarily appear 
in all scenarios). After the synthesis of the final state 
machines, one such state machine will exist for each 
object. Therefore, there will be a total number P of final 
state machines. 
     
 

5. DISCUSSION 
 

The event OK account takes the system into one of the 
states where cash can be withdrawn, cash can be 
deposited or money can be transferred. The concept of 
cluster is involved [HAR]; we represent a single 
superstate as a rectangle, and inside it we figure the 
corresponding states resulting from each scenario. We 
obtain in this way multilevel state machines. We can 
cluster, therefore, the 3 states (corresponding to each 
possible action: withdraw, deposit or transfer) into a new 
superstate, named “transaction”. The semantics of the 
state “transaction” is the OR (actually, it is exclusive OR) 
of the 3 states mentioned above. 

A complete state machine does not have to be extremely 
complex. At any level, details can be omitted and can be 
modelled in separate lower level diagrams. The concept 
of state hierarchy is very useful and can be used to 
decrease the number of transitions in a state machine 
diagram. 
The steps and rules above apply to disjoint scenarios only, 
because the states of the component scenarios must be 
disjoint for proper composition. However, it is possible 
that some scenarios overlap. Most of the times this 
happens when scenarios describe variants of the same 
portion of the process. The overlapping must be treated 
before the composition. There are two choices for this: the 
scenarios that overlap can be decomposed into mutually 
disjoint scenarios (subscenarios) or they can be merged 
into a single, more complex scenario. We consider the 
first option more appropriate, since it allows an easier 
synthesis of the state machines.  

The rectangle (which we purposely figured with thick 
black lines) is the one that cluster the OR type substates 
(withdraw cash, deposit cash or transfer money). The 3 
possible actions that lead to a transition are Request 
deposit, Request withdraw and Request transfer. The user 
can decide upon only one of them at a certain moment in 
time; according to the user’s decision (the action), the 
corresponding transition takes place (Request deposit, 
Request withdraw or Request transfer). 

 
Refining the final state machines (consistency between 
scenarios and state machines) 

 The process of synthesis does not end with applying the 
algorithm and the rules defined. Before we can say that 
we obtained a correct and complete final state machine 
diagram for each object, we need to address the issue of 
consistency between the state machines and the scenarios. 
We have to make sure that the behaviour of the final state 
machine diagrams reflects the information contained in 
the scenarios, so that we respect the requirements 
specifications. There are several issues that we are 
considering, like the detection of implied scenarios, the 
messages exchanged between different scenarios, and the 
possible conflicts that might arise. Only after solving 
these problems the process of synthesis can reach its end. 

 

 

 
 

6. RELATED WORK 
 
Several papers deal with the transformation of scenario 
type models into behaviour models. SCED [8] is a tool for 
automatic generation of statecharts from single scenarios. 
In [9], an algorithm for generating UML statecharts from 
sequence diagrams is given, but the relationships between 
the sequence diagrams (as representations of scenarios) 
are limited to the introduction of hierarchy. Schonberger 
et. al [10] describe an algorithm for model transformation, 
more precisely an algorithm for transforming 
collaboration diagrams into state diagrams. Collaboration 
diagrams describe the interaction among objects, with the 
focus on space. This means that the links among objects  

 
Fig.4. Final state machine diagram for ATM object 

 
  



 
in space are of particular interest and explicitly shown in 
the diagram. Sequence diagrams (as representation of 
scenarios) on the other hand, although they also describe 
how objects interact and communicate with each other, 
focus on time. Although the two kinds of diagrams are 
similar (and collectively called interaction diagrams), we 
believe that sequence diagrams are more suited for use in 
the analysis phase, as they allow an easier representation 
of the requirements (when we think of scenarios in the 
usage of a system, it seems more natural and it requires 
less effort to focus on the time flow in the development of 
events). 
Ryser and Glinz introduced in [11] a new kind of chart, 
dependency chart, and a new notation to model the 
dependencies between scenarios. However, the charts 
only show the dependencies between various scenarios, 
without giving directions about the way they could be 
used for translation into state machine diagrams.  
Actually, we can observe that most work in progress 
related to object-oriented software development produces 
models that are only loosely coupled. Most methods 
describe how to specify models, yet do not sufficiently 
guide the developer in the task of transforming one model 
type into another. 

 
 

7. CONCLUSIONS 
 

We describe a method of synthesizing state machine 
diagrams from multiple scenarios, with regard to the 
relationships between them. We introduce dependency 
diagrams for showing all the relationships between 
scenarios. We offer steps and rules for the synthesis of 
state machines from multiple interrelated scenarios, based 
on the initial scenarios and on the newly introduced 
dependency diagrams. Our approach offers complete 
requirements specifications, an accurate design, as well as 
an improved traceability. 
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