

Synthesis of State Machines from Multiple Interrelated Scenarios
Using Dependency Diagrams

Simona Vasilache
Institute of Information Sciences and Electronics,

University of Tsukuba, Japan

and

Jiro Tanaka
Institute of Information Sciences and Electronics,

University of Tsukuba, Japan

ABSTRACT

Requirements specification is one of the most important
phases in developing a software application. In defining
the behaviour of a system, requirements specifications
make use of a number of scenarios that are interrelated in
many ways. Current approaches, even though giving
directions on how to translate them into state machines,
treat each scenario separately. Because different
relationships between scenarios result in different state
machines, we believe it is significant to emphasize and
represent these relationships. In order to illustrate them
we propose a new type of diagrams named dependency
diagrams. We offer a set of rules and steps for the
synthesis of state machines from multiple inter-related
scenarios, based on the initial scenarios and on the newly
introduced dependency diagrams, as a means to properly
describe the requirements specifications of a system.

Keywords: requirements specification, dynamic
modelling, scenarios, state machines

1. INTRODUCTION

Requirements analysis represents a crucial phase in the
software development process. The main task of the
requirements analysis is to generate specifications that
describe the behaviour of a system unambiguously,
consistently and completely. [1]. Several popular
object-oriented methodologies and notations (like OMT
[1], UML [2]) make use of scenarios as a means of
capturing requirements specifications, as well as a means
of communication between users and software developers.
A scenario is a sequence of events that occurs during one
particular execution of a system [1], it is one particular
“story” of using a system. During the recent years,
scenarios have gained considerable popularity. However,
we believe that they have not yet received the attention
they actually deserve and they have not been used up to
their entire potential. Their usefulness lies not only in the
ability to capture requirements, but also in their
applicability when used in conjunction with other models.

We specifically refer to what is called "behaviour models",
that is models that describe the behaviour of a system.
State machines (particularly statecharts, originally
introduced by D. Harel [4]), represent a compact way of
describing the aspects concerning the behaviour of a
system. They allow the representation of the dynamic
aspects in a compact and elegant manner and it is because
of this feature that they have been preferred for
representing scenarios.
While scenarios represent a single trace of behaviour of a
complete set of objects, state machines represent the
complete behaviour of a single object. The two concepts
together provide an orthogonal view of a system.
Scenarios are generally not independent of each other;
various relationships and dependencies connect them. We
make a classification of these relationships and in order to
represent them we propose a new type of diagrams. We
call these diagrams dependency diagrams.
Based on these dependency diagrams and on the initial
scenarios, we give rules and steps of synthesis of state
machines from multiple interrelated scenarios. We will
describe in this paper the newly introduced diagrams and
our method of synthesis.

2. SEQUENCE DIAGRAMS AND STATE
MACHINE DIAGRAMS

Scenarios as sequence diagrams
In UML, scenarios are represented as sequence diagrams.
Sequence diagrams illustrate how objects interact with
each other. They focus on showing the sequence of
messages sent between objects, that is the interaction
between objects from a temporal point of view.
Sequence diagrams have two axes: the vertical axis shows
time and the horizontal axis shows a set of objects. An
object is represented by a rectangle and a vertical bar
called the object's lifeline. Objects communicate by
exchanging messages, represented by horizontal arrows
drawn from the message sender to the message recipient.
The message sending order is indicated by the position of
the message on the vertical axis.

State machine diagrams
State machine diagrams represent state machines from the
perspective of states and transitions. The representation
used in UML’s state diagrams is inspired from Harel's
statecharts [4]. State diagrams describe which states an
object can have during its life cycle and the behaviour in
those states, along with what events cause the state to
change. All objects have a state; the state is a result of
previous activities performed by the object. An object
changes state when something happens, which is called an
event.
State diagrams may have a starting point and several end
points. A state is represented as a rounded rectangle;
between states there are state transitions, shown as a line
with an arrow from one state to another. The state
transitions may be labelled with the event causing the
state transition. When the event happens, the transition
from one state to another is performed (the transition is
"triggered"). This means that the system leaves its current
state, initiates the actions specified for the transition and
enters a new state. A state transition normally has an event
attached to it, but not necessarily. If an event is attached
to a state transition, the transition will be performed when
the event occurs. If a state transition does not have an
event specified, the attached state will change when the
internal actions in the source state are executed. Therefore,
when all the actions in a state are performed, a transition
without an event will automatically be triggered.
State machine diagrams have proved their usefulness in
the dynamic description of the behaviour of a system.
Moreover, they can be used for generating code directly
from them, since each of them describes the complete
behaviour of one object.

3. RELATIONSHIPS BETWEEN SCENARIOS;
DEPENDENCY DIAGRAMS

Classification of relationships
Since a scenario represents a particular “story” of the
execution of a system, in order to describe a system
completely we need to know all the possible scenarios.
Depending on the application, the number of scenarios
varies; however small the number of all possible scenarios
is, relationships, dependencies exist between them.
Sometimes, one scenario follows other scenario or is
conditioned by another one. Many times the order and the
timing of their execution are not arbitrary.
To illustrate our point, let us consider a simplified
example of an ATM (Automated Teller Machine). A
consortium of banks shares the ATMs. Each ATM
accepts a cash card, interacts with the user, communicates
with the central system to carry out the transaction,
dispenses cash and prints receipts. We will use
(simplified) typical scenarios for user interaction with an
ATM machine, like inserting or removing a card, entering
a password, deciding upon a certain type of transaction
(withdrawal, deposit or transfer) and so on.
For example, if we consider the scenario depicting the
action of withdrawing cash, this can be executed only in
the situation of the user possessing a valid card. The
scenario of the user applying for a card with a bank must

precede the scenarios involving transactions with the bank
in the user’s name.
This is why we consider that in order to be able to
understand and describe the whole system, we need to
take into account not only the scenarios themselves, but
also the interrelations between them.
When trying to synthesize state machines from scenarios,
different relationships between scenarios result in
different state machine structures. This fact is of
considerable importance and in order to consider all the
implications, we make a classification of the relationships
and dependencies between scenarios as follows:

- time dependencies;
- cause-effect dependencies;
- generalization dependencies.

The execution order of a number of scenarios (defining
the time dependencies) falls into one of the following
categories: succession (one scenario follows another one),
disjunction (at a certain moment in time either one of the
scenarios is executed), conjunction (the scenarios are
executed simultaneously) and recurrence (a scenario is
executed a certain number of times).

Introducing dependency diagrams
In order to be able to represent and make use of these
relationships, we introduce dependency diagrams. The
notation used in these diagrams is based on the notation
used in Message Sequence Charts [5]. One scenario is
represented as a rounded rectangle, with connectors for
start point and end point (corresponding to entry and exit
points). The positioning in space of different scenarios
shows the order of execution.
A simple example of a dependency diagram is shown in
Fig.1. It is based on the same example of ATM, where we
consider Scenario start the initial scenario (where the user
approaches the ATM, inserts the card, the card is
validated and the main options screen is displayed). From
this point, the user can select either of the 3 operations of
withdrawing cash, depositing cash or transferring cash,
that is either of Sc. withdraw, Sc. deposit and Sc. transfer
scenarios respectively. We also suppose that when the
user changes his(her) password (Sc. chg. pass.), the
scenario Sc. videotape takes place simultaneously (that is,
the user is videotaped during the operation of changing
the password).
Fig.1 illustrates 3 alternative scenarios (any of them can
be executed after Scenario start), as well as the
concurrency of 2 scenarios, Scenario chg. pass. and
Scenario videotape.
Several constraints must be kept in mind when
representing the dependency diagrams. Some of them are
mentioned in the following. The dependency diagram
must have a single start point (but can have several end
points). The return of a loop can only be linked to a
connection node. The end of synchronization point forces
the flow of control to wait until the end of each of the
concurrent scenarios before continuing. One block
containing these concurrent scenarios is considered as one
entity, so no derivation and loops are possible before the
resynchronization point.

Fig. 1 Dependency diagram for several scenarios of an
ATM system

By representing the relationships between various
scenarios, we can easily tell what other scenarios would
be affected if one scenario were changed. This contributes
considerably to the enhancement of traceability.

4. SYNTHESIS OF STATE MACHINES FROM
MULTIPLE SCENARIOS

In a scenario, more exactly in its representation as a
sequence diagram, there are a number of messages
exchanged between objects. Each such message is a tuple:
(Oi, Oj, Mijk), where Oi and Oj belong to the set of all
objects involved in the system and Mijk depicts the
message exchanged between object i and object j. There
can be more messages exchanged between the same
objects, so k is used to denote these different messages.
Therefore a scenario will be a matrix of tuples including
all the messages exchanged between all objects part of
that scenario.
For example, if we consider the ATM system, let us
assume a scenario (represented in Fig.2) where 4 objects
are involved: user, ATM, consortium and bank. We will
represent these objects as O1, O2, O3 and O4.
The messages exchanged in our example are: displaying
the main screen (from the ATM to the user), inserting a
card (from the user to the ATM), requesting password
(from the ATM to the user), entering password (from the
user to the ATM), and so on. In this scenario, after the
user enters the card and then the password, the ATM
verifies the card with the consortium, which, in turn,
verifies it with the bank. The bank sends a bad bank
account event to the consortium, and the consortium
sends a bad account event to the ATM. The ATM, in turn,

sends a bad account message event to the user. In the end,
a receipt is issued, the card is ejected and the user is
requested to take the card back.

Scenario
videotape

Scenario
chg.pass.

Scenario
withdraw

Scenario
deposit

Scenario
transfer

Scenario start

Fig. 2 Sequence diagram (scenario) of an ATM system

Our scenario S1 will therefore be the following matrix:

 O2, O1, M211
 O1, O2, M121
 O2, O1, M212
 O1, O2, M122
 O2, O3, M231
 O3, O4, M341
 O4, O3, M431

S1 = O3, O2, M321
O2, O1, M213
O2, O1, M214
O2, O1, M215
O2, O1, M216

 O1, O2, M123
 O2, O1, M217

There are 4 objects involved in this scenario; from this
scenario only, we can synthesize 4 state machine
diagrams (one for each object).
In a complete description of this system, there are N
scenarios, with a total number of P objects. We will have
N matrixes including all the transitions between objects.
The total number of state machine diagrams will be equal
to the number of objects in all scenarios. We will
therefore have a number of P final state machine
diagrams.

Algorithm of synthesis
In order to synthesize the state machine diagrams for all
objects, our methodology proposes the following phases:
I. identify and represent (as sequence diagrams) all

single scenarios;
II. identify and represent (as dependency diagrams)

the relationships between all scenarios;
III. synthesize the state machines diagrams, based on

the information acquired in the previous two
phases.

The synthesis of the state machine diagrams involves two
steps, for each object in the system:

The number of initial state machines for an object Oi will
be equal to the number of scenarios in which the object Oi
is involved. 1. creating one initial state machine diagram for each

scenario; Sequentially, the steps of creating initial state machines
are the following: 2. synthesizing the final state machine diagram from all

the state machine diagrams, based on the
information in the dependency diagrams.

1. create empty state machine diagrams, one for each
scenario where the object appears;
2. for each state diagram, create all events (corresponding
to transitions to the object);

Creation of initial state machines

3. for all transitions from the object, create actions that
will lead to states and create the respective states;

The creation of the initial state machines represents the
basis for the synthesis of the final state machine. In the
following, we are going to succinctly describe how to
obtain these state machines.

4. set the right time sequence for the transitions.
Specifically, step 1 creates a state diagram for every
distinct scenario involving our object. Considering that
we focus on the object ATM and since in our example we
presented only one scenario, the one in Fig.1, step 1 will
create only one empty state machine diagram. (After
obtaining the final state machine diagram for ATM, we
proceed in the same manner for the other objects, like
User, Consortium and Bank).

State machines are the ones that relate events and states.
When an event is received, the next state depends on the
current state as well as the event. A change of state caused
by an event is called a transition. When a transition is
triggered, the system leaves its current state, initiates the
actions specified for the transition and enters a new state.
A state machine diagram is a graph whose nodes are states
and whose directed arcs are transitions (labeled by event
names).

Step 2 creates all events corresponding to transitions to
the object. In our example, it creates Insert card, Enter
password, Bad account, and Take card. One state machine diagram describes the behaviour of a

single class of objects. The sequence of events in a
sequence diagram corresponds to paths through the state
machine diagrams of the corresponding objects [6]. In
order to construct a state machine for a class of objects,
we have to consider the vertical line that corresponds to
the objects of that class.

In step 3 the actions that lead to states are created, that is
Display main screen, Request password, Verify account,
Bad account msg., Print receipt, Eject card and Request
take card. States with the same names are created at this
moment as well.
During this step the default state has to be specified; in
our case, it is Display main screen. Based on [6], we can define the basic rules for generating

state machines from single scenarios: At this point, the transitions are not set into the right time
sequence. This is the task of step 4, where - for all
transitions - the source and the destination are identified,
so all transitions will be associated a starting point and an
end point.

For an object in a sequence diagram, incoming arrows
represent events received by the object and they become
transitions. Outgoing arrows are actions and they become
actions of the transitions leading to the states. The
intervals between events become states. Before
receiving any event, the object is in the default state.

We can notice here that, for example, there is no event
received by the ATM object in between the states Print
receipt, Eject card and Request take card. This means that
we could merge the 3 states into a single one, since there
is nothing that could alter this succession of states.

Fig.3 illustrates the state machine diagram corresponding
to the ATM object in the scenario given as example in
Fig.2. (Display main screen is considered to be the default
state.)

Synthesis of final state machines

In order to obtain the final state machines, we need to
combine all the initial state machines, making use of the
information in the dependency diagrams.
As described before, the dependency diagrams show the
possible relationships existing between scenarios. Based
on the classification of relationships between scenarios,
there are several rules that need to be followed:
� In a succession of two scenarios, the resulting state

machine diagram merges the two basic
corresponding state machine diagrams.

� If a transition is common to 2 scenarios, it will be
taken only once in the final state machine.

� For two scenarios related with a disjunction
relationship, their corresponding state machines
should be combined with OR.

� If two scenarios are executed at the same time, their
corresponding state machines must be combined
with AND.

� In the final phase, the state machine diagrams should
be refined, with respect to aggregation of states and
generalization of states.

Fig.3. State machine diagram for object ATM

Let us consider 3 scenarios of using the ATM: one for
withdrawing cash, one for depositing cash and one for
transferring money. They are all preceded by a common
scenario, that is the scenario where the user inserts the
card and password and they are validated by the bank.
The dependency diagram given as an example in section 3
shows that the 3 scenarios are related by disjunction. Only
one of them can take place at a certain time. (Due to space
limitation we will not represent them here.) Based on
these scenarios and on the dependency diagram
illustrating the relationships between them, we will obtain
a state machine diagram as the one in Fig. 4.

Summarizing, if we have a total number N of scenarios,
with a total number P of objects, for each of these objects,
the number of initial state machines will be less than or
equal to N (since each object does not necessarily appear
in all scenarios). After the synthesis of the final state
machines, one such state machine will exist for each
object. Therefore, there will be a total number P of final
state machines.

5. DISCUSSION

The event OK account takes the system into one of the
states where cash can be withdrawn, cash can be
deposited or money can be transferred. The concept of
cluster is involved [HAR]; we represent a single
superstate as a rectangle, and inside it we figure the
corresponding states resulting from each scenario. We
obtain in this way multilevel state machines. We can
cluster, therefore, the 3 states (corresponding to each
possible action: withdraw, deposit or transfer) into a new
superstate, named “transaction”. The semantics of the
state “transaction” is the OR (actually, it is exclusive OR)
of the 3 states mentioned above.

A complete state machine does not have to be extremely
complex. At any level, details can be omitted and can be
modelled in separate lower level diagrams. The concept
of state hierarchy is very useful and can be used to
decrease the number of transitions in a state machine
diagram.
The steps and rules above apply to disjoint scenarios only,
because the states of the component scenarios must be
disjoint for proper composition. However, it is possible
that some scenarios overlap. Most of the times this
happens when scenarios describe variants of the same
portion of the process. The overlapping must be treated
before the composition. There are two choices for this: the
scenarios that overlap can be decomposed into mutually
disjoint scenarios (subscenarios) or they can be merged
into a single, more complex scenario. We consider the
first option more appropriate, since it allows an easier
synthesis of the state machines.

The rectangle (which we purposely figured with thick
black lines) is the one that cluster the OR type substates
(withdraw cash, deposit cash or transfer money). The 3
possible actions that lead to a transition are Request
deposit, Request withdraw and Request transfer. The user
can decide upon only one of them at a certain moment in
time; according to the user’s decision (the action), the
corresponding transition takes place (Request deposit,
Request withdraw or Request transfer).

Refining the final state machines (consistency between
scenarios and state machines)

 The process of synthesis does not end with applying the
algorithm and the rules defined. Before we can say that
we obtained a correct and complete final state machine
diagram for each object, we need to address the issue of
consistency between the state machines and the scenarios.
We have to make sure that the behaviour of the final state
machine diagrams reflects the information contained in
the scenarios, so that we respect the requirements
specifications. There are several issues that we are
considering, like the detection of implied scenarios, the
messages exchanged between different scenarios, and the
possible conflicts that might arise. Only after solving
these problems the process of synthesis can reach its end.

6. RELATED WORK

Several papers deal with the transformation of scenario
type models into behaviour models. SCED [8] is a tool for
automatic generation of statecharts from single scenarios.
In [9], an algorithm for generating UML statecharts from
sequence diagrams is given, but the relationships between
the sequence diagrams (as representations of scenarios)
are limited to the introduction of hierarchy. Schonberger
et. al [10] describe an algorithm for model transformation,
more precisely an algorithm for transforming
collaboration diagrams into state diagrams. Collaboration
diagrams describe the interaction among objects, with the
focus on space. This means that the links among objects

Fig.4. Final state machine diagram for ATM object

in space are of particular interest and explicitly shown in
the diagram. Sequence diagrams (as representation of
scenarios) on the other hand, although they also describe
how objects interact and communicate with each other,
focus on time. Although the two kinds of diagrams are
similar (and collectively called interaction diagrams), we
believe that sequence diagrams are more suited for use in
the analysis phase, as they allow an easier representation
of the requirements (when we think of scenarios in the
usage of a system, it seems more natural and it requires
less effort to focus on the time flow in the development of
events).
Ryser and Glinz introduced in [11] a new kind of chart,
dependency chart, and a new notation to model the
dependencies between scenarios. However, the charts
only show the dependencies between various scenarios,
without giving directions about the way they could be
used for translation into state machine diagrams.
Actually, we can observe that most work in progress
related to object-oriented software development produces
models that are only loosely coupled. Most methods
describe how to specify models, yet do not sufficiently
guide the developer in the task of transforming one model
type into another.

7. CONCLUSIONS

We describe a method of synthesizing state machine
diagrams from multiple scenarios, with regard to the
relationships between them. We introduce dependency
diagrams for showing all the relationships between
scenarios. We offer steps and rules for the synthesis of
state machines from multiple interrelated scenarios, based
on the initial scenarios and on the newly introduced
dependency diagrams. Our approach offers complete
requirements specifications, an accurate design, as well as
an improved traceability.

8. REFERENCES

[1] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, C.
Chen, “Formal approach to scenario analysis”, IEEE
Software 11(2), 1994, pp. 33-41.
[2] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W.
Lorensen, Object-oriented modeling and design,
Prentice Hall, 1991.
[3] Rational Software Corporation, Unified Modeling
Language (UML), http://www.rational.com.
[4] D. Harel, “Statecharts: A visual formalism for
complex systems”, Science of Computer Programming,
8(3), 1987, pp. 231-274.
[5] L. Helouet, C. Jard, “La manipulation formelle de
scenarios”, Modelisation des systemes reactifs, Vol. 0,
2001.

[6] J. Ali and J. Tanaka, “Constructing statecharts from
event trace diagrams”, Technical report of IEICE,
KBSE98-33, 1998, pp. 41-47.
[7] J. Ali and J. Tanaka, “Implementing the dynamic
behaviour represented as multiple state diagrams and
activity diagrams”, Journal of Computer Science and
Information Management (JCSIM), 2(1), 2001, pp.
22-34.
[8] K. Koskimies, T. Mannisto, T. Systa, J. Tuomi,
“Automatic support for dynamic modeling of
object-oriented software”, IEEE Software, 15(1), 1998,
pp. 87-94.
[9] J. Whittle and J. Schumann, “Generating statechart
designs from scenarios”, Proceedings of International
Conference on Software Engineering (ICSE2000),
Limerick, Ireland, 2000, pp. 314-323.
[10] S. Schonberger, R. K. Keller, I. Khriss, “Algorithmic
support for model transformation in object-oriented
software development”, Concurrency and
Computation: Practice and Experience, 13(5), 2001, pp.
351-383.
[11] J. Ryser, and M. Glinz, “Using dependency charts to
improve scenario-based testing”, Proceedings of the 17th
International Conference on Testing Computer
Software (TCS2000), Washington D.C., 2000.
[12] J. C. S. P. Leite, G. D. S. Hadad, J. H. Doorn, G. N.
Kaplan, “A scenario construction process”,
Requirements Engineering, 5, 2000, pp. 38-61.
[13] S. Vasilache and J. Tanaka, “Synthesizing statecharts
from multiple interrelated scenarios”, Proceedings of the
International Symposium for Future Software
Technology ISFST2001, ZhengZhou, China, 2001, pp.
158-163.
[14] S. Vasilache and J. Tanaka, “Using dependency
diagrams in dynamic modelling of object-oriented
systems”, Proceedings of the 7th IASTED Conference
on Software Engineering and Applications SEA2003,
Marina del Rey, USA, 2003, pp. 277-283.
[15] H. Muccini, “An approach for detecting implied
scenarios”, Scenarios and state machines: models,
algorithms, and tools, ICSE2002 Workshop, Orlando,
Florida, USA, 2002.
[16] J. Whittle and J. Schumann, “Generating statechart
designs from scenarios”, Scenario-based round-trip
engineering, OOPSLA2000 Workshop, Tampere
University of Technology, 2000.
[17] I. Jacobson, Object-oriented software engineering:
A use case driven approach, Addison Wesley, Reading,
Massachusetts, 1992.
[18] R. J.A. Buhr, R. S. Casselman, Use case maps for
object-oriented systems, Prentice Hall, 1996.
[19] F. Bordeleau, J. P. Corriveau, “On the need for "state
machine implementation" design patterns”, Scenarios
and state machines: models, algorithms, and tools,
ICSE2002 Workshop, Orlando, Florida, USA, 2002.
[20] Craig Larman, Applying UML and patterns,
Prentice Hall, 2002.

	ABSTRACT
	Scenarios as sequence diagrams
	State machine diagrams

