
Undo/Redo by Trajectory

Tatsuhito Oe, Buntarou Shizuki, and Jiro Tanaka

University of Tsukuba, Japan
{tatsuhito,shizuki,jiro}@iplab.cs.tsukuba.ac.jp

Abstract. We have developed a trajectory based undo/redo interface.
Using the interface, a user traces actions’ trajectories shown on a dis-
play. As a result, undo/redo manipulations are performed rapidly with
selection of a target from a history. In this paper, we describe interaction
techniques, implementation, and advanced usages of the interface.

Keywords: undo/redo, trajectory, history, tracing, desktop
interface, gui.

1 Introduction

In many applications, user’s actions (e.g., key commands or mouse actions)
are stored as history for undo/redo (Figure 1a). When the user undoes/redoes
these actions, the user executes commands for undo/redo one or more times
(Figure 1b). Because the user must execute commands several times, perform-
ing undo/redo is time-consuming.

To perform undo/redo manipulation faster, the following approaches have
been developed that allow the user to undo/redo actions selectively.

Fig. 1. Conventional undo and UnReT́’s undo in linear history model

M. Kurosu (Ed.): Human-Computer Interaction, Part IV, HCII 2013, LNCS 8007, pp. 712–721, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Undo/Redo by Trajectory 713

Some approaches visualized a history using texts or screenshots. For example
LibreOffice Impress1 showed a list of manipulations as texts, and Meng et al. [13]
presented a visualization of selective undo [6] using screenshots.

Other approaches localized undo/redo manipulation’s region. For example,
regional undo model [9] enables the user to undo/redo actions that occur in a
specific region of a display. Moreover, a selective undo model [6] enables the user
to undo/redo an isolated action.

These two approaches have an advantage and a disadvantage. The former
approach enables a user to look an overview of a history rapidly, though takes a
time to undo/redo if the history becomes large. By contrast, the latter enables
the user to undo/redo rapidly even when the history is large, though it cannot
be applied to the linear history model used in most applications.

Our goal is to explore the effectiveness of an undo/redo interface where a
user can undo/redo by selecting a manipulation directly. To achieve our goal,
we developed a trajectory based undo/redo interface (UnReT́ 2). Using UnReT́,
the user can undo/redo by tracing a mouse trajectory (one trajectory consists of
mouse press, drag, and release) as shown in Figure 1c. Because the user does not
need to execute many commands, the user can perform undo/redo manipulation
faster.

2 Related Work

UnReT́ is an application-independent interface implemented by extending a
desktop environment in which a user undoes/redoes actions by tracing a past
trajectory visualized on the desktop, even on an application employing the lin-
ear history model. Therefore, related research into the interface includes work on
history visualization using texts or screenshots, a history model, and a desktop
extension.

2.1 History Visualization Using Texts or Screenshots

Some research has tried to visualize a history using texts or screenshots. In this
research area, simple visualization uses a list of texts or screenshots. For example,
Meng et al. [13] visualized the history using a list of screenshots.

In contrast to the simple visualization, some research has tried to represent
additional information over texts or screenshots. Kurlander et al. [12] visualized
actions’ context using pairs of two screenshots before and after an action. Naka-
mura et al. [15] overlaid GUI actions on a screenshot to improve search speed
from the history. In addition, Vratislav [19] adopted Fisheye Menus [5] to the
texts’ list of the history to improve search speed.

In this research, a user undoes/redoes actions by viewing and selecting an
action from the list. By contrast, in UnReT́, the user undoes/redoes by tracing
a trajectory shown on a display. Therefore, using UnReT́, the user does not need
to look at the list, so the user can undo/redo faster.

1 http://www.libreoffice.org/
2 UnReT́ is short for “Undo/Redo by Trajectory”.

http://www.libreoffice.org/


714 T. Oe, B. Shizuki, and J. Tanaka

2.2 History Model

A history model has been researched that localizes undo/redo’s manipulation
region spatially.

Berlage [6] and Myers et al. [14] presented selective undo model that enables a
user to undo/redo an isolated action. Kawasaki et al. [9] presented regional undo
model that has a broader region for undo/redo manipulation than the selective
undo model. These history models have features to localize manipulation’s region
spatially. Therefore, these models can be applied not only to a single user’s
environment but also to a multiple users’ environment where one user performs
undo/redo actions in his/her own region [17,18].

These history models cannot be applied to a general application based on the
linear history model. On the other hand, UnReT́ can be applied to various
applications based on the linear model, because UnReT́’s implementation is
independent from a particular application. That is, the implementation is based
on mouse manipulations’ trajectories stored in a desktop environment.

2.3 Desktop Extension

UnReT́ is the interface that extends normal undo/redo manipulation by captur-
ing mouse trajectory. Related to UnReT́, there is research on extending history
or mouse manipulation in a desktop environment.

Extending history. Interfaces have been researched that assist a user by
capturing his/her actions or states in a desktop environment. For exam-
ple, Rekimoto [16] showed Time-Machine Computing that can recover any
past state in the desktop. In addition, Kelly et al. [10] presented Desktop
History that captured actions to visualize files manipulated at any applica-
tion. Furthermore, Grossman et al. [8] captured actions and videos in the
desktop to allow the user to watch the videos at any past action.
In these interfaces, captured actions are used for presenting a user’s past
manipulations. By contrast, captured actions are used for undo/redo manip-
ulation in UnReT́.

Extending mouse manipulation. There has been research on extending a
user’s mouse manipulation in a desktop environment. Appert et al. [3] de-
veloped Dwell-and-Spring, which enables a user to undo and cancel mouse
manipulation on the basis of a spring metaphor between a cursor and a
target. Kobayashi et al. [11] presented Boomerang, which allows the user
to move files between directories by using throwing gesture. Similar to the
above research, UnReT́ extends undo/redo manipulation also by using mouse
manipulation in the desktop.

3 Undo/Redo by Trajectory

UnReT́ is an interface where a user can undo/redo by tracing a past mouse
trajectory. Below is how to undo/redo in UnReT́.



Undo/Redo by Trajectory 715

Undo: The user holds down the Ctrl key and traces a trajectory with a pointer.
As a result, past actions including the one that gave the trajectory are un-
done (Figure 2a).

Redo: Holding a Ctrl key for long enough visualizes possible target trajecto-
ries. Thereafter, the user traces a trajectory. As a result, redo is performed
(Figure 2b).

To support these manipulations, the system provides the functions below.

Preview of undo/redo. As shown in Figure 2c, the user can perform Scratch
gesture while tracing the trajectory. This shows preview screenshots of
undo/redo targets. Thereafter the user can undo/redo by selecting one of
the screenshots and also cancel undo/redo manipulation with the “Cancel”
button shown in Figure 2c.

Fig. 2. Undo/redo interactions using UnReT́

Trajectory visualization. When the user holds down the Ctrl key for long
enough, mouse trajectories are visualized (Figure 3a). Trajectories are red
for an undo target and blue for a redo target (Figure 3b). This visualization
helps the user to know where to trace.



716 T. Oe, B. Shizuki, and J. Tanaka

Showing a list of screenshots when tracing similar trajectories. Simi-
lar trajectories occur especially in contour drawing (Figure 4a). When the
user traces such trajectories, applicable targets are shown as the list of
screenshots (Figure 4b), and then the user selects an item from the list
for performing undo/redo.

Fig. 3. Showing visual by hold-
ing down Ctrl key for long enough

Fig. 4. Showing the list of screenshots when
similar trajectories are traced

4 Implementation

Implementation of UnReT́ consists of mouse trajectory recording (Figure 5a),
mouse trajectory matching (Figure 5b), and undo/redo processing (Figure 5c).

Recording

１：

2：

3：

4：

5：

6：

7：

History

t

Matching

１：

2：

3：

4：

5：

History

t

Undo/Redo

a c

Fig. 5. UnReT́ consists of recoding, matching, and undo/redo processing

4.1 Mouse Trajectory Recording

When a trajectory is input, the trajectory’s absolute points on a display are
recorded to a history (Figure 6).



Undo/Redo by Trajectory 717

4.2 Mouse Trajectory Matching

When a user traces a trajectory while holding down the Ctrl key, similarities
between the input trajectory and trajectories in the history are calculated us-
ing Dynamic Programming (DP) Matching (Figure 7). Then the system undoes
actions until the trajectory with the highest similarity is input.

Fig. 6. Mouse trajectory recording Fig. 7. Mouse trajectory matching

4.3 Undo/Redo Processing

In undo/redo processing, the system sends key shortcuts multiple times to the
application. Because key shortcuts differ for each application, we implemented
a function that enables a user to register undo/redo processing below.

undo/redo processing by key shortcuts. The system sends a registered key
shortcut.

undo/redo processing by reversedmouse manipulation. Reversed mouse
manipulation means inputting mouse’s release, drag, and press from a tra-
jectory in the history. In this process, Figure 6’s (xn, yn) becomes the press
point, (xn−1, yn−1),...,(x1, y1) become drag points, and finally (x0, y0)
becomes the release point.

Using the register function, a user can register a process such as “If an application
is GIMP, the system sends Ctrl+z key event”.

5 Applications

We applied UnReT́ to various environments and manipulations to explore
UnReT́’s effectiveness. In this section, we describe trial results.



718 T. Oe, B. Shizuki, and J. Tanaka

5.1 Environments

We tested UnReT́ in environments using a mouse and a keyboard, a stylus inter-
face, and a touch interface, as shown in Figure 8. In every environment, UnReT́
was used by the first author using a GIMP application. Each environment’s trial
results are shown below.

Fig. 8. Environments where UnReT́ was tested

Mouse and keyboard (Figure 8a). We used UnReT́ by using the mouse
with the right hand while pressing the Ctrl key with the left hand (Fig-
ure 8a�). As a result, we observed that UnReT́ worked well in the envi-
ronment. However, when the user needed to undo/redo manipulation only
several times, inputting key shortcuts was more effective than UnReT́.

Stylus interface (Figure 8b). We used UnReT́ with the stylus whose side
button (Figure 8b�) was assigned as the Ctrl key. The first author did not use
the stylus interface usually. Nevertheless, using the stylus made it easier to
perform UnReT́ than using the mouse and the keyboard. The reason is that
the stylus is a more suitable interface to trace a trajectory than the mouse.
This result was consistent with that of Accot et al. [2], which revealed that
the stylus performs better than the mouse for tracing by evaluating tracing
performance of input devices based on Steering Law [1].

Touch interface (Figure 8c). We used UnReT́ on a mobile device. In this
environment, we traced a trajectory with the left hand while holding down
the mobile device’s button with the other hand (Figure 8c�). This environ-
ment was realized by accessing a remote Linux server running our system
through a VNC client on the mobile device. As a result, using the touch
interface enabled the user to trace the trajectory directly. This result could
be applied to various touch interfaces.

5.2 Manipulations

We tested UnReT́ with various manipulations. Similar to Section 5.1, UnReT́
was used by the first author in every manipulation.

Drawing manipulation. We used UnReT́ for drawing manipulation using
GIMP. As a result, we found a technique that enabled a user to perform



Undo/Redo by Trajectory 719

undo/redo manipulation before changing a color. The technique is performed
as follows. At first, a user draws something (Figure 9a). Next, the user
changes the color (Figure 9b) and then draws (Figure 9c). After that, the
user can look at the trajectory (Figure 9d�) when the user presses the Ctrl
key for longer. Finally, the user can undo actions before changing the color
by tracing the trajectory (Figure 9e).
We demonstrated drawing manipulation at a seminar of our university. At
the seminar, we obtained comments such as “I want to undo/redo only an
isolated action I trace”, “Is there any idea of how to apply UnReT́ to other
history models?”.
For meet these requests, we need to adapt the selective undo model [6] to
UnReT́. To implement selective undo in UnReT́, we plan to use the script
undo model [4]. In the script undo model, if there is a sequence of actions
(A1, ..., An), a user can undo/redo an isolated action (Ai(1 ≤ i ≤ n)) like
in the selective undo model. This is done by undoing An, ..., Ai+1, Ai nor-
mally and then restoring Ai+1, ..., An using a script. By restoring recorded
trajectories as the script, we can implement selective undo in UnReT́.

Fig. 9. Undo/redo before changing a color,
which is typically impossible in GIMP

Fig. 10. A user defines a mark for
undo/redo

Marking manipulation. Marking manipulation enables a user to define short-
cuts for GUI manipulations like UIMarks [7]. Figure 10 illustrates how to
apply marking manipulation to Blender3 3D modeler. In this example, first
the user performs marking (Figure 10a). Then the user deforms the 3D model
(Figure 10b). After that the user looks the trajectory of marking by hold-
ing down the Ctrl key for longer (Figure 10c�). Finally, the user traces the
trajectory and undo/redo the action until the marking (Figure 10d).

Icon manipulation. Using the reversed mouse manipulation as undo/redo pro-
cessing, we enable a user to undo/redo icon movements, which is impossible
in a typical desktop environment. In Figure 11, first the user moves the icon

3 http://blender.jp/

http://blender.jp/


720 T. Oe, B. Shizuki, and J. Tanaka

(Figure 11a). Then, the user looks at the icon movements’ trajectories by
pressing the Ctrl key for longer (Figure 11b), After that the user undoes icon
movements by tracing the trajectory (Figure 11c). Similar to UnReT́, icon
movements were automated by Sikuli [20], using a programming by example
of screenshots. In contrast to Sikuli, UnReT́ enabled the user to undo/redo
icon movements.

Fig. 11. Undo/redo icon movements Fig. 12. Undo/redo checkbox selections

Checkbox manipulation. Similar to icon manipulation, a user can undo/redo
selected checkboxes using the reversed mouse manipulation. In Figure 12,
first the user selects checkboxes from top to bottom (Figure 12a). After
that, the user clicks “Ford” (Figure 12b) while pressing the Ctrl key and
then undoes selected checkboxes (Figure 12c).

6 Conclusion and Future Work

In this paper, we presented “Undo/Redo by Trajectory (UnReT́)” and interac-
tion techniques using UnReT́. We applied UnReT́ to various environments and
manipulations to explore effectiveness of the interface. Our future work is to
implement selective undo manipulation in UnReT́ for further exploration.

References

1. Accot, J., Zhai, S.: Beyond Fitts’ Law: Models for Trajectory-Based HCI Tasks.
In: Proc. CHI EA 1997, pp. 250–250. ACM (1997)

2. Accot, J., Zhai, S.: Performance Evaluation of Input Devices in Trajectory-based
Tasks: An Application of The Steering Law. In: Proc. CHI 1999, pp. 466–472. ACM
(1999)

3. Appert, C., Chapuis, O., Pietriga, E.: Dwell-and-Spring: Undo for Direct Manipu-
lation. In: Proc. CHI 2012, pp. 1957–1966. ACM (2012)



Undo/Redo by Trajectory 721

4. Archer Jr., J.E., Conway, R., Schneider, F.B.: User Recovery and Reversal in In-
teractive Systems. ACM Transactions on Programming Languages and Systems
(TOPLAS) 6(1), 1–19 (1984)

5. Bederson, B.B.: Fisheye menus. In: Proc. UIST 2000, pp. 217–225. ACM (2000)
6. Berlage, T.: A Selective Undo Mechanism for Graphical User Interfaces Based

on Command Objects. ACM Transactions on Computer-Human Interaction 1(3),
269–294 (1994)

7. Chapuis, O., Roussel, N.: UIMarks: Quick Graphical Interaction with Specific Tar-
gets. In: Proc. UIST 2010, pp. 173–182. ACM (2010)

8. Grossman, T., Matejka, J., Fitzmaurice, G.: Chronicle: Capture, Exploration, and
Playback of Document Workflow Histories. In: Proc. UIST 2010, pp. 143–152. ACM
(2010)

9. Kawasaki, Y., Igarashi, T.: Regional Undo for Spreadsheets. In: Proc. UIST 2004
Demostration Abstract. ACM (2004)

10. Kelly, S.U., Davis, P.J.: Desktop History: Time-based Interaction Summaries
to Restore Context and Improve Data Access. In: Proc. INTERACT 2003,
pp. 204–211. IOS Press (2003)

11. Kobayashi, M., Igarashi, T.: Boomerang: Suspendable Drag-and-Drop Interactions
Based on a Throw-and-Catch Metaphor. In: Proc. UIST 2007, pp. 187–190. ACM
(2007)

12. Kurlander, D., Feiner, S.: A Visual Language for Browsing, Undoing, and Redoing
Graphical Interface Commands. In: Visual Languages and Visual Programming,
pp. 257–275. Plenum Press (1990)

13. Meng, C., Yasue, M., Imamiya, A., Mao, X.: Visualizing Histories for Selective
Undo and Redo. In: Proc. APCHI 1998, pp. 459–464. IEEE (1998)

14. Myers, B.A., Mcdaniel, R.G., Miller, R.C., Ferrency, A.S., Faulring, A., Kyle, B.D.,
Mickish, A., Klimovitski, A., Doane, P.: The Amulet Environment: New Models
for Effective User Interface Software Development. IEEE Transactions on Software
Engineering 23(6), 347–365 (1997)

15. Nakamura, T., Igarashi, T.: An Application-Independent System for Visualizing
User Operation History. In: Proc. UIST 2008, pp. 23–32. ACM (2008)

16. Rekimoto, J.: Time-Machine Computing: a Time-centric Approach for the Infor-
mation Environment. In: Proc. UIST 1999, pp. 45–54. ACM (1999)

17. Seifried, T., Rendl, C., Haller, M., Scott, S.: Regional Undo/Redo Techniques for
Large Interactive Surfaces. In: Proc. CHI 2012, pp. 2855–2864. ACM (2012)

18. Shao, B., Li, D., Gu, N.: An Algorithm for Selective Undo of Any Operation in
Collaborative Applications. In: Proc. GROUP 2010, pp. 131–140. ACM (2010)

19. Vratislav, J.: Cascading undo control. In: Bachelor Thesis, pp. 1–52. Czech Tecnical
University, Prague Faculty of Electrical Engineering (2008)

20. Yeh, T., Chang, T.H., Miller, R.C.: Sikuli: Using GUI Screenshots for Search and
Automation. In: Proc. UIST 2009, pp. 183–192. ACM (2009)


	Undo/Redo by Trajectory
	Introduction
	Related Work
	History Visualization Using Texts or Screenshots
	History Model
	Desktop Extension

	Undo/Redo by Trajectory
	Implementation
	Mouse Trajectory Recording
	Mouse Trajectory Matching
	Undo/Redo Processing

	Applications
	Environments
	Manipulations

	Conclusion and Future Work


