CODE GENERATION FROM UML STATECHARTS

Iftikhar Azim Niaz and Jiro Tanaka
Institute of Information Sciences and Electronics
University of Tsukuba
Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573 Japan
{ianiaz, jiro} @iplab.is.tsukuba.ac.jp

ABSTRACT

The Unified Modeling Language (UML) statechart
diagram is a powerful tool for specifying the dynamic
behavior of reactive objects. Generating code from
statechart diagrams is a chalenging task due to its
dynamic nature and because many of the statechart
concepts are not supported by the object oriented
programming languages. Most of the approaches for
implementing UML statecharts diagram either suffer from
maintenance problems or implement only a subset of
UML statecharts.

This paper proposes a new approach to generate
efficient and compact executable code from the UML
statechart diagram in an object-oriented language like
Java using design patterns. In our approach, each state in
the statechart becomes a class, which encapsulates al the
transitions and actions of the state. The events that have
transitions are thus made explicit without using any if or
case statement, which leads to a readable, compact and
efficient code. The resultant codeis easy to maintain.

By representing states as objects, we extend the state
design pattern to implement the sequential substates and
concurrent substates using the concept of object
composition and delegation. We also propose an approach
to implement compound transitions (fork/join) and history
nodes. The proposed approach makes elegant handling of
most of the statechart features.

KEY WORDS
Software engineering, Object-oriented analysis and design,
Statecharts, State pattern, Object composition, Java

1. Introduction

The emergence of the UML [1] as an industry standard
for modeling systems has encouraged the use of
automated software tools that facilitate the development
process from analysis through coding. In UML based
object-oriented design, behavioral modeling aims at
describing the behavior of objects using state machines. A
state machine is a behavior that specifies the sequences of
states an object goes through its lifetime in response to
events, together with its responses to those events. The
UML statechart diagram is a graph that represents a state

machine [1]. The semantics and notation used in UML
statecharts mainly follow Harel's statecharts [2] with
extensions to make hem object-oriented. A statechart
attached to a class specifies all behavioral aspects of the
objectsin that class.

The OO methodologies using statecharts describe in
sufficient detail the steps to be followed for describing the
behavior of objects but fail to describe the implementation
of statecharts in the object-oriented languages due to lack
of syntactic support for statecharts. There exists a gap
between highdevel modeling language and a
programming language. The translation of class diagrams
to an OO programming language is easy and provided by
most CASE tools. To implement the behavior of an
object-oriented system, one has to implement the
statecharts, which specify the dynamic behavior of the
classes. Our approach is an effort to bridge the gap
between design and implementation. Through mapping
between UML and Java, we are able to generatel ow-level
java code directly from the statechart diagram. The
primary goa is to present a simple and efficient
implementation of the UML statecharts in an object
oriented language like Java. The proposed
implementation techniques are valuable in that they raise
the level of abstraction and allow for straightforward
mapping of statecharts to compact and efficient code.

There are number of ways to implement a statechart
in OO programming languages. The most common
technique to implement statechart is the doubly nested
switch statements with a “scalar variable” used as the
discriminator in the first level of the switch and event-
type in the second [3]. This works well for simple
statecharts but manual coding of entry/exit actions and
nested substates is cumbersome, mainly because code
pertaining to one state becomes distributed and repeated
in many places, making it difficult to modify and maintain
when the topology of the statechart is changed. In [4] and
[5] the relation between states and classes was examined.
They proposed to reuse behavior in state machines
through inheritance of other state machines. They
implemented embedded states by making a table for the
superstate and did not consider concurrent states, history
states and compound transitions. In [6] all states from the
statechart were generated as constant attributes in the
class and another attribute was used to keep track of the
current state of an object. Transition of states was

represented by the state attribute of an object changed
into another new state's value. Events and actions were
implemented as methods. Action was translated into
method call in the code. It only handled the simple
statechart diagram.

Design pattern approach [7] iswidely used in object-
oriented software design. The approach specifies reusable
mechanisms for collaboration and interaction among
classes or among objects to solve common object-oriented
problems in any domain. Several design patterns have
been proposed to implement statecharts. Conditional
Statements pattern [3], StateTable pattern [3], Basic
Statechart pattern [8], HSM pattern [9] and State pattern
[7]. These patterns have critical problems with support of
substates, mapping from diagram to code and the
readability of code. HSM pattern only supports the
sequential substates.

Our work focuses on the implementation phase We
are looking for a code generator tool to allow automatic
translation of statechart diagrams to object-oriented
programming languages like java. This paper proposes a
new approach to narrow the gap between UML statechart
diagram and an implemented system. The narrowing of
gap is achieved by generating low-Hevel Java code from
UML statecharts. The code generation is achieved by
creating a mapping between UML statecharts and Java
programming language.

In this paper, we will describe our approach for
implementing the sequential substates, concurrent
substates and compound transitions in Java by extending
State pattern with object composition and del egation.

2 Sequential Substates

We will use an air conditioner system as an example to
demonstrate our approach.

Dperatin

antry £ setln
exit £ setOff
tempPlusBut s templp

modeBut f setHeater

Heater
- modeBut/ zetCoolar

powerBut

powerBut

Figure 1. Statechart for air conditioner system

The basic behavior of an air conditioner is specified
in the statechart shown in Figure 1 It has two top-level
states Stop and Operating. Initialy, air conditioner is in
state Sop, where it accepts the powerBut event. The air
conditioner reacts on such an event by switching from the
Stop state to Operating state. The Operating state is the

composite state with Cooler as itsinitial substate. Heater
state is the other sequential substate. While in Operating
state, on modeBut event, the air conditioner switches to
the next substate. On powerBut event, the air conditioner
goes to the Stop state. Sending a powerBut event may
reactivate the air conditioner. When the air conditioner is
reactivated, it switches into the history state of the
Operating state. The history state stores the last substate
that was active before it switches from Operating to Stop
state and recalls the substate when the air conditioner is
reactivated. Transitions affecting the superstate apply at
al levels of nesting within that superstate.

2.1 Implementation Strategy

Our approach for implementing UML statechart diagram
isbased on [10], [11], [12] and the State pattern [7]. State
pattern puts all behavior associated with a particular state
into one class. In our approach, each state in the statechart
diagram becomes a class. Each transition from that state
becomes a method in the corresponding class and each
action becomes a method in the context class whose
behavior is represented by the statechart diagram. A
context class delegates al events for processing to the
current state object. State transitions are accomplished by
changing the current state object. The Sate pattern does
not deal with the sequential substates and concurrent
substates. So we need some mechanism to implement the
state hierarchy. Object composition is defined
dynamically at runtime through objects acquiring
references to other objects. Object composition keeps
each class encapsulated and there are substantially fewer
dependencies. The main advantage of delegation is that it
makes it easy to compose behaviors at run-time and to
change the way they are composed.

When a composite state is active, exactly one of its
sequential substates is active. The sequential substates
show a nested statechart within the composite state. This
leads us to implement the composite state by extending
the state design pattern with object composition and
delegation. In this case the composite state becomes the
context for the nested statechart. An abstract state class
will define the interface for the behavior associated with
sequential substates of the composite state. The sequential
substates will become the concrete state classes. The
composite class will keep the control most of the time and
delegates the requests to substates for transitions specific
to substates. Figure 2 shows the class diagram of our
implementation approach.

The AirCon class is the super context class with
which the statechart of Figure 1 is associated. Each action
becomes a method of the context class. The state object
will hold the reference of the current active state. The
history node is implemented by providing a reference
opHistory in the AirCon object, which sets the opHistory
at the start to Cooler state and later it is adjusted to the
current active substate in the exit() method by the
composite state Operating. When Operating state

becomes active, its most recent active substate is also set.
The AirConState and AbsOpState classes are the abstract
state classes, which provide a common interface for the
concrete state classes. All the concrete state classes have a
reference to the context object. The AirCon (context)
object delegates all incoming events to its current state
object @tate). On handling the transition, the concrete
state object first executes the exit action of the current
state and then calls the setState() method of the AirCon
object to set the new state. In the setState() method, the
entry action of the new state is also executed. Operating
class becomes context for the nested statechart. The
subState object in the QOperating object will keep the
reference of the current active substate. Cooler and Heater
objects will maintain two references for the two contexts
Operating and AirCon. If the target of atransition is the
composite state then it is executed by the composite state
but if the target is the substate then the composite state
object will delegate the request to the active substate. The
active substate will execute the corresponding action on
the transition and then executes the exit action and then
sets the next substate by calling the setSub() method of
the composite Operating object. The internal transition
tempPlusbut is implemented in the corresponding
Operating class. The action tempUp becomes a method in
the context class AirCon.

AirCon AjrConState
+state : AirConState +context : AirCan
+opHistary : AbsOpState +powerBut])
+powerBut]) +tempFlusBut])
+tempFlusBut]) +modeBul])
+modeBut() +entn)
+zetStatelst AirC onState) +exit)
+zetling
+setOff)
+templUpQ
+zetHeaten]) Operating Stop
regthogle +subState : AbsOpState

+powserBut]) +powmerBut])
AbsOpState +tempPlusBut])
+m_context : AirCon +modeBut])
+5_context : Operating—*+2ntn
+modeBut] +enit])
+entn) +setSublsub:AbsOpState)
+exit)
Coaler Heater
+modeButd) +modeBut])

Figure 2. Class diagram for implementing sequential
substates

3 Concurrent Substates

In this section, we describe our approach for
implementing concurrent substates. When a composite
state contains concurrent (orthogonal or AND) substates,
the substates become active simultaneously whenever the
composite state become active. These substates specify
two or more state machines that executes in parallel in the
context of enclosing object. Figure 3 shows a more
detailed statechart containing concurrent substates for the
Air Conditioner. Mode and Speed are the two concurrent
regions of Operating composite state.

Operating

M

modeBut f setCooler

modeBut /setHeater
powuerBut

St G\\I | Coaler \I
G‘\l | Lo Epeed
poterBut
speedBut fsetHigh speedBut/ setlow
High

Figure 3. Statechart having concurrent states

3.1 Implementation Strategy

The concurrent substates show a nested statechart within
composite state. This leads us to implement the
concurrent substates by extending the state pattern with
object composition and delegation. The Operating state
will become the context for both concurrent regionsMode
and Speed. Mode and Speed will become the abstract
classes and will define the interface for the behavior
associated with nested sequential substates within each
concurrent region. Figure 4 shows the class diagram of
our implementation approach.

As can be seen in Figure 4, Operating class becomes
the context for the two concurrent regions Mode and
Speed. AbsModeState and AbsSpeedState classes provide
the interface for the two concurrent regions. Cooler,
Heater, Low, and High become the concrete substate
classes for Operating composite state. The Operating
object will keep the references of the current active
substate within each concurrent region in modeState and
speedState objects. The concrete state objects will
maintain two references for the two contexts Operating

and AirCon. The history nodes are implemented by
providing references modeHistory and speedHistory in
the AirCaon class. The powerBut event from the Stop state
forks into two concurrent regions of Operating state so
the Sop state is responsible for activating the proper
substates of the two concurrent regions. It calls the fork
method of the context, which makes al the target states
active rather the one. On receiving the modeBut or
speedBut request in the Operating state, the Operating
object will delegate the request to the current active
substate. The active substate will execute the
corresponding action on the transition and then change the
substate by calling the appropriate set substate method of
the Operating object.

aan S anGtas
+5labe Al InELale re=antask D Ahoen
+medabictany © AbriadeElats + pas B
+ et HER b e B e S HumpP laa B
+ e B +rodeBul)
+ barnp Flus st + g
+modaBui] 4wty
+ wmkSdatmil A Do s S et FepeedBul]
+ G [
+ a0 |
+templipey O psraling Siop
ekt rln) + Mot Sharts : Abakinde Shats
+eilealed) +apaeciabe © AhGpesdShaie e
+ Faddak A rCanBtada) [E———
= Aishpeeditate
AlenadeStata T gl o e
& mede B +m_nokbeed san
+r_canteed : Aalan o b ph ety 1 Farating
d_carmint: Op [[| +epmsd Bkl
+modeBy
) 9 + sabledafau bl d a0 sblcda Bl +euinty
anl
Ll +sekTp ard ubBpred:Ak=tp aed Sty) ——
% 5;-" +apan Sl s T
Conkr He aler Lo High
+mcdalut] = ad e) g e d B sec-LLE T]

Fgure 4. Class diagram for implementing concurrent
substates.

4 Compound Transitions

A compound transition represents a path made of one or
more transitions, originating from a set of states and
targeting a set of states. A compound transition is enabled
when all the source states are occupied. After acompound
transition fires, all of its destination states are occupied. A
compound transition is shown as a short bar.

&

s ol

t e [&

[

—. ‘—‘3’[I
| B I-‘_L o e r i o L [y o o P
i = IE:TF :
‘ l !

Figure 5. Statechart having compound transitions

Fork

A fork is a transition with one source state and two or
more target states. If the source state is active and the
trigger event occurs, the transition action is executed and
al the target states become active.

Join

A join is atransition with two or more source states and
one target state. If all the source states are active and the
trigger event occurs, the transition action is executed and
the target state becomes active.

Figure 5 shows a statechart having compound
transitions. Thetrigger event for the fork istl. This means
when the A state is active and the event t1 occurs, both C
and E states will become active simultaneously in the two
concurrent regions. Figure 5 aso contains a join going
from D and F states to the B state. Transition t4 will be
fired only if D and F are active. If D and F states are not
active then the event isignored.

4.1 Implementation Strategy

Implementing fork is easy. The source state makes all the
target states active rather than the one. To implement join
we have to make sure that all the source states must be
active before the transition fires. The Javaimplementation
code for Figure 5 can be written as follows. We suppose
that the context class nameis Test.

classTest {
TestState state; // state object
Il References for all the state objects
A aState; B bstate; G gState; C cState;
D dState; E eState; F fState;
void setState(TestState st) {// setting new state
State = st;
state.entry(); } // executesthe entry action
void fork(TestState st) { // setting the concurrent states
if (st.equals(gstate)) {
gstate.regionlState = cstate;
gstate.region2State = estate; }

} /1 End of Test Class
class TestState {

Test ac; // Reference to the context object
/I declaring abstract methods

class A extends TestState {
void t1() { // implementing Fork

exit(); // executesthe exit action of current state
ac.fork(ac.gState);// setting substates to be active

ac.setState(ac.gState); }// change to G composite state

class B extends TestState{....}

class G extends TestState {
AbsRegionlState regionlState;
AbsRegion2State region2State;

void entry() { regionlState.entry();
region2State.entry(); }
void t4() { regionlState.exit();
region2State.exit(); exit();
ac.setState(ac.bState); // sets the new state}
void t2() { regionlState.t2(); }
void t3() { region2State.t3(); }
void setRegionl(AbsRegionlState subRegionl) {
regionlState = subRegion1; regionlState.entry(); }
void setRegion2(AbsRegion2State subRegion?2) {
region2State = subRegion2; region2State.entry(); }
class AbsRegion1State{
Test m_context; // super Context object
G s _context; // sub Context Object
/I defining abstract methods

}

class C extends AbsRegionl1State {
void t2() { exit();
/I changes to next substate
s_context.setRegionl(m_context.dState); }

e}
class D extends AbsRegionlState {
void entry() { // implementing join
if (s_context.region2State.equals(m_context.fState) {
m_context.t4(); // triggerstransition } }

dass AbsRegion2State{
Test m_context; G s_context;
/I defining abstract methods

i:l ass E extends AbsRegion2State {
void t3() { exit();
/I changesto next state
s_context.setRegion2(m_context.fState); }

class F extends AbsRegion2State {
void entry() { // Implementing join
if (s_context.regionlState.equals(m_context.dState) {
m_context.t4(); // triggersthe transition } }

-3

Fork is implemented in the tl()method of the
concrete classA. On eventtl, first of all the exit action of
the A state is executed then the two concurrent states C
and E are set by calling the fork method of the context
Test class and then the state is changed from A to
composite state G and the entry action of the G state is
executed which in turn executes the entry actions of the
concurrent statesC and E.

To implement join we have to make sure that al the
multiple source state must be active prior to the firing of
the transition. This can be done in the entry() methods of
the source D and E classes. If the other state is active then
the corresponding event of the super context class is
triggered which will delegate it to the current active state
G. The t4() first executes the exit actions of the substates
followed by the exit action of its own andfinally the state
is changed to B and its entry action is executed.

We also generated code for Figure 5 using Rhapsody
in J[14]. A section of code generated by Rhapsody is as
follows:

class Test implements RiJStateConcept {
Reactive reactive;
static final int RiJNonState=0; static final int G=1;
static final int Region2=2; static final int F=3;
static final int E=4; static fina int Region1=5;
static final int D=6; static final int C=7,
static final int B=8; static final int A=9;
protected int rootState substate; protected int rootState active;
protected int Regionl_substate protected int Regionl_active;
protected int Region2_substate protected int Region2_active;
Test(RiJThread p_thread) {//constructor
reactive = new Reactive(p_thread); }
boolean startBehavior() {
boolean done = fal se; done = reactive.startBehavior();
return done }
class Reactive extends RiJStateReactive { // inner class
Reactive(RiJThread p_thread) { // constructor
super(p_thread); initStatechart(); }
boolean isIn(int state) {
if (Regionl == state) returnisin(G);
if (Regionl_substate == state) return true;
if (Region2 == state) return isin(G);
if (Region2_substate == state) return true;
if (rootState_subState == state) return true;
return true; }
int rootState dispatchEvent(short_id) {
int res =RiJStateReactive. TAKE_EVENT_NOT_CONSUMED;
switch (rootState_active) {
case A : { res=A_takeEvent(id); break; };
case G: { res=G_dispatchEvent(id); break; };
case A : { res=B_takeEvent(id); break; };
default ; break; }; return res; }
int G_dispatchEvent(short_id) {}
int Regionl_dispatchEvent(short_id) {....}
int Region2_dispatchEvent(short_id) {....}
protected void initStatechart() {
rootState substate = RiJNonState;
rootState_active = RijNonState;
Regionl_substate = RiJNonState;
Regionl_active = RijNonState;
Region2_substate = RiJNonState;
Region2_active = RijNonState; }
int DTaket4() {
int res =RiJStateReactive TAKE_EVENT_NOT_CONSUMED;
if (isin(F)) {
G_Exit(); B=entDef();
res = RiJStateReactive TAKE_EVENT_COMPLETE; }
returnres; }
int D_takeEvent(short id) {
int res =RiJStateReactive. TAKE_EVENT_NOT_CONSUMED;
if (event.isTypeOf(t4.t4_Default_id)) {
res= DTaket4(); }
if(res==RiJStateReactive. TAKE_EVENT_NOT_CONSUMED)
{res = Regionl_takeEvent(id); }
return res; }
void D_entDef() {
D_enter(); }
void D_enter() {
Regionl_subState = D;
Region_active=D;
DEnter(): }

...} Il end of class Reactive and class Test

classt4 extends RiJEvent { // event as class
static final int t4_Default_id = 18619;
t4(){ // constructor
Ild =t4 Default_id; }
boolean isTypeOf(long id) {
if (t4 Default_id==1id) returntrue;
else returnfalse;
}
} // end of classt4

5. Comparison with Rhapsody

Rhapsody [14] is a CASE tool that allows creating UML
models for an application and then generates C, C++ or
Java code for the application. Code generation in
Rhapsody is based on the Object Execution Framework
(OXF) [14]. The dynamics of the model are defined in the
framework classes and hard-coded in the code generator.

In Rhapsody's model, events are implemented as
classes and transition-searching is performed by executing
a switch statement. Whereas in our approach, events
become methods, state hierarchy is implemented by
object conposition, and transition-searching is
automatically performed by using the concept of
polymorphism. We compared the code generated by our
approach and by Rhapsody for Figure 5. Table 1 shows
the findings of the comparison. The figures for Rhapsody
do not include the code added by the OXF Framework.

Rhapsody* | Our approach
Source Code: No. of lines 675 250
Source Code: No. of bytes 24270 6420
No. of classes 7 11

Table 1: Comparing the compactness of the generated
code

1 Code generated by our approach s more compact.
The source code generated by Rhapsody excluding
the OXF code is still approximately three times
longer than the code generated by our approach, as
shownin Table 1.

2 Rhapsody code is difficult to understand. It uses data
values to define staes and have the operations in the
Reactive class check the data explicitly. In such case
state transitions implemented as assignments to some
variables and have no explicit representation. It puts
the transition-selection code in the switch statement
inside the takeEvent(short id) method of the Reactive
class. This makes the code difficult to understand.
Our code converts each event into an operation call.
The appropriate method is selected on the principle
of polymorphism. The transition code is put in
separate methods in the corresponding class. All the
states and transitions are thus explicit without using
any conditional statements. This contributes to
making the code more readabl e.

3. Our code is easy to maintain. We put all behavior
associated with a particular state into one object.
Because all state-specific code is contained in a
single class, new states and transitions can be added
by defining new classes and operations. |n Rhapsody,
the actual behavior of the system that was
represented as a set of statecharts is buried into the
generated code and the OXF framework.

4. Our approach looks like introducing too many small
classes, because the behavior for different states is
distributed across severa states. This increases the
number of classes. However, such distribution
eliminates large conditional statements. Large
conditional statements are undesirable because they
tend to make the code less understandable and
difficult to modify and extend.

These differences in the mechanisms make the
resulting code d our approach compact, more readable
and maintainable.

6. Related Work

The most related work is that of Harel and Gery[13]
whose tool called Rhapsody [14] generates C++ or Java
code from UML models. As shown in the previous
section, our code is more readable and maintainable than
Rhapsody.

Kohler et a. [15] presented an approach for code
generation from statecharts. Their approach adapts the
idea generic array based statetable but uses object
structure to represent statetable at runtime. They use
objects to represent states of a statechart and attributes to
hold the entry and exit actions. A library function
handleEvent() is used to interpret the state-table and to
react on events and to issue appropriate action methods.
The state table is more complex and expensive to set up.
In our approach we have implemented entry and exit
action as methods and states as objects. The code of our
approach is simple and more efficient.

Tomura et al. [16] presented the statechart design
pattern, which define classes and state-transition
execution mechanism for realizing the dynamic behavior
of device component models of an open distributed
control system. Context class represents the class that has
the dynamic behavior specified by the statechart. The
object of this dass has only one StateMachine object.
StateMachine is the class for describing the statechart.
The objects of this class consist of two sets of states and
transition. The objects correspond to either of a statechart
diagram itself, sequential substates or concurrent
substates. Events guards and actions are also implemented
as classes.

Knapp and Merz [17] described a set of tools called
Hugo. A generic set of Java classes provides a standard
runtime component state for statecharts. States are
represented as objects. The run method is used to setup
and initialize the associated statechart. Hugo code

generation is interpretative in nature and is not producing
the optimized code.

Gurp and Bosch [18] presented FSM framework to
implement statechart. States, transitions and actions are
represented as objects. Similar to the State pattern, there
is Context component that has a reference to the current
state. Current state is represented as a state object rather
than a state subclass. The transition object has areference
to the target state and an Action object. State transition in
FSM framework is about twice as expensive as in the
State pattern implementation for the simple transition.
Transition searching is done by a look up in a hashtable
object. The hashtable object maps event names to
transition.

7. Conclusion and Future Work

An implementation approach for generating Java code
from the UML statechart diagram has been described. By
representing states as objects, the concept of object
composition and delegation with state design pattern is
used to implement the hierarchical states and concurrent
states. The proposed approach successfully deals with
most of the statechart concepts such as substates, history
nodes and compound transitions (fork/join). Some of the
statechart concepts such as guards and branches, time and
signal events will be implemented in near future. The
proposed approach can be used as a basis for automatic
code generation for UML statechart diagrams. We are
currently working on the implementation of the proposed
approach.

Our approachis an object-oriented approach so it can
be used to generate low-level code in other object-
oriented languages like C++ etc. The code generation
engine has to be tailored to the target language as some
features are implemented in a different manner in
different object-oriented languages.

References

[1] Object Management Group, OMG Unified Modeling
Language Specification Version 1.4, OMG, 2001

[2] D. Harel, Statecharts: A visual formalism for complex
systems, Science of Computer Programming, No.8, 1987,
231-274.

[3] B.P. Douglass, Real Time UML — Developing efficient
objects for embedded systems (Massachusetts: Addison-
Wesley, 1998).

[4] A. S. Ran, Modeling states as classes, Proc.
Technology of Object-Oriented Languages and Systems

Conference, 1994.

[5] A. Sane, R. Campbell, Object-Oriented state
machines; subclassing, composition, delegation, and
genericity, ACM SIGPLAN Notices, OOPSLA'95, vol.30,
Austin, Texas, USA, 1995, 17-32.

[6] K. O. Chow, W. Jia, V. C. P. Chan and J. Cao, Model-
based generation of Java code, Proc. International Conf.
on Parallel and Distributed Processing Techniques and
Applications (PDPTA 2000), Las Vegas, USA, 2000.

[7] E. Gamma, R. Helm, R. Johnson and J. Vlissides,
Design patterns. elements of reusable object-oriented
softwar e (M assachusetts: Addison Wesley, 1995).

[8] S. M. Yacoub and H. H. Ammar, A pattern language of
statecharts, Proc. Fifth Annual Conf. on the Pattern

Languages of Program (PLoP’98), Monticello, IL, USA,
1998, TR #WUCS-98-29.

[9] M. Samek and P. Montgomery, State-oriented
programming, Embedded Systems Programming, August
2000, 22-43.

[10] J. Ali and J. Tanaka, Converting statecharts into Java
code, Proc. Fourth World Conf. on Integrated Design and
Process Technology (IDPT'99), Dallas, Texas, USA, 2000
(CD-ROM).

[11] J. Ali and J. Tanaka, Implementing the dynamic
behavior represented as multiple state diagrams and
activity diagrams, Journal of Computer Science &
Information Management (JCSIM), Vol. 2, No. 1, 2001,
24-34.

[12] J. Ali and J. Tanaka, An object oriented approach to
generate executable code from OMT-based dynamic

model, Journal of Integrated Design and Process Science,
Vol. 2, No. 4, 1998, 65-77.

[13] D. Harel and E. Gery, Executable object modeling
with statecharts, Computer, Vol. 30, No. 7, 1997, 31-42.

[14] Rhapsody case tool reference manual, FLogix Inc.
http://www.ilogix.com.

[15] H.J. Kohler, U. Nickel, J. Niere, and A. Zundorf,
Integratin% UML diagrams for production control systems,
Proc. 22" International Conf. on Software Engineering
(1CSE 2000), Limerick, Ireland, 2000, 241-251

[16] T. Tomura, S. Kanai, K. Uehiro and S. Yamamoto,
Object-oriented design pattern approach for modeling and
simulating open distributed control system, Proc. |IEEE
International Conf. on Robotics and Automation (ICRA
2001), Seoul, Korea, 2001, 211-216.

[17] A. Knapp and S. Merz, Model checking and code
generation for UML state machines and collaborations,
Proc. 5" Workshop on Tools for System Design and
Verification, Reisenburg, Germany, 2002, 59-64.

[18] J. V. Gurp and J. Bosch, On the implementation of
finite state machines, Proc. IASTED International Conf.
on Software Engineering and Applications, (SEA99),
Scottsdale, AZ, USA, 1999, 172-178.

