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ABSTRACT 
The Unified Modeling Language (UML) statechart 
diagram is a powerful tool for specifying the dynamic 
behavior of reactive objects. Generating code from 
statechart diagrams is a challenging task due to its 
dynamic nature and because many of the statechart 
concepts are not supported by the object oriented 
programming languages. Most of the approaches for 
implementing UML statecharts diagram either suffer from 
maintenance problems or implement only a subset of 
UML statecharts. 

This paper proposes a new approach to generate 
efficient and compact executable code from the UML 
statechart diagram in an object-oriented language like 
Java using design patterns. In our approach, each state in 
the statechart becomes a class, which encapsulates all the 
transitions and actions of the state. The events that have 
transitions are thus made explicit without using any if or 
case statement, which leads to a readable , compact and 
efficient code. The resultant code is easy to maintain. 

By representing states as objects, we extend the state 
design pattern to implement the sequential substates and 
concurrent substates using the concept of object 
composition and delegation. We also propose an approach 
to implement compound transitions (fork/join) and history 
nodes. The proposed approach makes elegant handling of 
most of the statechart features. 
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1. Introduction 
 
The emergence of the UML [1] as an industry standard 
for modeling systems has encouraged the use of 
automated software tools that facilitate the development 
process from analysis through coding. In UML based 
object-oriented design, behavioral modeling aims at 
describing the behavior of objects using state machines. A 
state machine is a behavior that specifies the sequences of 
states an object goes through its lifetime in response to 
events, together with its responses to those events. The 
UML statechart diagram is a graph that represents a state 

machine [1]. The semantics and notation used in UML 
statecharts mainly follow Harel’s statecharts [2] with 
extensions to make them object-oriented. A statechart 
attached to a class specifies all behavioral aspects of the 
objects in that class. 

The OO methodologies using statecharts describe in 
sufficient detail the steps to be followed for describing the 
behavior of objects but fail to describe the implementation 
of statecharts in the object-oriented languages due to lack 
of syntactic support for statecharts. There exists a gap 
between high-level modeling language and a 
programming language. The translation of class diagrams 
to an OO programming language is easy and provided by 
most CASE tools. To implement the behavior of an 
object-oriented system, one has to implement the 
statecharts, which specify the dynamic behavior of the 
classes. Our approach is an effort to bridge the gap 
between design and implementation. Through mapping 
between UML and Java, we are able to generate low-level 
java code directly from the statechart diagram. The 
primary goal is to present a simple and efficient 
implementation of the UML statecharts  in an object 
oriented language like Java. The proposed 
implementation techniques are valuable in that they raise 
the level of abstraction and allow for straightforward 
mapping of statecharts to compact and efficient code. 

There are number of ways to implement a statechart 
in OO programming languages. The most common 
technique to implement statechart is the doubly nested 
switch  statements with a “scalar variable”  used as the 
discriminator in the first level of the switch and event-
type in the second [3]. This works well for simple 
statecharts but manual coding of entry/exit actions and 
nested substates is cumbersome, mainly because code 
pertaining to one state becomes distributed and repeated 
in many places, making it difficult to modify and maintain 
when the topology of the statechart is changed. In [4] and 
[5] the relation between states and classes  was examined. 
They proposed to reuse behavior in state machines 
through inheritance of other state machines. They 
implemented embedded states by making a table for the 
superstate and did not consider concurrent states, history 
states and compound transitions. In [6] all states from the 
statechart were generated as constant attributes in the 
class and another attribute was used to keep track of the 
current state of an object. Transition of states was 



represented by the state attribute of an object changed 
into another new state’s value. Events and actions were 
implemented as methods. Action was translated into 
method call in the code. It only handled the simple 
statechart diagram. 

Design pattern approach [7] is widely used in object-
oriented software design. The approach specifies reusable 
mechanisms for collaboration and interaction among 
classes or among objects to solve common object-oriented 
problems in any domain. Several design patterns have 
been proposed to implement statecharts . Conditional 
Statements pattern [3], StateTable  pattern [3], Basic 
Statechart pattern [8], HSM pattern [9] and State pattern 
[7]. These patterns have critical problems with support of 
substates, mapping from diagram to code and the 
readability of code. HSM pattern only supports the 
sequential substates. 

Our work focuses on the implementation phase. We 
are looking for a code generator tool to allow automatic 
translation of statechart diagrams to object-oriented 
programming languages like java. This paper proposes a 
new approach to narrow the gap between UML statechart 
diagram and an implemented system. The narrowing of 
gap is achieved by generating low-level Java code from 
UML statecharts. The code generation is achieved by 
creating a mapping between UML statecharts and Java 
programming language.  

In this paper, we will describe our approach for 
implementing the sequential substates, concurrent 
substates and compound transitions in Java by extending 
State pattern with object composition and delegation. 
 
 
2  Sequential Substates 
 
We will use an air conditioner system as an example to 
demonstrate our approach. 
 

 
Figure 1. Statechart for air conditioner system 

 
 

The basic behavior of an air conditioner is specified 
in the statechart shown in Figure 1. It has two top-level 
states Stop and Operating. Initially, air conditioner is in 
state Stop, where it accepts the powerBut event. The air 
conditioner reacts on such an event by switching from the 
Stop state to Operating state. The Operating  state is the 

composite state with Cooler as its initial substate. Heater 
state is the other sequential substate. While in Operating 
state, on modeBut event, the air conditioner switches to 
the next substate. On powerBut event, the air conditioner 
goes to the Stop state. Sending a powerBut event may 
reactivate the air conditioner. When the air conditioner is 
reactivated, it  switches into the history state of the 
Operating state. The history state stores the last substate 
that was active before it switches from Operating to Stop 
state and recalls the substate when the air conditioner is 
reactivated. Transitions affecting the superstate apply at 
all levels  of nesting within that superstate. 
 
 
2.1  Implementation Strategy 
 
Our approach for implementing UML statechart diagram 
is based on [10], [11], [12] and the State pattern [7]. State 
pattern puts all behavior associated with a particular state 
into one class. In our approach, each state in the statechart 
diagram becomes a class. Each transition from that state 
becomes a method in the corresponding class and each 
action becomes a method in the context class whose 
behavior is represented by the statechart diagram. A 
context class delegates all events for processing to the 
current state object. State transitions are accomplished by 
changing the current state object. The State pattern does 
not deal with the sequential substates and concurrent 
substates . So we need some mechanism to implement the 
state hierarchy. Object composition is defined 
dynamically at runtime through objects acquiring 
references to other objects. Object composition keeps 
each class encapsulated and there are substantially fewer 
dependencies. The main advantage of delegation is that it 
makes it easy to compose behaviors at run-time and to 
change the way they are composed. 

When a composite state is active, exactly one of its 
sequential substates is active. The sequ ential substates 
show a nested statechart within the composite state. This 
leads us to implement the composite state by extending 
the state design pattern with object composition and 
delegation. In this case the composite state becomes the 
context for the nested statechart . An abstract state class 
will define the interface for the behavior associated with 
sequential substates of the composite state. The sequential 
substates will become the concrete state classes. The 
composite class will keep the control most of the time and 
delegates the requests to substates for transitions specific 
to substates. Figure 2 shows the class diagram of our 
implementation approach. 

The AirCon class is the super context class with 
which the statechart of Figure 1 is associated. Each action 
becomes a method of the context class. The state object 
will hold the reference of the current active state. The 
history node is implemented by providing a reference 
opHistory in the AirCon object, which sets the opHistory 
at the start to Cooler state and later it is adjusted to the 
current active substate in the exit() method by the 
composite state Operating . When Operating state 



becomes active, its most recent active substate is also set. 
The AirConState and AbsOpState classes are the abstract 
state classes, which provide a common interface for the 
concrete state classes. All the concrete state classes have a 
reference to the context object. The AirCon (context) 
object delegates all incoming events to its current state 
object (state). On handling the transition, the concrete 
state object first executes the exit action of the current 
state and then calls the setState() method of the AirCon 
object to set the new state. In the setState() method, the 
entry action of the new state is also executed. Operating 
class becomes context for the nested statechart. The 
subState object in the Operating object will keep the 
reference of the current active substate. Cooler and Heater 
objects will maintain two references for the two contexts 
Operating and AirCon. If the target of a transition is the 
composite state then it is executed by the composite state 
but if the target is the substate then the composite state 
object will delegate the request to the active substate. The 
active substate will execute the corresponding action on 
the transition and then executes the exit action and then 
sets the next substate by calling the setSub() method of 
the composite Operating object. The internal transition 
tempPlusbut is implemented in the corresponding 
Operating class. The action tempUp becomes a method in 
the context class AirCon. 
 
 

 
Figure 2. Class diagram for implementing sequential 
substates  
 
 

3  Concurrent Substates 
 
In this section, we describe our approach for 
implementing concurrent substates. When a composite 
state contains concurrent (orthogonal or AND) substates, 
the substates become active simultaneously whenever the 
composite state become active. These substates specify 
two or more state machines that executes in parallel in the 
context of enclosing object. Figure 3 shows a more 
detailed statechart containing concurrent substates for the 
Air Conditioner. Mode and Speed are the two concurrent 
regions of Operating composite state. 
 

 
Figure 3.  Statechart having concurrent states  

 
 
3.1  Implementation Strategy 
 
The concurrent substates show a nested statechart within 
composite state. This leads us to implement the 
concurrent substates by extending the state pattern with 
object composition and delegation. The Operating state 
will become the context for both concurre nt regions Mode 
and Speed. Mode  and Speed  will become the abstract 
classes and will define the interface for the behavior 
associated with nested sequential substates within each 
concurrent region. Figure 4 shows the class diagram of 
our implementation approach. 

As can be seen in Figure  4, Operating class becomes 
the context for the two concurrent regions Mode and 
Speed . AbsModeState and AbsSpeedState classes provide 
the interface for the two concurrent regions. Cooler, 
Heater, Low, and High become the concrete substate 
classes for Operating composite state. The Operating 
object will keep the references of the current active 
substate within each concurrent region in modeState and 
speedState objects. The concrete state objects will 
maintain two references for the two contexts Operating 



and AirCon. The history nodes are implemented by 
providing references modeHistory and speedHistory in 
the AirCon class. The powerBut event from the Stop state 
forks into two concurrent regions of Operating  state so 
the Stop state is responsible for activating the proper 
substates of the two concurrent regions. It calls the fork 
method of the context, which makes all the target states 
active rather the one. On receiving the modeBut  or 
speedBut request in the Operating state, the Operating 
object will delegate the request to the current active 
substate. The active substate will execute the 
corresponding action on the transition and then change the 
substate by calling the appropriate set substate method of 
the Operating object. 
 
 

 
Figure 4.  Class diagram for implementing concurrent 
substates. 
 
 
4  Compound Transitions  
 
A compound transition represents a path made of one or 
more transitions, originating from a set of states and 
targeting a set of states. A compound transition is enabled 
when all the source states are occupied. After a compound 
transition fires, all of its destination states are occupied. A 
compound transition is shown as a short bar.  
 

 
Figure 5. Statechart having compound transitions 

Fork 
 
A fork is a transition with one source state and two or 
more target states. If the source state is active and the 
trigger event occurs, the transition action is executed and 
all the target states become active. 
 
Join 
 
A join is a transition with two or more source states and 
one target state. If all the source states are active and the 
trigger event occurs, the transition action is executed and 
the target state becomes active.  

Figure 5 shows a statechart having compound 
transitions. The trigger event for the fork is t1. This means 
when the A state is active and the event t1 occurs, both C 
and E states will become active simultaneously in the two 
concurrent regions. Figure 5 also contains a join going 
from D and F states to the B state. Transition t4 will be 
fired only if D and F are active. If D and F states are not 
active then the event is ignored. 
 
 
4.1  Implementation Strategy 
 
Implementing fork is easy. The source state makes all the 
target states active rather than the one. To implement join 
we have to make sure that all the source states must be 
active before the transition fires. The Java implementation 
code for Figure 5 can be written as follows. We suppose 
that the context class name is Test. 
 
class Test { 
  TestState  state; // state object  
    // References for all the state objects 
  A  aState; B  bstate; G  gState; C cState; 
  D  dState; E  eState; F  fState; 
  void setState(TestState st) {// setting new state 
   state = st; 
 state.entry(); } // executes the entry action  
  void fork(TestState st) { // setting the concurrent states  
    if (st.equals(gstate)) { 
     gstate.region1State = cstate; 
     gstate.region2State = estate; } 
……. 
}  // End of Test Class 
class TestState { 
 Test  ac;  // Reference to the context object  
    // declaring abstract methods 
} 
class A extends TestState { 
  void t1() { // implementing Fork 
    exit();  // executes the exit action of current state 
    ac.fork(ac.gState);// setting substates to be active 
    ac.setState(ac.gState); }// change to G composite state 
….. 
 } 
class B extends TestState {….} 
 
class G extends TestState { 
  AbsRegion1State  region1State; 
  AbsRegion2State  region2State; 



  void entry() { region1State.entry(); 
   region2State.entry(); } 
  void t4() { region1State.exit(); 
   region2State.exit(); exit(); 
   ac.setState(ac.bState); // sets the new state } 
  void t2() { region1State.t2(); } 
  void t3() { region2State.t3(); } 
  void setRegion1(AbsRegion1State subRegion1) { 
   region1State = subRegion1; region1State.entry(); } 
  void setRegion2(AbsRegion2State subRegion2) { 
   region2State = subRegion2; region2State.entry(); } 
…..} 
class AbsRegion1State{ 
  Test  m_context;  // super Context object  
  G   s_context;  //  sub Context Object 
  //  defining abstract methods   
} 
class C extends AbsRegion1State { 
  void t2() { exit(); 
   // changes to next substate 
   s_context.setRegion1(m_context.dState);  } 
….} 
class D extends AbsRegion1State { 
  void entry() { // implementing join 
   if (s_context.region2State.equals(m_context.fState) { 
     m_context.t4(); // triggers transition } } 
…} 
class AbsRegion2State{ 
    Test  m_context;  G  s_context; 
    //  defining abstract methods   
} 
class E extends AbsRegion2State { 
  void t3() { exit(); 
   // changes to next state 
   s_context.setRegion2(m_context.fState);  } 
…} 
class F extends AbsRegion2State { 
  void entry() { // Implementing join 
   if (s_context.region1State.equals(m_context.dState) { 
    m_context.t4(); // triggers the transition } } 
…}; 
 

Fork is implemented in the t1()method of the 
concrete class A. On event t1, first of all the exit action of 
the A state is executed then the two concurrent states C 
and E are set by calling the fork method of the context 
Test class and then the state is changed from A to 
composite state G and the entry action of the G state is 
executed which in turn executes the entry actions of the 
concurrent states C and E.  

To implement join we have to make sure that all the 
multiple source state must be active prior to the firing of 
the transition. This can be done in the entry() methods of 
the source D and F classes. If the other state is active then 
the corresponding event of the super context class is 
triggered which will delegate it to the current active state 
G. The t4()  first executes the exit actions of the substates 
followed by the exit action of its own and finally the state 
is changed to B and its entry action is executed. 

We also generated code for Figure 5 using Rhapsody 
in J [14]. A section of code generated by Rhapsody is as 
follows: 
 

class Test implements RiJStateConcept { 
   Reactive reactive; 
   static final int RiJNonState=0; static final int G=1; 
   static final int Region2=2;  static final int F=3; 
   static final int E=4;  static final int Region1=5; 
   static final int D=6;  static final int C=7; 
   static final int B=8;  static final int A=9; 
   protected int rootState_substate; protected int rootState_active; 
   protected int Region1_substate; protected int Region1_active; 
   protected int Region2_substate; protected int Region2_active; 
   Test(RiJThread p_thread) {//constructor 
     reactive = new Reactive(p_thread); } 
   boolean startBehavior() { 
     boolean done = false; done = reactive.startBehavior(); 
     return done } 
class Reactive extends RiJStateReactive { // inner class 
   Reactive(RiJThread p_thread) { // constructor 
     super(p_thread); initStatechart(); } 
   boolean  isIn(int state) { 
      if (Region1 == state) return isIn(G);  
      if (Region1_substate == state) return true; 
      if (Region2 == state) return isIn(G);  
      if (Region2_substate == state) return true; 
      if (rootState_subState == state) return true; 
      return true; } 
   int rootState_dispatchEvent(short_id) { 
int res =RiJStateReactive.TAKE_EVENT_NOT_CONSUMED; 
      switch (rootState_active) { 
        case A : { res =A_takeEvent(id); break; }; 
        case G : { res =G_dispatchEvent(id); break; }; 
        case A : { res =B_takeEvent(id); break; }; 
        default : break; }; return res; } 
   int G_dispatchEvent(short_id) { …. } 
   int Region1_dispatchEvent(short_id) {….} 
   int Region2_dispatchEvent(short_id) {….} 
   protected void initStatechart() { 
     rootState_substate = RiJNonState;  
     rootState_active = RijNonState; 
     Region1_substate = RiJNonState;  
     Region1_active = RijNonState; 
     Region2_substate = RiJNonState;  
     Region2_active = RijNonState; } 
…………. 
   int DTaket4() { 
int res =RiJStateReactive.TAKE_EVENT_NOT_CONSUMED; 
    if (isIn(F)) { 
       G_Exit(); B=entDef(); 
   res = RiJStateReactive.TAKE_EVENT_COMPLETE; } 
    return res;  } 
    int D_takeEvent(short id) { 
int res =RiJStateReactive.TAKE_EVENT_NOT_CONSUMED; 
       if (event.isTypeOf(t4.t4_Default_id)) { 
           res = DTaket4(); } 
if(res==RiJStateReactive.TAKE_EVENT_NOT_CONSUMED) 
      {res = Region1_takeEvent(id); } 
       return res; } 
    void D_entDef() { 
        D_enter();     } 
    void D_enter() { 
        Region1_subState = D; 
        Region_active = D; 
        DEnter():     } 
………… 
……} 
…} // end of class Reactive and class Test 



class t4 extends RiJEvent { // event as class  
    static final int t4_Default_id = 18619; 
    t4( ) {   // constructor 
       lld = t4_Default_id; } 
    boolean  isTypeOf(long  id) { 
        if (t4_Default_id == id)     return true; 
        else     return false; 
    } 
} // end of class t4 
 
 
5.  Comparison with Rhapsody 
 
Rhapsody [14] is a CASE tool that allows creating UML 
models for an application and then generates C, C++ or 
Java code for the application. Code generation in 
Rhapsody is based on the Object Execution Framework 
(OXF) [14]. The dynamics of the model are defined in the 
framework classes and hard-coded in the code generator.  

In Rhapsody's model, events are implemented as 
classes and transition-searching is performed by executing 
a switch statement. Whereas in our approach, events 
become methods; state hierarchy is implemented by 
object composition, and transition-searching is 
automatically performed by using the concept of 
polymorphism . We compared the code generated by our 
approach and by Rhapsody for Figure 5. Table 1 shows 
the findings of the comparison. The figures for Rhapsody 
do not include the code added by the OXF Framework. 
 

 Rhapsody* Our approach 
Source Code: No. of lines 675 250 
Source Code: No. of bytes  24270 6420 
No. of classes  7 11 

 
Table 1: Comparing the compactness of the generated 
code 
 
 
1. Code generated by our approach is more compact. 

The source code generated by Rhapsody excluding 
the OXF code is still approximately three times 
longer than the code generated by our approach, as 
shown in Table 1. 

2. Rhapsody code is difficult to understand. It uses data 
values to define states and have the operations in the 
Reactive class check the data explicitly. In such case 
state transitions implemented as assignments to some 
variables and have no explicit representation. It puts 
the transition-selection code in the switch statement 
inside the takeEvent(short id) method of the Reactive 
class. This makes the code difficult to understand. 
Our code converts each event into an operation call. 
The appropriate method is selected on the principle 
of polymorphism. The transition code is put in 
separate methods in the corresponding class. All the 
states and transitions are thus explicit without using 
any conditional statements. This contributes to 
making the code more readable. 

3. Our code is easy to maintain. We put all behavior 
associated with a particular state into one object. 
Because all state-specific code is contained in a 
single class, new states and transitions can be added 
by defining new classes and operations. In Rhapsody, 
the actual behavior of the system that was 
represented as a set of statecharts is buried into the 
generated code and the OXF framework. 

4. Our approach looks like introducing too many small 
classes, because the behavior for different states is 
distributed across several states. This increases the 
number of classes. However, such distribution 
eliminates large conditional statements. Large 
conditional statements are undesirable because they 
tend to make the code less understandable and 
difficult to modify and extend. 

 
These differences in the mechanisms make the 

resulting code of our approach compact, more readable 
and maintainable. 
 
 
6.  Related Work 
 
The most related work is that of Harel and Gery[13] 
whose tool called Rhapsody [14] generates C++ or Java 
code from UML models. As shown in the previous 
section, our code is more readable and maintainable than 
Rhapsody. 

Kohler et al. [15] presented an approach for code 
generation from statecharts. Their approach adapts the 
idea generic array based state-table but uses object 
structure to represent state-table at runtime. They use 
objects to represent states of a statechart and attributes to 
hold the entry and exit actions. A library function 
handleEvent() is used to interpret the state-table and to 
react on events and to issue appropriate action methods. 
The state table is more complex and expensive to set up. 
In our approach we have implemented entry and exit 
action as methods and states as objects. The code of our 
approach is simple and more efficient. 

Tomura et al. [16] presented the statechart design 
pattern, which define classes and state-transition 
execution mechanism for realizing the dynamic behavior 
of device component models of an open distributed 
control system. Context class represents the class that has 
the dynamic behavior specified by the statechart. The 
object of this class has only one StateMachine object. 
StateMachine is the class for describing the statechart. 
The objects of this class consist of two sets of states and 
transition. The objects correspond to either of a statechart 
diagram itself, sequential substates or concurrent 
substates. Events guards and actions are also implemented 
as classes. 

Knapp and Merz [17] described a set of tools called 
Hugo. A generic set of Java classes provides a standard 
runtime component state for statecharts. States are 
represented as objects. The run method is used to setup 
and initialize the associated statechart. Hugo code 



generation is interpretative in nature and is not producing 
the optimized code. 

Gurp and Bosch [18] presented FSM framework to 
implement statechart. States, transitions and actions are 
represented as objects. Similar to the State pattern, there 
is Context component that has a reference to the current 
state. Current state is represented as a state object rather 
than a state subclass. The transition object has a refe rence 
to the target state and an Action object. State transition in 
FSM framework is about twice as expensive as in the 
State pattern implementation for the simple transition. 
Transition searching is done by a look up in a hashtable 
object. The hashtable object maps event names to 
transition. 
 
 
7.  Conclusion and Future Work 
 
An implementation approach for generating Java code 
from the UML statechart diagram has been described. By 
representing states as objects, the concept of object 
composition and delegation with state design pattern is 
used to implement the hierarchical states and concurrent 
states. The proposed approach successfully deals with 
most of the statechart concepts such as substates, history 
nodes  and compound transitions (fork/join). Some of the 
statechart concepts such as guards and branches, time and 
signal events will be implemented in near future. The 
proposed approach can be used as a basis for automatic 
code generation for UML statechart diagrams. We are 
currently working on the implementation of the proposed 
approach. 

Our approach is an object-oriented approach so it can 
be used to generate low-level code in other object-
oriented languages like C++ etc. The code generation 
engine has to be tailored to the target language as some 
features are implemented in a different manner in 
different object-oriented languages. 
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