
MAPPING UML STATECHARTS TO JAVA CODE

Iftikhar Azim Niaz and Jiro Tanaka
Institute of Information Sciences and Electronics

University of Tsukuba
Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573 Japan

{ianiaz, jiro}@iplab.is.tsukuba.ac.jp

ABSTRACT
The Unified Modeling Language (UML) statechart
diagram is used for modeling the dynamic aspects of
systems. The UML statechart diagrams include many
concepts that are not present in most popular
programming languages, like Java or C++. There exists a
gap between high level modeling language and a
programming language. There is not a one-to-one
mapping between a statechart and its implementation.
Most of the approaches for implementing UML
statecharts diagram either suffer from maintenance
problems or implement only a subset of UML statecharts.
This paper proposes an approach to generate readable,
efficient and compact executable code from the UML
statechart diagram in an object-oriented (OO) language
like Java using design patterns. By representing states as
objects, we extend the state design pattern to implement
the hierarchical states using the concept of object
composition and delegation. We also propose an approach
to implement signal and time events, guards and branches
and internal transitions. The proposed approach makes
elegant handling of most of the statechart features.

KEY WORDS
Software engineering, Object-oriented analysis and design,
Statecharts, State pattern, Code generation, Java

1. Introduction

The UML [1] is currently the most widespread software
modeling language. The emergence of the UML as an
industry standard for modeling systems has encouraged
the use of automated software tools that facilitate the
development process from analysis through coding. In
UML based OO design, behavioral modeling aims at
describing the behavior of objects using state machines.
The UML statechart diagram is a graph that represents a
state machine [1]. A UML statechart describes the
dynamics of a model element as it changes its internal
state as the reaction of receiving some external stimuli.
UML statecharts can describe the behavior of a classifier
(a class) or a behavioral feature (a method of a class). The
semantics and notation used in UML statecharts mainly
follow Harel’s statecharts [2] with extensions to make

them OO. A statechart attached to a class specifies all
behavioral aspects of the objects in that class.

The OO methodologies using statecharts describe in
detail the steps to be followed for describing the behavior
of objects during analysis and design phases. But they fail
to show how the analysis and design models of a system
shall be converted into implementation code due to lack
of syntactic support by the OO programming languages
for statecharts. It is difficult for a large fraction of
programmers to convert the behavioral models into
executable code. The UML statechart diagrams include
many concepts that are not present in most popular
programming language like Java and C++, e.g. states, fork,
events, etc. This means there is not a one-to-one mapping
between a statechart and its implementation. Some model
elements, like history states, can be implemented in many
different ways. This clearly contrasts with class diagrams
that often can be easily implemented in a programming
language supporting concepts like classes and objects,
composition and inheritance. The translation of class
diagrams to an OO programming language is easy and
provided by most CASE tools.

There are number of ways to implement a statechart
in OO programming languages. The most common
technique to implement statechart is the doubly nested
switch statements with a “scalar variable” used as the
discriminator in the first level of the switch and event-
type in the second level [3]. This works well for simple
statecharts but this solution is not scalable. More complex
statechart concepts like hierarchical states , history states ,
fork, join etc. cause serious problems for this approach as
the code becomes complex and is difficult to read and
maintain. Ran [4] examined the relation between states
and classes and represented states as classes. Sane and
Campbell [5] said that states could be represented as
classes and transitions as operations. They proposed to
reuse behavior in state machines through inheritance of
other state machines and implemented embedded states
by making a table for the superstate. In the approach of
Chow et al. [6], all states from the statechart were
generated as constant attributes in the class and another
attribute was used to keep track of the current state of an
object. Transition of states was represented by the state
attribute of an object changed into another new state’s
value. Events and actions were implemented as methods.
Action was translated into method call in the code. It only

handled the simple statechart diagram, call and signal
events. Time events were not implemented.

Design pattern approach [7] is widely used in OO
software design. The approach specifies reusable
mechanisms for collaboration and interaction among
classes or among objects to solve common OO problems
in any domain. Several design patterns have been
proposed to implement statecharts . Conditional
Statements pattern [3], StateTable pattern [3], Basic
Statechart pattern [8], Hierarchical State Machine (HSM)
pattern [9] and State pattern [7]. These patterns have
critical problems with support of substates, mapping from
diagram to code and the readability of code.

Our approach is an effort to bridge the gap between
design and implementation. We have been working on
simple and efficient implementation of UML statecharts
in an OO language like Java. Through mapping between
UML and Java, we are able to generate low-level java
code directly from the statechart diagram. Some of the
results of our research, which includes a limited treatment
of UML statechart concepts , have already been published
[10]. In this paper, we will describe our approach for
implementing the hierarchical states in Java by extending
State pattern with object composition and delegation. We
will also describe our approach for implementing internal
transitions, signal events, time events and guards and
branches

2 Hierarchical States

We illustrate our approach using an audio cassette player
system as an example. Figure 1 shows a statechart for
cassette player system having sequential substates.

Figure 1. Statechart for cassette player system

The possible events for the system are powerBut,

volPlusBut, playBut and stopBut. The volPlusBut is the
internal transition. There are two top-level states
PowerOff and PowerOn. These states are activated
alternatively whenever a powerBut event occurs. The
PowerOn state is the composite state with two sequential
substates Stop (default) and Play. The volUp , startPlay
and stopPlay are the actions on transitions. History state
allows the composite state to remember the last substate
that was active in it prior to the transition from the
composite state.

2.1 Implementation Approach

Our approach for implementing UML statechart diagram
is based on [11], [12], [13] and the State pattern [7]. State
pattern puts all behavior associated with a particular state
into one class. The State pattern does not deal with the
hierarchical states, so some mechanism is needed to
implement the state hierarchy. When a composite state is
active, exactly one of its sequential substates is active.
Transitions affecting the superstate apply at all levels of
nesting within that superstate. The sequential substates
show a nested statechart within the composite state. This
leads us to implement the composite state by extending
the state design pattern with object composition and
delegation.

Object composition is defined dynamically at
runtime through objects acquiring references to other
objects. Object composition keeps each class
encapsulated and there are substantially fewer
dependencies. The main advantage of delegation is that it
makes it easy to compose behaviors at run-time and to
change the way they are composed.

To implement a statechart diagram, an OO approach
is used. The class, whose behavior is represented by the
statechart, becomes the super context class. An abstract
state class is generated which defines the interface for
encapsulating behavior associated with the states of the
statechart. Each state of the statechart becomes a derived
class from the abstract state class. Each transition
becomes an operation in the corresponding state class in
order to provide a uniform and convenient way of
invoking some services on the context object. Each action
of the statechart becomes a method in the context class.
The context class holds the reference of the current active
state in the state object and delegates all events for
processing to the current state object. State transitions are
accomplished by changing the current state object. The
composite state becomes the context for the nested
statechart. An abstract state class will define the interface
for the behavior associated with sequential substates of
the composite state. The sequential substates will become
the concrete state classes. The composite class will keep
the control most of the time and delegates the requests to
substates for transitions specific to substates.

The code generated for the cassette player system of
Figure 1 is as follows:

class CPlayer {
 CPlayerState state; // state object
 AbsOnState onHistory; // for History state
 // References for all the state objects
 PowerOff offState; PowerOn onState;
 Stop stopState; Play playState;
 CPlayer() { // constructor
 // create state objects only once
 offState = new PowerOff(this); onState = new PowerOn(this);
 stopState= new Stop(this,onState);
 playState = new Play(this,onstate);
 state = offState; // sets the default state
 onHistory = stopState; // setting the history for the first time }

 void setState(CPlayerState st) { // setting new state
 state = st;
 //sets the most recent active substate of PowerOn state
 if(state.equals(onState)) { onState.substate = onHistory;}
 state.entry(); // executes the entry action }
// Delegates incoming Events to concrete state class
 void powerBut() { state.powerBut(); }
 void volPlusBut() { state.volPlusBut(); }
 void playBut() { state.playBut(); }
 void stopBut() { state.stopBut(); }
// Actions becomes methods in Super Context class
 void setOn() {……}
 void setOff() {……}
 void volUp() {……}
 void startPlay() {……}
 void stopPlay() {……}
}
class CPlayerState { // Abstract Class
 CPlayer cp; // reference to the context object
……..// Declaring abstract methods
}
class PowerOff extends CPlayerState {
 void powerBut() {
 exit(); // executes the exit action of current state
 cp.setState(cp.onState); // change to PowerOn state }
}
class PowerOn extends CPlayerState {
 AbsOnState substat e; // reference for nested statechart
 void entry() {
 substate.entry(); // executes entry action of active substate
 cp.setOn(): // executes entry action }
 void exit() {
 cp.setoff(); // executes exit action
 cp.onHistory = substate; // adjusting the history node }
 void volPlusBut() { // Internal Transition
 cp.volUp(); // implements action }
 void playBut() { // delegates to nested substate object
 subState.playBut(); }
 void stopBut() { // delegates to nested substate object
 subState.stopBut(); }
 void powerBut() {
 substate.exit(); // executes the exit action of nested substate
 exit(); // execute the exit action of the current state
 cp.setState(cp.offState); // change to PowerOff state }
 void setSub (AbsOnState sub) { // setting the active substate
 subState = sub; substate.entry(); // entry action }
}
class AbsOnState{ // Abstract Class for Nested Statechart
 CPlayer m_context; // Reference for Super Context Object
 PowerOn s_context; // Reference for Sub Context Object
…….// defining abstract methods
}
class Stop extends AbsOnState { // Sequential substate
 void playBut () {
 m_context.startPlay(); // executes the action of Context class
 exit(); // exit action of current substate
 s_context.setSub(m_context.playState); // sets new substate }
}
class Play extends AbsOnState {………}

The CPlayer class is the super context class. The
state object holds the reference of the current active state.
The CPlayer object delegates all incoming events to its
current state object (state). All the concrete state objects
are created once in the constructor of CPlayer class. The

CPlayerState and AbsOnState are the abstract classes
providing a common interface for the concrete state
classes. The history state is implemented by providing a
reference onHistory in the CPlayer class, which sets the
onHistory at the start to Stop (default) state and later on it
is adjusted to the current active substate in the exit()
method by the PowerOn composite state. When PowerOn
state becomes active, its most recent active substate is
also set. The concrete state classes handle the events. First
of all the action associated with the event is executed
followed by the exit action of the current state and finally
the setState() method of the CPlayer class is called to set
the new state. If the new state is PowerOn then the last
active substate is also set. PowerOn class becomes the
context for the nested statechart. The subState object
keeps the reference of the current active substate. If the
target of a transition is the composite state then it is
handled by the composite state but if the target is the
nested state then it will be delegated to the current active
substate. An internal transition executes without exiting
and re-entering the state in which it is defined. The
internal transition volPlusBut is implemented in the
corresponding PowerOn class. In this case only the action
associated with the internal transition is executed and the
exit action and the setSub() methods are not called.

3 Time and Signal Events

3.1 Time Events

A time event is an event that represents the passage of
time. It is specified with the keyword after followed by
some expression that evaluates to a time period. The time
is normally counted since the state is entered. Figure 2
shows statechart of the cassette player system having a
transition on time event.

Figure 2. Statechart having a time event

To imple ment timeout events, we have developed a

simple Timer class, which can be used by any state object.
The Timer class has an integer variable representing the
number of milliseconds and a reference to the state object
for which a Timer class object is created. These two
variables are set when a timer object (an instance of
Timer) is newly created. The timer sends a timeout()
message to the state object when the specified number of
milliseconds has elapsed. There is a TimerState interface
that has timeout() method. The state class uses a
maximum priority thread so that it can send the timeout()
message as soon as the time is expired. Before the time is
expired, the thread is in sleep state so it does not effect the

usual execution of the system. Following is the Java code
that implements the statechart of Figure 2.

interface TimedState { void timeout(); }
class Timer extends Thread {
 int millisec; TimedState state;
 Timer (TimedState s, int ms) { // constructor
 state = s;
 millisec = ms;
 setPriority(Thread.MAX_PRIORITY);}
 void run() { // goes to sleep until the time is expired
 try{ sleep(millisec);
 catch(InterruptedException e) {
 // send timeout message to state
 state.timeout(); }
}
class CassetteEnd extends CPlayerState
implements TimedState {
void entry() { // sets a new timer to 5 secs upon entry
 timer = new Timer(this,5000);
 timer.start(); }
void timeout() { //called from the timer
 cp.setState(cp.stopState); }
}

3.2 Signal Event

A signal represent a named object that is dispatched
asynchronously by one object and then received by
another. Following the UML semantics, our approach
assumes an event queue and an event dispatcher
mechanism maintained by the system. In the case of
signal events, the sender object does not call directly an
operation of the receiver object. Instead, the sender places
the event in an event queue maintained by the system.
Control remains in the sender object. An event dispatcher,
which runs in a separate thread, dispatches the events
from the event queue to the specified objects one by one.

As long as an object is the receiver of events, there is
nothing to do special in its implementation. However,
while responding to some event, if an object sends
messages to other objects, then it needs to differentiate
calls and signal events In the case of a call, a method in
the receiver object will have to be called using a reference
to that object in the sender object. In the case of a signal,
the method name and the receiving object reference will
have to be placed in the system’s event queue.

4 Guards and Branches

In this section, we will describe our approach for
implementing guards and branches. A guard is a Boolean
condition that returns a TRUE or FALSE value that
controls whether or not a transition is taken following the
receipt of a triggering event. A transition with a guard is
only taken if the triggering event occurs and the guard
evaluates to TRUE. A guard should not have side effects.
The conditional branch or choice splits an incoming
transition into several disjoint outgoing transitions. Each
outgoing transition has a guard condition that is evaluated

after prior actions on the incoming path have been
completed.

Figure 3. Statechart with branches and guard conditions

Implementing the branch and guard condition is

straightforward. All the code for checking the branch and
guard condition is put inside the if statement of the
corresponding event method. The method is called when
the corresponding event occurs while the source state is
active. Following is the part of Java code for the
statechart of Figure 3.

class state1 extends AbsState {
 void e1() {

if (b < 5) {
 if (a < 0) {
 exit(); // executes the exit action
 ac.setState(ac.s2State); // sets the new state }
 else if (a < 5) {
 exit();
 ac.setState(ac.s3State); }
 else
 exit();
 ac.setState(ac.s4State);}
 }

5. Comparison with Rhapsody

The most related work is that of Harel and Gery [14] and
their supporting tool Rhapsody [15]. Rhapsody is a CASE
tool that allows creating UML models for an application
and then generates C, C++ or Java code for the
application. Code generation in Rhapsody is based on the
Object Execution Framework (OXF) [15]. The tool does
not optimize the generated code and the dynamics of the
model are defined in the framework classes and hard-
coded in the code generator. The code generator
automatically derives model classes from the framework
classes based on the application classes.

Rhapsody uses data values to define states and the
operations in the Reactive (Context) class check the data
explicitly. Rhapsody represents events as classes. The
state accepts a given signal event via the gen() operation,
which queues the event in its associated manager. The

manager later injects it to the Reactive instance for
consumption. The state transitions are implemented as
assignments to some variables and have no explicit
representation. The transition-searching is performed by
executing a switch statement in the Reactive class. The
handling of time events is buried in OXF.

In our approach, states become classes and state
hierarchy is implemented by object composition. Our
code converts each event into an operation call and
transition-searching is automatically performed by using
the concept of polymorphism. The transition code is put in
separate methods in the corresponding classes. All the
states and transitions are thus made explicit without using
any conditional statements.

5.1 Comparison of Generated Code

We compared the code generated by our approach and by
Rhapsody for Figure 1. Table 1 shows the findings of the
comparison. The figures for Rhapsody do not include the
code added by the OXF Framework*.

Table 1: Comparing the compactness of the generated
code

 Rhapsody* Our approach
Source Code: No. of lines 620 220
Source Code: No. of bytes 17780 6070
No. of classes 6 7

1. Code generated by our approach is more compact.

The source code generated by Rhapsody excluding
the OXF code is still approximately three times
longer than the code generated by our approach, as
shown in Table 1.

2. Rhapsody code is difficult to understand. It uses data
values to define states whereas we have implemented
states as classes. In Rhapsody, the transition-
searching is performed by executing a switch
statement whereas in our approach, it is performed by
using the concept of polymorphism. All the states and
transitions are thus explicit without using any
conditional statements. This contributes to making
our code more readable.

3. Our code is easy to maintain. In Rhapsody, the actual
behavior of the system that was represented as a set
of statecharts is buried into the generated code and
the OXF framework. We have put all behavior
associated with a particular state into one object. As
all the state-specific code is contained in a single
class, new states and transitions can be added easily
by defining new classes and operations.

These differences in the mechanisms suggest that the

resulting code of our approach is compact, more readable
and maintainable.

6. Related Work

Kohler et al. [16] presented an approach for code
generation from statecharts. Their approach adapts the
idea of generic array based state-table but uses an object –
oriented implementation of the state-table at runtime. The
states of the statecharts are subclasses from FReactive
class. The FReactive provides a pointer to the current
state of the reactive object and an abstract initStatechart()
and handleOneEvent() method. The initStatechart method
is used to create the state-table, Each reactive object has
its own event queue inherited from FReactive class. The
handleOneEvent() method is used to interpret the state-
table and to react on events and to issue appropriate action
methods. They have employed more than one event queue.
They did not discuss the history states and timeout events
implementation. The state table is more complex and
expensive to set up. In our approach entry and exit action
are implemented as methods and states as objects.

Tomura et al. [17] presented the statechart design
pattern, which define classes and state-transition
execution mechanism for realizing the dynamic behavior
of device component models of an open distributed
control system. Context class represents the class that has
the dynamic behavior specified by the statechart. The
object of this class has only one StateMachine object.
StateMachine is the class for describing the statechart.
The objects of this class consist of two sets of states and
transition. The objects correspond to either of a statechart
diagram itself, sequential substates or concurrent
substates. Events, entry and actions, and guards are also
implemented as classes. They did not discuss the signal
and timeout events.

Knapp and Merz [18] described a set of tools called
Hugo. A generic set of Java classes provides a standard
runtime component state for statecharts. The run() method
is used to setup and initialize the associated statechart.
Every state of a statechart is represented by a separate
object that provides methods for activation, deactivation,
initialization and event handling. Hugo code generation is
interpretative in nature and is not producing the optimized
code. The time events and history states are not
implemented.

Gurp and Bosch [19] presented Finite State
Machines (FSM) framework to implement statechart.
States, transitions and actions are represented as objects.
Similar to the State pattern, there is Context component
that has a reference to the current state. Current state is
represented as a state object rather than a state subclass.
The transition object has a reference to the target state and
an Action object. State transition in FSM framework is
about twice as expensive as in the State pattern
implementation for the simple transition. Transition
searching is done by a look up in a hashtable object. The
hashtable object maps event names to transition. Time
events and history nodes are not implemented.

7. Conclusion and Future Work

An OO approach for generating Java code from the UML
statechart diagram has been described. By representing
states as objects, we have used the concept of object
composition and delegation with state design pattern to
implement the hierarchical states. The states are
represented as classes and transitions as operations, thus
eliminating the need of large conditional statements. This
makes the components of the statechart diagram explicit
and the resulting code easier to understand and maintain.
It is easier to add new states and transitions. The proposed
approach successfully deals with most of the statechart
concepts such as hierarchical states, internal transitions,
call, signal and time events, guards and branches. The
code generated by our approach is approximately three
times more compact than Rhapsody. The proposed
approach can be used as a basis for automatic code
generation for UML statechart diagrams. We are currently
working on the implementation of the proposed approach
to verify the research results .

Our approach is an OO approach and in the present
study we have used Java language as the target language.
However, our approach is general so it can be used to
generate low-level code in other OO languages like C++.
The code generation engine has to be tailored to the target
language as some features are implemented differently in
different OO programming languages.

References

[1] Object Management Group (OMG), Unified Modeling
Language (UML) Specification Version 1.5, OMG, 2003.
http://www.omg.org/technology/documents/formal/uml.ht
m

[2] D. Harel, Statecharts: A visual formalism for complex
systems, Science of Computer Programming, 8(3), 1987,
231-274.

[3] B.P. Douglass, Real Time UML – Developing efficient
objects for embedded systems (Massachusetts: Addison-
Wesley, 1998).

[4] A.S. Ran, Modeling states as classes, Proc.
Technology of Object-Oriented Languages and Systems
Conference, 1994.

[5] A. Sane, R. Campbell, Object-Oriented state
machines: subclassing, composition, delegation, and
genericity, ACM SIGPLAN Notices, OOPSLA'95, vol.30,
Austin, Texas, USA, 1995, 17-32.

 [6] K.O. Chow, W. Jia, V.C.P. Chan and J. Cao, Model-
based generation of Java code, Proc. International Conf.
on Parallel and Distributed Processing Techniques and
Applications (PDPTA 2000), Las Vegas, USA, 2000.

[7] E. Gamma, R. Helm, R. Johnson and J. Vlissides,
Design patterns: elements of reusable object-oriented
software (Massachusetts: Addison-Wesley, 1995).

[8] S.M. Yacoub and H.H. Ammar, A pattern language of
statecharts, Proc. Fifth Annual Conf. on the Pattern
Languages of Program (PLoP’98), Monticello, IL, USA,
1998, TR #WUCS-98-29.

[9] M. Samek and P. Montgomery, State-oriented
programming, Embedded Systems Programming, 13(8),
2000, 22-43.

[10] I.A. Niaz and J. Tanaka, Code generation from UML
statecharts, Proc. 7th IASTED International Conf. on
Software Engineering and Applications (SEA 2003),
Marina Del Rey, USA, 2003, 315-321.

[11] J. Ali and J. Tanaka, Converting statecharts into Java
code, Proc. Fourth World Conf. on Integrated Design and
Process Technology (IDPT'99), Dallas, Texas, USA, 2000
(CD-ROM).

[12] J. Ali and J. Tanaka, Implementing the dynamic
behavior represented as multiple state diagrams and
activity diagrams, Journal of Computer Science &
Information Management (JCSIM), 2(1), 2001, 24-34.

[13] J. Ali and J. Tanaka, An object oriented approach to
generate executable code from OMT-based dynamic
model, Journal of Integrated Design and Process Science,
2(4), 1998, 65-77.

[14] D. Harel and E. Gery, Executable object modeling
with statecharts, Computer, 30(7), 1997, 31-42.

[15] Rhapsody case tool reference manual, I-Logix Inc.
http://www.ilogix.com.

[16] H.J. Köhler, U. Nickel, J. Niere, and A. Zündorf,
Integrating UML diagrams for production control systems,
Proc. 22nd International Conf. on Software Engineering
(ICSE 2000), Limerick, Ireland, 2000, 241-251.

[17] T. Tomura, S. Kanai, K. Uehiro and S. Yamamoto,
Developing simulation models of open distributed control
system by using object-oriented structural and behavioral
patterns, Proc.4th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing
(ISORC 2001), Madgeburg, Germany, 2001, 428-437.

[18] A. Knapp and S. Merz, Model checking and code
generation for UML state machines and collaborations,
Proc. 5th Workshop on Tools for System Design and
Verification , Reisenburg, Germany, 2002, 59-64.

[19] J. V. Gurp and J. Bosch, On the implementation of
finite state machines, Proc. IASTED International Conf.
on Software Engineering and Applications, (SEA’99),
Scottsdale, AZ, USA, 1999, 172-178.

