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ABSTRACT 
The Unified Modeling Language (UML) statechart 
diagram is used for modeling the dynamic aspects of 
systems. The UML statechart diagrams include many 
concepts that are not present in most popular 
programming languages, like Java or C++. There exists a 
gap between high level modeling language and a 
programming language. There is not a one-to-one 
mapping between a statechart and its implementation. 
Most of the approaches  for implementing UML 
statecharts diagram either suffer from maintenance 
problems or implement only a subset of UML statecharts. 
This paper proposes an approach to generate readable, 
efficient and compact executable code from the UML 
statechart diagram in an object-oriented (OO) language 
like Java using design patterns. By representing states as 
objects, we extend the state design pattern to implement 
the hierarchical states using the concept of object 
composition and delegation. We also propose an approach 
to implement signal and time events, guards and branches 
and internal transitions. The proposed approach makes 
elegant handling of most of the statechart features. 
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1. Introduction 
 
The UML [1] is currently the most widespread software 
modeling language. The emergence of the UML as an 
industry standard for modeling systems has encouraged 
the use of automated software tools that facilitate the 
development process from analysis through coding. In 
UML based OO design, behavioral modeling aims at 
describing the behavior of objects using state machines. 
The UML statechart diagram is a graph that represents a 
state machine [1]. A UML statechart describes the 
dynamics of a model element as it changes its internal 
state as the reaction of receiving some external stimuli. 
UML statecharts can describe the behavior of a classifier 
(a class) or a behavioral feature (a method of a class). The 
semantics and notation used in UML statecharts mainly 
follow Harel’s statecharts [2] with extensions to make 

them OO. A statechart attached to a class specifies all 
behavioral aspects of the objects in that class. 

The OO methodologies using statecharts describe in 
detail the steps to be followed for describing the behavior 
of objects during analysis and design phases. But they fail 
to show how the analysis and design models of a system 
shall be converted into implementation code due to lack 
of syntactic support by the OO programming languages 
for statecharts. It is difficult for a large fraction of 
programmers to convert the behavioral models into 
executable code. The UML statechart diagrams include 
many concepts that are not present in most popular 
programming language like Java and C++, e.g. states, fork, 
events, etc. This means there is not a one-to-one mapping 
between a statechart and its implementation. Some model 
elements, like history states, can be implemented in many 
different ways. This clearly contrasts with class diagrams 
that often can be easily implemented in a programming 
language supporting concepts like classes and objects, 
composition and inheritance. The translation of class 
diagrams to an OO programming language is easy and 
provided by most CASE tools.  

There are number of ways to implement a statechart 
in OO programming languages. The most common 
technique to implement statechart is the doubly nested 
switch statements with a “scalar variable” used as the 
discriminator in the first level of the switch and event-
type in the second level [3]. This works well for simple 
statecharts but this solution is not scalable. More complex 
statechart concepts like hierarchical states , history states , 
fork, join etc. cause serious problems for this approach as 
the code becomes complex and is difficult to read and 
maintain. Ran [4] examined the relation between states 
and classes and represented states as classes. Sane and 
Campbell [5] said that states could be represented as 
classes and transitions as operations. They proposed to 
reuse behavior in state machines through inheritance of 
other state machines and implemented embedded states 
by making a table for the superstate. In the approach of 
Chow et al. [6], all states from the statechart were 
generated as constant attributes in the class and another 
attribute was used to keep track of the current state of an 
object. Transition of states was represented by the state 
attribute of an object changed into another new state’s 
value. Events and actions were implemented as methods. 
Action was translated into method call in the code. It only 



handled the simple statechart diagram, call and signal 
events. Time events were not implemented. 

Design pattern approach [7] is widely used in OO 
software design. The approach specifies reusable 
mechanisms for collaboration and interaction among 
classes or among objects to solve common OO problems 
in any domain. Several design patterns have been 
proposed to implement statecharts . Conditional 
Statements pattern [3], StateTable pattern [3], Basic 
Statechart pattern [8], Hierarchical State Machine (HSM) 
pattern [9] and State pattern [7]. These patterns have 
critical problems with support of substates, mapping from 
diagram to code and the readability of code.  

Our approach is an effort to bridge the gap between 
design and implementation. We have been working on 
simple and efficient implementation of UML statecharts 
in an OO language like Java. Through mapping between 
UML and Java, we are able to generate low-level java 
code directly from the statechart diagram. Some of the 
results of our research, which includes a limited treatment 
of UML statechart concepts , have already been published 
[10]. In this paper, we will describe our approach for 
implementing the hierarchical states in Java by extending 
State pattern with object composition and delegation. We 
will also describe our approach for implementing internal 
transitions, signal events, time events and guards and 
branches  
 
 
2 Hierarchical States 
 
We illustrate our approach using an audio cassette player 
system as an example. Figure 1 shows a statechart for 
cassette player system having sequential substates. 
 

 
Figure 1. Statechart for cassette player system 

 
The possible events for the system are powerBut, 

volPlusBut, playBut and stopBut. The volPlusBut  is the 
internal transition. There are two top-level states 
PowerOff and PowerOn. These states are activated 
alternatively whenever a powerBut event occurs. The 
PowerOn state is the composite state with two sequential 
substates Stop (default) and Play. The volUp , startPlay 
and stopPlay are the actions on transitions. History state 
allows the composite state to remember the last substate 
that was active in it prior to the transition from the 
composite state. 

2.1 Implementation Approach 
 
Our approach for implementing UML statechart diagram 
is based on [11], [12], [13] and the State pattern [7]. State 
pattern puts all behavior associated with a particular state 
into one class. The State pattern does not deal with the 
hierarchical states, so some mechanism is needed to 
implement the state hierarchy. When a composite state is 
active, exactly one of its sequential substates is active. 
Transitions affecting the superstate apply at all levels of 
nesting within that superstate. The sequential substates 
show a nested statechart within the composite state. This 
leads us to implement the composite state by extending 
the state design pattern with object composition and 
delegation. 

Object composition is defined dynamically at 
runtime through objects acquiring references to other 
objects. Object composition keeps each class 
encapsulated and there are substantially fewer 
dependencies. The main advantage of delegation is that it 
makes it easy to compose behaviors at run-time and to 
change the way they are composed. 

To implement a statechart diagram, an OO approach 
is used. The class, whose behavior is represented by the 
statechart, becomes the super context class. An abstract 
state class is generated which defines the interface for 
encapsulating behavior associated with the states of the 
statechart. Each state of the statechart becomes a derived 
class from the abstract state class. Each transition 
becomes an operation in the corresponding state class in 
order to provide a uniform and convenient way of 
invoking some services on the context object. Each action 
of the statechart becomes a method in the context class. 
The context  class holds the reference of the current active 
state in the state object and delegates all events for 
processing to the current state object. State transitions are 
accomplished by changing the current state object. The 
composite state becomes the context  for the nested 
statechart. An abstract state class will define the interface 
for the behavior associated with sequential substates of 
the composite state. The sequential substates will become 
the concrete state classes. The composite class will keep 
the control most of the time and delegates the requests to 
substates for transitions specific to substates.  

The code generated for the cassette player system of 
Figure 1 is as follows: 
 
class CPlayer { 
  CPlayerState  state; // state object 
  AbsOnState  onHistory; // for History state 
    // References for all the state objects 
  PowerOff  offState;   PowerOn  onState;  
  Stop  stopState;        Play  playState; 
  CPlayer() { // constructor 
    // create state objects only once 
    offState = new PowerOff(this); onState = new PowerOn(this); 
    stopState= new Stop(this,onState);  
    playState = new Play(this,onstate); 
    state = offState;             // sets the default state 
    onHistory = stopState; // setting the history for the first time  } 



  void setState(CPlayerState st) {         // setting new state 
    state = st; 
       //sets the most recent active substate of PowerOn state 
    if(state.equals(onState)) { onState.substate = onHistory;} 
    state.entry();  // executes the entry action    } 
// Delegates incoming Events to concrete state class 
  void powerBut() {    state.powerBut();   } 
  void volPlusBut() {    state.volPlusBut();   } 
  void playBut() {    state.playBut();   } 
  void stopBut()  {    state.stopBut();   } 
// Actions becomes methods in Super Context class 
  void setOn() {……} 
  void setOff() {……} 
  void volUp() {……} 
  void startPlay() {……} 
  void stopPlay() {……} 
} 
class CPlayerState {      // Abstract Class 
   CPlayer  cp;  // reference to the context object  
……..// Declaring abstract methods 
} 
class PowerOff extends CPlayerState { 
    void powerBut() {  
       exit();  // executes the exit action of current state 
       cp.setState(cp.onState);    // change to PowerOn state  } 
} 
class PowerOn extends CPlayerState { 
  AbsOnState    substat e;      // reference for nested statechart 
  void entry() { 
    substate.entry();  // executes entry action of active substate 
    cp.setOn():          // executes entry action    } 
  void exit() { 
    cp.setoff();          // executes exit action 
    cp.onHistory = substate;  // adjusting the history node    } 
  void volPlusBut() {      // Internal Transition 
    cp.volUp();  // implements action     } 
  void playBut()  {         // delegates to nested substate object 
    subState.playBut();      } 
  void stopBut()  {         // delegates to nested substate object 
    subState.stopBut();      } 
  void powerBut() { 
    substate.exit();  // executes the exit action of nested substate 
    exit();    // execute the exit action of the current state 
    cp.setState(cp.offState);   // change to PowerOff state   } 
  void setSub (AbsOnState sub) {  // setting the active substate 
    subState = sub;    substate.entry(); // entry action      } 
} 
class AbsOnState{ // Abstract Class for Nested Statechart 
  CPlayer   m_context;  //  Reference for Super Context Object 
  PowerOn  s_context;  //  Reference for Sub Context Object 
…….//  defining abstract methods   
} 
class Stop extends AbsOnState {    // Sequential substate 
  void playBut () {  
    m_context.startPlay(); // executes the action of Context class 
    exit(); // exit action of current substate 
   s_context.setSub(m_context.playState);  // sets new substate } 
} 
class Play extends AbsOnState {………} 
 

The CPlayer class is the super context class. The 
state object holds the reference of the current active state. 
The CPlayer object delegates all incoming events to its 
current state object (state). All the concrete state objects 
are created once in the constructor of CPlayer class. The 

CPlayerState and AbsOnState are the abstract classes 
providing a common interface for the concrete state 
classes. The history state is implemented by providing a 
reference onHistory in the CPlayer class, which sets the 
onHistory at the start to Stop (default) state and later on it 
is adjusted to the current active substate in the exit() 
method by the PowerOn composite state. When PowerOn 
state becomes active, its most recent active substate is 
also set. The concrete state classes handle the events. First 
of all the action associated with the event is executed 
followed by the exit action of the current state and finally 
the setState() method of the CPlayer class is called to set 
the new state. If the new state is PowerOn then the last 
active substate is also set. PowerOn class becomes the 
context for the nested statechart. The subState object 
keeps the reference of the current active substate. If the 
target of a transition is the composite state then it is 
handled by the composite state but if the target is the 
nested state then it will be delegated to the current active 
substate. An internal transition executes without exiting 
and re-entering the state in which it is defined. The 
internal transition volPlusBut is implemented in the 
corresponding PowerOn  class. In this case only the action 
associated with the internal transition is executed and the 
exit action and the setSub() methods are not called. 
 
 
3 Time and Signal Events 
 
3.1 Time Events 
 
A time event is an event that represents the passage of 
time. It is specified with the keyword after followed by 
some expression that evaluates to a time period. The time 
is normally counted since the state is entered. Figure 2 
shows statechart of the cassette player system having a 
transition on time event. 
 

 
Figure 2.  Statechart having a time event 

 
To imple ment timeout events, we have developed a 

simple Timer class, which can be used by any state object. 
The Timer class has an integer variable representing the 
number of milliseconds and a reference to the state object 
for which a Timer class object is created. These two 
variables are set when a timer object (an instance of 
Timer) is newly created. The timer sends a timeout() 
message to the state object when the specified number of 
milliseconds has elapsed. There is a TimerState interface 
that has timeout() method. The state class uses a 
maximum priority thread so that it can send the timeout() 
message as soon as the time is expired. Before the time is 
expired, the thread is in sleep state so it does not effect the 



usual execution of the system. Following is the Java code 
that implements the statechart of Figure 2. 
 
interface TimedState { void timeout();   } 
class Timer extends Thread { 
    int millisec; TimedState state; 
    Timer (TimedState s, int ms) { // constructor 
        state = s;  
        millisec = ms;  
        setPriority(Thread.MAX_PRIORITY);} 
    void run() { // goes to sleep until the time is expired 
        try{ sleep(millisec); 
        catch(InterruptedException e) { 
    // send timeout message to state 
        state.timeout(); } 
} 
class CassetteEnd extends CPlayerState 
implements TimedState { 
void entry() { // sets a new timer to 5 secs upon entry  
    timer = new Timer(this,5000); 
    timer.start(); } 
void timeout() { //called from the timer 
    cp.setState(cp.stopState); } 
} 
 
3.2 Signal Event 
 
A signal represent a named object that is dispatched 
asynchronously by one object and then received by 
another. Following the UML semantics, our approach 
assumes an event queue and an event dispatcher 
mechanism maintained by the system. In the case of 
signal events, the sender object does not call directly an 
operation of the receiver object. Instead, the sender places 
the event in an event queue maintained by the system. 
Control remains in the sender object. An event dispatcher, 
which runs in a separate thread, dispatches the events 
from the event queue to the specified objects one by one.  

As long as an object is the receiver of events, there is 
nothing to do special in its implementation. However, 
while responding to some event, if an object sends 
messages  to other objects, then it needs to differentiate 
calls and signal events In the case of a call, a method in 
the receiver object will have to be called using a reference 
to that object in the sender object. In the case of a signal, 
the method name and the receiving object reference will 
have to be placed in the system’s event queue. 
 
 
4 Guards and Branches 
 
In this section, we will describe our approach for 
implementing guards and branches. A guard is a Boolean 
condition that returns a TRUE or FALSE value that 
controls whether or not a transition is taken following the 
receipt of a triggering event. A transition with a guard is 
only taken if the triggering event occurs and the guard 
evaluates to TRUE. A guard should not have side effects. 
The conditional branch or choice splits an incoming 
transition into several disjoint outgoing transitions. Each 
outgoing transition has a guard condition that is evaluated 

after prior actions on the incoming path have been 
completed. 
 

 
Figure 3. Statechart with branches and guard conditions 

 
Implementing the branch and guard condition is 

straightforward. All the code for checking the branch and 
guard condition is put inside the if statement of the 
corresponding event method. The method is called when 
the corresponding event occurs while the source state is 
active. Following is the part of Java code for the 
statechart of Figure 3. 
 
class state1 extends AbsState { 
   void  e1() { 

if (b < 5 ) { 
 if (a < 0 ) { 
      exit();   // executes the exit action 
      ac.setState(ac.s2State); //   sets the new state     } 
 else  if  (a < 5) { 
  exit(); 
  ac.setState(ac.s3State); } 
         else 
  exit(); 
  ac.setState(ac.s4State);} 
   } 
 
 
5.  Comparison with Rhapsody 
 
The most related work is that of Harel and Gery [14] and 
their supporting tool Rhapsody [15]. Rhapsody is a CASE 
tool that allows creating UML models for an application 
and then generates C, C++ or Java code for the 
application. Code generation in Rhapsody is based on the 
Object Execution Framework (OXF) [15]. The tool does 
not optimize the generated code and the dynamics of the 
model are defined in the framework classes and hard-
coded in the code generator. The code generator 
automatically derives model classes from the framework 
classes based on the application classes.  

Rhapsody uses data values to define states and the 
operations in the Reactive (Context) class check the data 
explicitly. Rhapsody represents events as classes. The 
state accepts a given signal event via the gen() operation, 
which queues the event in its associated manager. The 



manager later injects it to the Reactive instance for 
consumption. The state transitions are implemented as 
assignments to some variables and have no explicit 
representation. The transition-searching is performed by 
executing a switch statement in the Reactive class. The 
handling of time events is buried in OXF. 

In our approach, states become classes and state 
hierarchy is implemented by object composition. Our 
code converts each event into an operation call and 
transition-searching is automatically performed by using 
the concept of polymorphism. The transition code is put in 
separate methods in the corresponding classes. All the 
states and transitions are thus made explicit without using 
any conditional statements.  
 
 
5.1 Comparison of Generated Code 
 
We compared the code generated by our approach and by 
Rhapsody for Figure 1. Table 1 shows the findings of the 
comparison. The figures for Rhapsody do not include the 
code added by the OXF Framework*. 
 
Table 1: Comparing the compactness of the generated 
code 
 

 Rhapsody* Our approach 
Source Code: No. of lines 620 220 
Source Code: No. of bytes 17780 6070 
No. of classes 6 7 

 
1. Code generated by our approach is more compact. 

The source code generated by Rhapsody excluding 
the OXF code is still approximately three times 
longer than the code generated by our approach, as 
shown in Table 1. 

2. Rhapsody code is difficult to understand. It uses data 
values to define states whereas we have implemented 
states as classes. In Rhapsody, the transition-
searching is performed by executing a switch 
statement whereas in our approach, it is performed by 
using the concept of polymorphism. All the states and 
transitions are thus explicit without using any 
conditional statements. This contributes to making 
our code more readable. 

3. Our code is easy to maintain. In Rhapsody, the actual 
behavior of the system that was represented as a set 
of statecharts is buried into the generated code and 
the OXF framework. We have put all behavior 
associated with a particular state into one object. As 
all the state-specific code is contained in a single 
class, new states and transitions can be added easily 
by defining new classes and operations.  
 
These differences in the mechanisms suggest that the 

resulting code of our approach is compact, more readable 
and maintainable. 
 
 

6.  Related Work 
 
Kohler et al. [16] presented an approach for code 
generation from statecharts. Their approach adapts the 
idea of generic array based state-table but uses an object –
oriented implementation of the state-table at runtime. The 
states of the statecharts are subclasses from FReactive 
class. The FReactive provides a pointer to the current 
state of the reactive object and an abstract initStatechart() 
and handleOneEvent() method. The initStatechart method 
is used to create the state-table, Each reactive object has 
its own event queue inherited from FReactive class. The 
handleOneEvent() method is used to interpret the state-
table and to react on events and to issue appropriate action 
methods. They have employed more than one event queue. 
They did not discuss the history states and timeout events 
implementation. The state table is more complex and 
expensive to set up. In our approach entry and exit action 
are implemented as methods and states as objects.  

Tomura et al. [17] presented the statechart design 
pattern, which define classes and state-transition 
execution mechanism for realizing the dynamic behavior 
of device component models of an open distributed 
control system. Context class represents the class that has 
the dynamic behavior specified by the statechart. The 
object of this class has only one StateMachine object. 
StateMachine is the class for describing the statechart. 
The objects of this class consist of two sets of states and 
transition. The objects  correspond to either of a statechart 
diagram itself, sequential substates or concurrent 
substates. Events, entry and actions, and guards are also 
implemented as classes. They did not discuss the signal 
and timeout events.  

Knapp and Merz [18] described a set of tools called 
Hugo. A generic set of Java classes provides a standard 
runtime component state for statecharts. The run() method 
is used to setup and initialize the associated statechart. 
Every state of a statechart is represented by a separate 
object that provides methods for activation, deactivation, 
initialization and event handling. Hugo code generation is 
interpretative in nature and is not producing the optimized 
code. The time events and history states are not 
implemented. 

Gurp and Bosch [19] presented Finite State 
Machines (FSM) framework to implement statechart. 
States, transitions and actions are represented as objects. 
Similar to the State pattern, there is Context component 
that has a reference to the current state. Current state is 
represented as a state object rather than a state subclass. 
The transition object has a reference to the target state and 
an Action object. State transition in FSM framework is 
about twice as expensive as in the State pattern 
implementation for the simple transition. Transition 
searching is done by a look up in a hashtable object. The 
hashtable object maps event names to transition. Time 
events and history nodes are not implemented. 
 
 
 



7.  Conclusion and Future Work 
 
An OO approach for generating Java code from the UML 
statechart diagram has been described. By representing 
states as objects, we have used the concept of object 
composition and delegation with state design pattern to 
implement the hierarchical states. The states are 
represented as classes and transitions as  operations, thus 
eliminating the need of large conditional statements. This 
makes the components of the statechart diagram explicit 
and the resulting code easier to understand and maintain. 
It is easier to add new states and transitions. The proposed 
approach successfully deals with most of the statechart 
concepts such as hierarchical states, internal transitions, 
call, signal and time events, guards and branches. The 
code generated by our approach is approximately three 
times more compact than Rhapsody. The proposed 
approach can be used as a basis for automatic code 
generation for UML statechart diagrams. We are currently 
working on the implementation of the proposed approach 
to verify the research results . 

Our approach is an OO approach and in the present 
study we have used Java language as the target language. 
However, our approach is general so it can be used to 
generate low-level code in other OO languages like C++. 
The code generation engine has to be tailored to the target 
language as some features are implemented differently in 
different OO programming languages. 
 
 
References 
 
[1] Object Management Group (OMG), Unified Modeling 
Language (UML) Specification Version 1.5, OMG, 2003. 
http://www.omg.org/technology/documents/formal/uml.ht
m 

[2] D. Harel, Statecharts: A visual formalism for complex 
systems, Science of Computer Programming, 8(3), 1987, 
231-274. 

[3] B.P. Douglass, Real Time UML – Developing efficient 
objects for embedded systems (Massachusetts: Addison-
Wesley, 1998). 

[4] A.S. Ran, Modeling states as classes, Proc. 
Technology of Object-Oriented Languages and Systems 
Conference, 1994. 

[5] A. Sane, R. Campbell, Object-Oriented state 
machines: subclassing, composition, delegation, and 
genericity, ACM SIGPLAN Notices, OOPSLA'95, vol.30, 
Austin, Texas, USA, 1995, 17-32. 

 [6] K.O. Chow, W. Jia, V.C.P. Chan and J. Cao, Model-
based generation of Java code, Proc. International Conf. 
on Parallel and Distributed Processing Techniques and 
Applications (PDPTA 2000), Las Vegas, USA, 2000. 

[7] E. Gamma, R. Helm, R. Johnson and J. Vlissides, 
Design patterns: elements of reusable object-oriented 
software (Massachusetts: Addison-Wesley, 1995). 

[8] S.M. Yacoub and H.H. Ammar, A pattern language of 
statecharts, Proc. Fifth Annual Conf. on the Pattern 
Languages of Program (PLoP’98), Monticello, IL, USA, 
1998, TR #WUCS-98-29. 

[9] M. Samek and P. Montgomery, State-oriented 
programming, Embedded Systems Programming, 13(8), 
2000, 22-43. 

[10] I.A. Niaz and J. Tanaka, Code generation from UML 
statecharts, Proc. 7th IASTED International Conf. on 
Software Engineering and Applications (SEA 2003), 
Marina Del Rey, USA, 2003, 315-321. 

[11] J. Ali and J. Tanaka, Converting statecharts into Java 
code, Proc. Fourth World Conf. on Integrated Design and 
Process Technology (IDPT'99), Dallas, Texas, USA, 2000 
(CD-ROM). 

[12] J. Ali and J. Tanaka, Implementing the dynamic 
behavior represented as multiple state diagrams and 
activity diagrams, Journal of Computer Science & 
Information Management (JCSIM), 2(1), 2001, 24-34. 

[13] J. Ali and J. Tanaka, An object oriented approach to 
generate executable code from OMT-based dynamic 
model, Journal of Integrated Design and Process Science, 
2(4), 1998, 65-77. 

[14] D. Harel and E. Gery, Executable object modeling 
with statecharts, Computer, 30(7), 1997, 31-42. 

[15] Rhapsody case tool reference manual, I-Logix Inc. 
http://www.ilogix.com. 

[16] H.J. Köhler, U. Nickel, J. Niere, and A. Zündorf, 
Integrating UML diagrams for production control systems, 
Proc. 22nd International Conf. on Software Engineering 
(ICSE 2000), Limerick, Ireland, 2000, 241-251. 

[17] T. Tomura, S. Kanai, K. Uehiro and S. Yamamoto, 
Developing simulation models of open distributed control 
system by using object-oriented structural and behavioral 
patterns, Proc.4th IEEE International Symposium on 
Object-Oriented Real-Time Distributed Computing 
(ISORC 2001), Madgeburg, Germany, 2001, 428-437. 

[18] A. Knapp and S. Merz, Model checking and code 
generation for UML state machines and collaborations, 
Proc. 5th Workshop on Tools for System Design and 
Verification , Reisenburg, Germany, 2002, 59-64. 

[19] J. V. Gurp and J. Bosch, On the implementation of 
finite state machines, Proc. IASTED International Conf. 
on Software Engineering and Applications, (SEA’99), 
Scottsdale, AZ, USA, 1999, 172-178. 


