
J.A. Jacko (Ed.): Human-Computer Interaction, Part I, HCII 2009, LNCS 5610, pp. 890–899, 2009.
© Springer-Verlag Berlin Heidelberg 2009

OntoDesk: Ontology-Based Persistent System-Wide
Undo on the Desktop

David Nemeskey, Buntarou Shizuki, and Jiro Tanaka

Department of Computer Science, University of Tsukuba
nemeskey@iplab.cs.tsukuba.ac.jp,
{shizuki,jiro}@cs.tsukuba.ac.jp

Abstract. Recovery is an important aspect of user experience. However, current
desktop environments lack a system-wide undo facility. OntoDesk is an ontol-
ogy-based experimental desktop system that offers this feature. Ontology is
used to model the semantic relationships between parts of the system. Onto-
Desk assembles a global action history of application use. With this informa-
tion, it provides undo/redo for any part of the system, including applications
without native recovery. The framework allows developers to add advanced
features to their applications, and it allows users to explore the system with con-
fidence, knowing that their actions will be reversible.

Keywords: OntoDesk, ontology, OWL, system-wide undo, persistent undo,
application, action, global history, session management.

1 Introduction

User interaction history plays an important role in interactive systems. Most desktop
applications allow the user to undo past actions, enabling the user to recover from
errors and to explore application functions without hesitation [1].

However, an action history usually belongs to a particular application: other pro-
grams cannot access it, and it is lost when the application is closed. Furthermore, even
modern operating systems do not support undoing system-level events, such as start-
ing and stopping an application and file creation.

These limitations seriously hinder the utility of recovery in an environment where a
single mouse click is enough to make a mistake. For instance, the user can acciden-
tally change the desktop background while trying to save a picture in a browser, since
the options are close in the context menu. It is also not uncommon that the user closes
an application accidentally. While certain applications can reestablish their previous
state on restart, others forget the navigation history. Consequently, the lack of persis-
tent undo history means that users cannot undo errors from a previous session; the
prior state must be reestablished manually.

Joyce, a distributed system framework provides persistent, system-wide undo [2].
The undo mechanism is based on manually-defined dependencies between the actions
of applications. While this method works for standalone applications, tasks that in-
volve several applications requires that inter-application dependencies are defined.
This is not feasible on the desktop, where applications come from many sources.

 OntoDesk: Ontology-Based Persistent System-Wide Undo on the Desktop 891

In this paper, we propose an ontology-based framework that provides persistent
system-wide undo, eliminating all the aforementioned limitations of recovery. The
system objects, such as files and documents, as well as applications and user actions
are described by an ontology. This allows us to build a model that decouples actions
from their applications on an abstract level. Our framework tracks the actions and
maintains a persistent, global action history.

Using an ontology delivers several benefits. Firstly, system objects and actions are
defined in an abstract, unified manner, regardless of implementation details. This al-
lows the undo model to be general and applicable to any system object: users can
undo anything from modifications to a file, to closing of an application or even chang-
ing of the desktop background. Secondly, as the ontology is a text-based data model,
it frees the framework from programming languages and toolkits. As a result, existing
applications can be integrated into the framework. Finally, we can infer inter-
application dependencies even for applications that were not designed to work to-
gether.

2 Approach

Conventionally, the actions that the user can invoke in an application are not visible to
the system. As a result, the system is ignorant of user actions in any specific applica-
tion. Conversely, events and logs reported by applications to the operating system are
usually insufficient for recovery and too low-level to present to the user.

We intend to rectify this situation by making actions first-class citizens within the
framework. Applications define the available high-level actions. These are the seman-
tic actions that users consider when using the computer, such as “insert text to a
document,” “send a mail,” or “close a program.” Applications report the actions they
execute to our framework, which builds a persistent, global history list of these action
records.

The heart of our framework is the ontology, “an explicit specification of the con-
cepts in a domain and the relations among them” [3]. Here, the ontology serves as an
intelligent registry where applications and other parts of the system, such as the run-
time environment, publish their capabilities. It also tracks all system resources, such
as files, documents and running application processes; they are the objects that live in
the system and serve as parameters for actions. Resources also have states, which
represent the data (or literally, the state, in case of application processes) of the
resource at a given time. The history is stored in the ontology as well. Applications
include an ontology file that describes their capabilities. This file is merged to the
system ontology when the application is installed.

Our research focuses on the controlling aspects of desktop systems. The framework
models the control flow of a typical desktop environment. Data and content are mod-
eled only to the extent that is necessary for the undo facility. File metadata, interrela-
tions between documents, etc. are not supported. Data semantics are already being
investigated by other projects, such as Nepomuk [4].

2.1 Architecture of the Framework

The main component of the framework is the Ontology Server, which runs as a sys-
tem service. All ontology queries and modifications are carried out by the server.

892 D. Nemeskey, B. Shizuki, and J. Tanaka

Other processes can access it only through the interface provided by the server. Ap-
plications communicate with the server via IPC.

When the user executes an action in an application, the description of the action is
sent to the server, which stores it in the ontology. Undo and redo are reported in the
same way. The server can also instruct an application to execute one of its actions, or
perform an undo or redo operation (see below).

Fig. 1. Control flow of the framework

2.2 Undo Support

A system-wide undo facility faces challenges that do not appear in traditional applica-
tions. Firstly, the global history may contain non-undoable actions, such as sending a
mail. Secondly, finding the specific action to undo in a global history would be over-
whelming, requiring system-generated resource-local histories including only those
actions that affected a particular resource. This is complicated by actions which can
affect multiple resources. Lastly, effects of the undo operation should be localized:
parts of the system unrelated to the undone action should not be affected. These fea-
tures demand a more sophisticated undo model.

Undo Model. Most of today's applications provide linear undo: actions are stored in a
single history list, and undone in reverse temporal order. In our case, however, actions
related to a certain resource are scattered in the global action list. Similar challenges
are encountered in multi-user undo, and necessitate a non-linear undo model, where
actions can be undone regardless of their placement in the history [1].

Another contrast to the traditional undo model is that actions may depend on the
result of other actions. For example, actions that belong to an application can only be
executed if the application has been started before. Two strategies exist for the case
when an action, whose results are used by other actions, is selected for undo. Direct
selective undo [1] forbids such operations. Cascading selective undo [5] undoes de-
pendent user actions until a meaningful state is reached. Since the former approach
would be very limiting, we have opted for cascading selective undo in our framework.

When an action is selected for undo, the system first determines its undo closure.
It includes all actions that directly or indirectly depend on resources created or
changed during the execution of the selected action. Then all actions in the closure are
undone in reverse temporal order. If any action in the closure is not undoable, the
whole undo request is rejected. This process ensures that (1) the system will be in a
consistent state after the undo operation, and (2) unrelated actions are not affected.

 OntoDesk: Ontology-Based Persistent System-Wide Undo on the Desktop 893

Although a form of selective undo is employed “under the hood,” we decided to
allow only linear undo on the UI. Users are not familiar with the selective undo
mechanism; neither are there applications that support it natively. Further, linear undo
fulfills the stable execution property: the command is always undone in the state that
was reached after execution [1]. This property greatly simplifies reasoning in the on-
tology, as there is no need to verify if an action is undoable in the current state.

Application- and Server-based Undo. Our framework provides three methods of
undoing actions. Even if an application does not implement undo (at all, or for a set of
actions), the Ontology Server may execute the undo based on the information present
in the ontology. Hence, we differentiate between native (application-based) and
server-based undo.

In the case of native undo, the undo facility is implemented in the application itself.
When the user issues an undo or redo command, the application executes it and re-
ports it to the server. The server then modifies the history accordingly.

Server-based undo is implemented using two strategies: inverse actions and partial
checkpoints [6]. These methods are chosen only if native undo is not available.

Applications can define inverses for their actions in the ontology. When an action
with an inverse is selected for undo, the server assembles a message for the inverse
action, and fills its inputs from the data of the original action. It then sends the mes-
sage to the application and instructs it to execute the inverse action.

Our framework also allows actions to be defined as checkpoints for resources. This
tells the system that the resource is in an easily reproducible state after the action is
executed. For example, a Save File action serves as a checkpoint for documents; Start
Application action for an application.

Using checkpoints, the server can undo even non-native, non-invertible actions.
First, the system looks for the latest checkpoints of all input resources of the selected
action. It then re-executes all commands from the checkpoints up to, but not includ-
ing, the action, thereby resetting the state of all related resources to their condition
prior to the action.

3 Ontology Design

Our ontology language of choice is OWL-DL [7]. It is based on description logic,
thus not dissimilar to an object oriented language [8]. Objects in the domain are repre-
sented as individuals; these are then arranged into a class hierarchy. Individuals have
properties, which can refer to other individuals or simple data types. To represent
actions, we use OWL-S, a vocabulary for Semantic Web Services [9]. Actions in our
ontology are OWL-S Services.

Two ontology files are used by the Ontology Server. The definition ontology
contains the type hierarchy and the individuals that represent system-level entities,
including the registered actions and applications. The history ontology contains the
history list and all related data.

3.1 Main Classes

The ontology defines three main categories: Resources, Actions and Applications.
Actions are provided by the Applications. For example, text editors provide the Insert

894 D. Nemeskey, B. Shizuki, and J. Tanaka

Text action, which inserts text into a document. A special application type, Frame-
work provides the system-level actions.

The currently supported resource types are Document, File and RunningApplica-
tion. A RunningApplication object represents a running process. Documents represent
meaningful data, such as a body of text or an image. They are stored in Files. A file
may contain several Documents, such as a multimedia file that contains video and
audio streams. Data that has not yet been saved into a file, e.g. when the user starts
drawing a picture in an image editor, can also be represented. In such a case, the
Document is stored in the RunningApplication instance. Modifications to the data
only affect the Documents, and the changes are visible in the File only after a Save
File action is executed (see Fig. 2).

3.2 Undo Handling

The undo options discussed in Section 2.2.2 are represented as follows. The support-
sUndo property shows if an application supports undo. Actions can have the follow-
ing properties:

• The undoable property shows if the action is undoable;
• The nativeUndo property shows if the actions is undoable natively;
• The inverseAction property is used to define the inverse of the action;
• The checkPoint property declares that the action is a checkpoint for the related

resource.

If the nativeUndo property is true, native undo is performed on request. If false, but
the action has an inverse (the action the inverseAction property refers to), the inverse
action method is used. Otherwise, if, for every resource-type input parameter of the
action, there is at least one action in the history whose checkPoint property refers to
the input resource, the checkpoint method is selected. If none of these conditions are
fulfilled, or the undoable property is false, no undo is possible for the action.

Fig. 2. Shows how the resources (left) and their states (narrow bars) change when the user exe-
cutes an action sequence (top). The dotted arrows indicate which actions result in new states
for the resources. The meaning of the storedIn property is as described above. The storedIn
property arrows between the application and document states are omitted for brevity.

 OntoDesk: Ontology-Based Persistent System-Wide Undo on the Desktop 895

3.3 Action History

Our handling of action history is similar to the model described in [10]. The history
consists of ExecutedAction objects. They contain a reference to their action type, and
store the actual values for the input and output parameters of the action. These values
can be Resources in the ontology or raw data (strings, numbers, etc.).

Resources are added to the ontology as parameters of the ExecutedAction objects.
The only resources in the history ontology are those that are referenced by the actions;
i.e. not all files in the system are represented in the ontology. In this way, all informa-
tion necessary for undo is stored in the ontology, yet the number of objects – and
therefore overhead – is minimized.

The ontology must reflect a constantly changing system state. The framework em-
ploys a very simple time scale, where the system state changes only as the result of
actions. Because all actions are saved as ExecutedAction objects, they can serve as
time points. Changes to Resources are modeled with State objects. Every Resource is
assigned a State when it is created. Actions that modify the data associated with a
Resource (as opposed to reading it; e.g. the Save File action modifies the state of the
file, but Load File does not) report this fact by requesting a new State for it. Relations
between resources are represented by properties between their States. This enables the
ontology to represent relations whose validity changes with time, such as “after
the Save File action, the document stored in the file is the same as the one loaded into
the application (see Fig. 2).”

4 Implementation

To test the feasibility of our approach, we implemented a mock desktop, OntoDesk.
Our experiences with the system allowed us to examine the requirements for integrat-
ing applications to our framework, and the effort required.

4.1 OntoDesk

OntoDesk is a desktop simulator written in Java. It supports typical desktop features
like wallpapers, a start menu and window management. Applications are displayed in
internal frames. Currently, OntoDesk includes the following applications:

• A file manager,
• Image Editor – an image viewer/editor for the user to draw simple shapes,
• Two text editors, Text Editor and Simple Editor. Although they have the same fea-

tures, Simple Editor relies entirely on the framework to provide undo.

The Ontology Server is implemented as a system thread and communicates with
applications by socket interface. The system ontology is accessed via OWL API [11].

The undo operation should be easily detected and specified, and the state resulting
from the execution thereof should be easily predicted [12]. Though our system allows
only linear undo, all resources have their own histories, requiring an easy-to-use inter-
face to the system-wide history facility. OntoDesk introduces the History Viewer tool,
which allows the user to choose a resource or a running application and display its

896 D. Nemeskey, B. Shizuki, and J. Tanaka

Fig. 3. OntoDesk with Image Editor and Text Editor open (right). The History Viewer (left) is
displaying the actions executed in the Text Editor.

action history. Undone operations are displayed in a lighter color. The user can also
undo and redo selected actions. If the selected action is not last in the history, all sub-
sequent actions are also undone.

All applications use our framework to access the history of their resources and to
implement undo/redo. The file manager can display the undo history of a file in the
History Viewer. When a file is opened in a text or image editor, previous modifica-
tions are loaded with the file, and they become available to the user. Furthermore, the
user can undo the closing of applications, in which case OntoDesk restores the appli-
cation and its documents to the state it was in before it was closed.

4.2 Requirements for Integration

In this chapter, we review the requirements of integration and the effort needed.

Ontology. Applications that want to utilize the framework’s capabilities must define
an ontology including the:

• Actions they provide. Actions defined by other applications or the system itself
may be reused. In OntoDesk, the Simple Editor uses the same actions as the Text
Editor; it is only the implementation that is different.

• Resource types that are specific to the application, such as custom file types.

Changes in the Application. Integration to the framework also requires that the code
base of the application be extended with the following three components:

• A communication interface to the Ontology Server. As this component is com-
pletely generic, it can be abstracted into a library.

 OntoDesk: Ontology-Based Persistent System-Wide Undo on the Desktop 897

• A command interface that acts as a mediator between the Ontology Server and the
application. It reports executed actions to the Server and forwards its requests to
the appropriate parts of the application.

• Callback hooks need to be added to the already existing source code to notify the
command interface about user actions and their parameters. These hooks are typi-
cally placed in the event handlers of the application's interfaces (UI or otherwise),
and are generally short (a few lines per event).

A Case Study Using OntoDesk. All applications in OntoDesk had been developed as
regular applications before they were adapted to our framework. This proves the fea-
sibility of integration. By comparing the application source code before and after the
adaptations, we can measure the effort required for integration.

OntoDesk provides the communication interface as a Java library. The command
interface is provided as a system class, which implements basic event reporting. Cli-
ent applications extend this class through subclassing to fit to their needs. Table 1
summarizes the additional modifications.

As we can see, while the framework requires some boilerplate code, only a moder-
ate number of additional lines are required for new actions. Although the percentage
of framework-related code may seem high, it must be noted that the applications are
very simple. The complexity of real-life applications dwarfs the 16-20 lines per action
required. Moreover, utilizing the framework can even help reducing code size: by
delegating undo to the framework, Simple Editor's code base became 23% shorter
than that of Text Editor (*).

Table 1. Source code modifications required by the integration in OntoDesk. LOC = Lines of
code, excluding comments. ΔLOC shows the number of extra lines required for the command
interface and callback hooks. Avg. LOC/action shows the average LOC needed per action.

Application # of actions LOC ΔLOC Avg. LOC/action Framework code %
Text Editor 4 834 181 20 17.8%
Simple Editor 4 634* 159 18 20%
Image Editor 3 858 148 16 14.7%
File Manager 1 996 76 16 7%

5 Advantages of Our Framework

A persistent, system-wide undo benefits the user by removing today’s recovery limi-
tations. This framework also offers advantages to developers.

In OntoDesk, programmers can utilize the built-in History Viewer tool. Since it
provides an application-independent way of displaying action histories, developers
can choose to omit the undo/redo options from the user interface of their applications,
and rely on the History Viewer instead. OntoDesk’s Simple Editor uses this approach.

Server-based undo can be used to add undo capabilities to an application merely by
defining the inverse and checkpoint properties for its actions. In OntoDesk, several
applications use this approach. Image Editor and Text Editor natively support undo
for document editing. However, it is also possible to undo the New Document or
Load File actions, a feature generally lacking in applications. Here it is achieved by

898 D. Nemeskey, B. Shizuki, and J. Tanaka

server-based undo. Furthermore, Simple Editor does not support native undo at all,
yet, with OntoDesk, it has feature parity with Text Editor.

In addition, the persistent undo mechanism can be used to implement session man-
agement. OntoDesk handles system sessions in this way: when the user closes the
main window, all applications are closed. When OntoDesk is restarted, these actions
are undone, and the system returns to the state it had before the user left it.

6 Future Work and Conclusions

In this paper we have proposed a framework that allows persistent, system-wide undo
on the desktop. Allowing applications to describe the actions they provide in an
ontology enabled our system to create an abstract model of the capabilities of its com-
ponents. This information can be used to provide a global action history. Our frame-
work can be applied to existing applications with minimal modifications. OntoDesk,
an experimental desktop, showcases the potential of our approach.

A global action history has uses besides beyond undo/redo. It could serve as a basis
of a system-wide macro facility [13]. By enriching the semantic information in the
ontology, a Programming By Example system could also be based on our framework.
We would like to explore these possibilities in future versions of OntoDesk.

Our final goal is to test the feasibility of our framework in a real-life environment
by adapting our framework to an existing application or desktop environment.

References

1. Berlage, T.: A selective undo mechanism for graphical user interfaces based on command
objects. ACM Transactions on Computer-Human Interaction 1, 269–294 (1994)

2. O’Brien, J., Shapiro, M.: Undo for anyone, anywhere, anytime. In: Proceedings of the 11th
workshop on ACM SIGOPS European workshop, vol. 31 (2004)

3. Noy, N.F., et al.: Creating Semantic Web Contents with Protégé-2000. IEEE Intelligent
Systems 16, 60–71 (2001)

4. NEPOMUK – The Social Semantic Desktop,
 http://nepomuk.semanticdesktop.org/

5. Cass, A.G., Fern, C.S.T.: Modeling dependencies for cascading selective undo. In: IFIP
INTERACT 2005 Workshop on Integrating Software Engineering and Usability Engineer-
ing (2005)

6. James, E., Archer, J., Conway, R.W., Schneider, F.B.: User Recovery and Reversal in In-
teractive Systems (1981)

7. OWL Web Ontology Language Reference, http://www.w3.org/TR/owl-ref/
8. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The de-

scription logic handbook: theory, implementation, and applications. University Press,
Cambridge (2003)

9. OWL-S: Semantic Markup for Web Services,
 http://www.w3.org/Submission/OWL-S/

10. Zhou, C., Imamiya, A.: Object-based nonlinear undo model. In: Proceedings of the 21st In-
ternational Computer Software and Applications Conference, pp. 50–55 (1997)

 OntoDesk: Ontology-Based Persistent System-Wide Undo on the Desktop 899

11. The OWL API, http://owlapi.sourceforge.net/
12. Masuda, H., Imamiya, A.: Design of a graphical history browser with Undo facility, and

visual search analysis. Syst. Comput. Japan 35, 32–45 (2004)
13. Myers, B.A., Kosbie, D.S.: Reusable hierarchical command objects. In: Proceedings of the

SIGCHI conference on Human factors in computing systems: common ground, pp. 260–
267 (1996)

	OntoDesk: Ontology-Based Persistent System-Wide Undo on the Desktop
	Introduction
	Approach
	Architecture of the Framework
	Undo Support

	Ontology Design
	Main Classes
	Undo Handling
	Action History

	Implementation
	OntoDesk
	Requirements for Integration

	Advantages of Our Framework
	Future Work and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

