
Dynamic Parameter Spring Modeling Algorithm
for Graph Drawing

Xuejun Liu and Buntarou Shizuki and Jiro Tanaka

Institute of Information Sciences and Electronics, University of Tsukuba,
1-1-1 Tennodai, Tsukuba-shi, Ibaraki-ken 305-8573, Japan

Email: {liuxj, shizuki, jiro}@is.tsukuba.ac.jp

ABSTRACT

This paper proposes a modified spring modeling algorithm for
drawing undirected graphs, that is an extension of the forced-
directed placement method of spring modeling algorithm by
Eades. We call it dynamic parameter spring modeling algorithm.
This algorithm is not only a general algorithm for graph layout,
but also it is more suitable to get a semi-stable graph layout. A
semi-stable layout is an intermediate layout, which leads to the
final layout. The method of drawing this type of intermediate
layout can shorten the cycle of the user's editing and speed up the
process of layout in graph editing.

Keywords

Undirected graph, layout, graph drawing, drawing algorithm,
graph editing.

INTRODUCTION

A graph is a simple, powerful, and elegant abstraction,
which has a broad applicability with the visualization
technique in computer science and many related fields.
Force-Directed Placement is a well-known technique for
drawing general undirected graphs [1-5]. Many models and
algorithms have been proposed for the Force-Directed
Placement, such as spring model by Eades[2], magnetic
spring model by Sugiyama [6], and others[3-5]. These
models and algorithms are just designed and applied for
graph drawing in two-dimensional space. Lately, some
algorithms have been extended to 3D space [7].

For visual presentations of undirected graph, the most
important issue focuses on the speed of layout. Especially
for a huge graph with a complicated structure with many
nodes or vertices, the workload of computation becomes
much larger and the algorithm looks heavier.

To speed up the process of layout for a given graph, in
terms of different usage situations and different
requirements from the user, various graph-drawing

algorithms [8-10] have been proposed. Basically, these
algorithms are aimed to get a final and stable graph layout.

On the other hand, we also found that the user is editing
graph and only a little part of the graph is modified in most
cases, such as adding or deleting one or more node(s),
changing positions of a few nodes etc. In these cases, the
final and stable graph layout is not needed since the user is
just concerned with a graph layout without a high precision.
We called this type of layout semi-stable graph layout.

In this paper, we propose a dynamic parameter spring
modeling algorithm (DPSMA for short) to speed up the
process of layout, which is based on the spring model and
its algorithm. In DPSMA, we redefine the constant
parameters in the spring model by dynamic parameters, and
in the process of layout, these parameters are modified
dynamically.

The remainder of this paper is organized as follows. Firstly,
we describe the spring model and its problems for the
undirected graph layout. Then in next two sections describe
the dynamic parameter spring model and its algorithm and
use it to speed up the general layout in detail and also semi-
stable layout for graph editing. And then evaluations and
examples are given. Finally, we give the concluding
remarks.

SPRING MODEL AND ITS PROBLEMS

The spring modeling algorithm [2] for the spring model is a
heuristic approach of graph drawing based on a physical
system in which graph’s edges are replaced by springs and
replace the vertices (nodes) by rings. Figure 1 shows the
spring model. The forces acting on every node include
spring force F and repulsion force F . The resultant of
forces and can be calculated in terms of the formulas
where d is the distance between a pair of nodes in the
Figure 2. Under the influence of spring force between
connected nodes and repulsion force between unconnected

s

rF
r

sF

nodes, the graph will automatically layout until the system
reaches a stable state.

Fs

Fr Fs

Fs

FsFr

 Figure 1. Spring Model

The basic idea of the spring modeling algorithm is to
compute the resultant of forces, including spring forces and
repulsion forces acting on every node, in iteration of the
loop until the graph reaches a stable state. The time of a
graph layout is determined by the numbers of iterations of
the loop and the time of computation in iteration. If we can
get a method where the times of iterations can be reduced
without adding too much computation for iteration, the
time of layout will decrease.

Figure 2 shows calculations of spring force and repulsion
force in the spring model. The C , and are the
constant parameters of the system. Among the parameters
that control the forces acting on the nodes and causing their
movements are spring length, spring stiffness, spring type
and initial configuration. This very general heuristic can
provide a solution for competing aesthetics.

s dC rC

When we use the spring modeling algorithm, there are two
problems that we have to face.
1. Difficult to define the constant parameters C and

for the system.
s

rC

2. Low running speed of the system.

Generally speaking, the layout of graph indicates the graph
that has reached to a stable state according to the
predefined terminal conditions by the user. In consideration
of the speed of layout for a given graph is necessary to get
a stable layout in any case, such as when the user is editing
a graph. The aim of layout is just to help the user to
observe, understand and operate the graph easily. A stable
and final high-precision layout is only necessary after the
edition or modification of the graph.

Sometimes the inability to specify the aesthetic criteria,
used by the individuals, creates problems in understanding
the graph. Nonetheless, for certain restricted classes of
graphs, the expressions of aesthetic criteria of that graph
can be specified. As for the semi-stable graph, as a
intermediate, it is mainly used in editing or in cases where
the user needs not to get the final stable graph. In general,
according to the different layout criteria of final stable
graph, the layout criterion of the semi-stable graph is also
different. But for certain restricted classes of graphs, the
aesthetic criteria of the semi-stable layout can also be
specified for individual user or condition.

In the layout of a semi-stable graph, the main requirement
of the user is just to get a rapid layout method to draw the
semi-stable graph in which the aesthetic criteria can be
basically guaranteed.

Therefore we should think about how to get a semi-stable
graph layout quickly by spring modeling algorithm, and
also for final stable graph. In most cases, the semi-stable
layout is just for graph editing in which high precision is
not needed and the most important thing is the speed of the
layout.

2/

)/log(

dCF

CdCF

rr

dss

=

=

To fulfill the above requirement, we modified the spring
model to dynamic parameter spring model so as to speed
up not only the semi-stable layout but also the final stable
layout for a given undirected graph.

Figure 2. Forces formula of Spring Mode

Based on the spring modeling algorithm, we propose a
dynamic parameter spring model (DPSM) and define its
algorithm called dynamic spring modeling algorithm to
layout the undirected graph rapidly and also for the semi-
stable layout.

DYNAMIC PARAMETER SPRING MODEL

Dynamic Parameter Spring Model and Force Definition

In spring model, in general, the bigger the parameters
 and are, the sooner the system reaches its stable

state. But when C and are too big, there will be a
vibration phenomenon that will result the fact that the
system can never reaches a stable state forever.

sC rC

s rC

The parameters C and C of every node can influence the
speed of the computation in every iteration. If we can find
proper and for a given graph, the execution time of
layout process will be reduced. Our idea is to give dynamic
parameters C , C and adjust them for every node in the
graph during the procedure of layout dynamically.

s

rC

r

r

sC

s

In our DPSM, we redefined the parameters of system C
and C in the original spring model. In our definition every
node in the system has its independent parameter C and

 (Parameter C is still the common constant parameter.)
(Figure 3.)

s

r

s

rC d

The new definition is given in Figure 4. The force acting
on every node should be calculated by the parameters of
the node itself. For any node i in the graph, the spring
force acting on it by the spring between node and node
is represented by , and the repulsion force acting on

this node between node i and node is represented
by . and C have the same meaning with C and

 in the original spring model respectively (Figure 1.).
But and are defined only for the node i and not for
the whole system which is defined in the original spring
model. The is the same as in the original spring model.

i j

),(jisF

ri

j

),(jirF

r

siC

siC

C

d

s

C

ri

Expecte

As far as
node in
called fin
node or
quickly m
layout, w
position

Accordin
distance

spring will be close to the length of spring. In a graph, if
two nodes are not connected directly but a shortest path
between two nodes can be found, we can imagine that after
layout, the real distance between those two nodes must be
close to the shortest path multiplied by the spring length.

In a real application, we want to draw a graph within the
application window. To that purpose, we introduce a fixed-
node. The fixed node is defined before layout and it ensure
that at least some parts of the graph can be drawn insides
the window. Both the user and the application designer can
define the fixed node. We estimate there must be an
expected position for every node and the distance between
expected position and the fixed node is the shortest path
multiplied by the length of spring.

(1,2)
Fr(1,3)

(2,3)
(3,2)

(3,1) (2,1)
The concept of shortest path is to find the shortest path in
the graph from one node to another node. The algorithm
will become different if the edges have different weights.

Figure 3. The Dynamic Parameter Spring Model

a

c

b

h

g

e

d

f

Figure 5. An example about shortest path

Figure 5 shows a small example of shortest path. In this
graph, if the weights of all edges are the same, the shortest
path between node a and node is equal to 2, and the
shortest path between node b and node is 3.

b
h

2
),(

),(

/

)/log(

dCF

CdCF

rijir

dsijis

=

=

In DPSMA, all pairs of shortest paths for nodes among the
whole graph should to be computed before layout, and this
computation is done only once. M

Figure 4. Force formula for DPS
d Position of Node

 layout of graph is concerned, after layout, every
the graph will move to a stable position that is
al position. If we know the final position for every
a position close to the final position, we can
ove every node to that position. However, before

e do not know and cannot imagine where the final
for every node is.

g to the property of spring, after layout the
between every a pair of nodes connected by a

Dynamic Parameters Definition

According to the discussion about expected position, we
think that we can drive every node move quickly to the
expected position, thus increase the speed of layout.

In terms of different position for a given node, we consider
that two different groups of formula will be used to
compute the dynamic parameters C and of every
node.

si riC

F
j

i

i′

j′

ji ′′, :

ji,

Figure 7. An example of DPSM graph

 Expected positions

:Node i, j

Fixed NodeNode F:

d

if

C

SP
*

,

d
jf CSP *,

If the real distance between fixed node and any node i is
larger than the distance between fixed and expected
position, for every node i , the C and C will be si ri

respectively, where and are constant parameters
predefined in initialization of program running. is still
the common constant parameter of system. represents

the shortest path between the fixed node and every node .
represents the distance between the fixed node and

node i .

sK rK

dC

ifSP ,

i
ifd ,

In another case, if the real distance between fixed node and
any node i is smaller than the distance between fixed node
and expected position of node i , the and C will be siC ri

respectively. Therefore, we get the formulas for dynamic
parameter computation in the Figure 6.

Figure 7 shows a simple example and we can use it to
explain the formula defined in detail. The dotted circles
represent the expected stable position of node i and node

. The node i is far away from the fixed node than the
expected position of i . So the parameter will be

. For node , it is close to the

fixed node the its expected position, so we use the similar
but different formula. C .

j

)*/(* ,, ifdifrsi SPCdKC = j

jfjfdssj dSPCK ,, /)*(*=

For these two situations, we use the maximum of the two
ratios to adjust those parameters and speed up the
computation.

The above describe the DPSM, and then we will discuss
how to realize the rapid DPSMA in the next section.

ifd

if

ifd

if

SPC
d

rri

SPC
d

ssi

KC

KC

,

,

,

,

*

*

*

*

=

=

DYNAMIC PARAMETER SPRING MODELING
ALGORITHM

Based on the definition of DPSM and formulas, the
forces , are computed for all the nodes in the systems.
After the computation, the movement of nodes will be
made and the coordinates in x-axis, y-axis and z-axis will
be modified. Finally the forces acting on every node will be
computed until the system reaches a stable state.

sF rF

if

ifd

if

ifd

d
SPC

rri

d
SPC

ssi

KC

KC

,

,

,

,

*

*

*

*

=

= In spring modeling algorithm, if the parameter C , C are
too small or too big, some nodes will vibrate around their
equilibrium position. In dynamic parameter spring model,
we have adjusted the parameters C and dynamically.
As a result, when every node reaches its equilibrium
position, the dynamic parameter will be of reasonable
value, so the vibration phenomena can be avoided.

s r

s rC

rd
SPC

SPC
d

ri

sd
SPC

SPC
d

si

KC

KC

if

ifd

ifd

if

if

ifd

ifd

if

*),max(

*),max(

,

,

,

,

,

,

,

,

*
*

*
*

=

=
As for the DPSMA, to compute all the pairs of shortest path

between fixed node and any node i in a graph, we use

the Floyd-Wars hall algorithm [11]. The input to the
algorithm is the distance d , which represents the distance

between the node, i and node (in the following code,
) that is the shortest path between all pairs of

nodes. The following lines of code represent the algorithm.

ifSP ,

[]iD

ij

j
[]j

Figure 6. Formulas for dynamic parameters

All pairs shortest path:

Input adjacency matrix of graph with n nodes, W[0..
n-1][0..n-1].

Initialize shortest path matrix, d[0..n][0..n];

for (i=0; i<n; i++)

 for (j=0; j<n; j++)

 d[i][j]=W[i][j];

for (k=0;k<n; k++)

 for (i=0; i<n; i++)

 for (j=0; j<n; j++)

 d[i][j] =min (d[i][j], d[i][k]+d[k][j]);

Dynamic parameter computing algorithm:

 Compute ; ifSP ,

Initialize const parameters and ; sK rK

for (i=0; i<n; i++)

{ compute ; ifd ,

 if (<){ ifd , ifSP ,

)*/(* ,, ifdifssi SPCdKC = ;

)*/(* ,, ifdifrri SPCdKC = ;

}

else{

jfifdssi dSPCKC ,, /)*(*= ;

 C ; jfifdrri dSPCK ,, /)*(*=

 }

}

In our DPSMA, the terminal condition of layout has also
been defined. We defined a constant as the force threshold
for a given graph in the beginning. When the biggest
resultant forces among all nodes in the graph become
smaller than the predefined force threshold, it means that
the layout has reached to its stable state and the
computation should be stopped. This is the terminal
condition of the computations for a given graph.

For the semi-stable graph, the force threshold is needed to
be defined a bigger constant that is decided by user in
terms of user real requirements. In general, by experiments,
the force threshold can be determined when the layout
becomes acceptable.

EVALUATION AND EXAMPLE

We made some experiments to evaluate the performance of
the DPSM and its algorithm.

5 undirected graphs have been used in three-dimensional
space to make the evaluation. We defined the force
threshold needed and the force threshold can determine the
terminal condition.

In this experiment, the force threshold is set as
0.01(Newton), 0.05,0.1 and 0.5 respectively to evaluate the
performance of DPSMA under different force threshold
condition. The parameters K and are set to be the
same with the parameters C and in the spring
modeling algorithm respectively. The basic data of the 5
graph files are shown in Table 1.

s rK
Cs r

Graph 1 2 3 4 5

Nodes 3 8 27 64 125

Edges 3 12 54 142 294

Table 1. Data of graphs in experiments

In our experiments, we compare the performance of the
DPSMA with SMA in recursions times of layout, which is
the number of recursion before the whole graph reach
stability. We also compare the performance in real running
time

No. Force threshold 0.5 0.1 0.05 0.01

SMA 41 45 47 52

DPSMA 29 34 36 41 1

DPSMA/SMA 71% 75% 76% 79%

SMA 45 64 72 93

DPSMA 34 51 53 74 2

DPSMA/SMA 75% 79% 74% 79%

SMA 127 176 199 261

DPSMA 89 149 169 222 3

DPSMA/SMA 71% 84% 85% 85%

SMA 247 336 384 507

DPSMA 176 264 311 386 4

DPSMA/SMA 71% 78% 80% 76%

SMA 278 479 575 801

DPSMA 193 367 432 637 5

DPSMA/SMA 69% 76% 75% 79%

Table 2. Results of experiments

(Unit: recursion times)

From the Table 2, it is obvious that the iteration times in
DPSMA are fewer then those in the original spring
modeling algorithm. When the force threshold becomes
bigger, the DPSMA will become more effective.

We also compare the real running time between SMA and
DPSMA. Table 3 shows the results of real running time in
mil-seconds.

No Force threshold 0.5 0.1 0.05 0.01

SMA 151 160 181 192

DPSMA 93 110 160 172 1

DPSMA/SMA 62% 69% 88% 90%

SMA 230 280 350 472

DPSMA 210 243 308 410 2

DPSMA/SMA 91% 87% 88% 87%

SMA 171 232 297 431

DPSMA 150 230 269 391 3

DPSMA/SMA 88% 99% 91% 91%

SMA 4110 5740 6320 7981

DPSMA 3696 5109 5610 7591 4

DPSMA/SMA 90% 89% 89% 95%

SMA 49920 79833 92471 123869

DPSMA 31978 56781 67684 93252 5

DPSMA/SMA 64% 71% 73% 75%

Table 3. Results of experiments for 5 graph files
(Unit: mil-seconds)

From Table 3, we can get a similar conclusion in real
running time with that derived from Table 2.
From Table 2 and Table 3 we also find that the increasing
speed of spring modeling algorithm is faster than that of
DPSMA with the increasing of nodes and edges between
nodes. In other words, the DPSMA is more effective for a
huge graph than the spring modeling algorithm.

When only the semi-stable layout of a given graph is
required, in other words, the precision is not high, the
bigger force threshold is, the more effect the DPSMA is
than the spring modeling algorithm. From our experiences
in experiments, when the force threshold is set to 0.5, the
layout of graphs is acceptable. In general, we set to 0.5 the
force threshold of our semi-stable layout in our
experiments.

Figure 8 is an example of undirected graph after automatic
layout by our DPSM.

CONCLUDING REMARKS

We have proposed a modified spring model which we call
dynamic spring model. It can be widely used in making a
layout of undirected graph. Our idea is quite simple and
intuitive. Based on the spring model and its algorithm,
redefine the constant parameters in the spring model by
dynamic parameters, and in the process of layout, these
parameters are modified dynamically. This algorithm can
speed up the procedure of layout and especially it is
suitable to get a layout without high precision, such as for
graph editing by user.

REFERENCES

[1] N. Quinn and M. Breur. A Force Directed Component
Placement Procedure for Printed Circuit Boards. IEEE
Transactions of Circuits and Systems, 26(6): 377-388, 1979.

[2] P. Eades. A Heuristic for Graph Drawing. Congressus
Numerantium 42, 149-160, 1984.

[3] T. Fruchterman and E. Reingold. Graph Drawing by Force-
Directed Placement. Software – Practice and Experience 21,
1129-1164, 1991.

[4] T. Kamada. Visualizing Abstract Objects and Relations,
World Scientific, 1989.

[5] T. Kamada and S. Kawai. An Algorithm for Drawing
General Undirected Graph. Information letters, 31(1): 7-15,
1989.

[6] K. Sugiyama and K. Misue. Graph Drawing by Magnetic-
Spring Model, Res. Rep. ISIS-RR-94-14E, Inst. Social
Information Science, Fujitsu Labs Ltd., 1994.

[7] T. Miyashita and J. Tanaka. Integrating Three-dimensional
Spring Model and Augmented Directed Manipulation
technique. Transactions of IPSJ, 42(3): 565-576, 2001(in
Japanese).

[8] A. Frick, A. Ludwig and H. Mehldau. A Fast Adaptive
Layout Algorithm for Undirected Graphs. Proceedings of the
Symposium on Graph Drawing GD’95, Springer-Verlag,
389-403, 1994.

[9] R. Davidson and D. Harel. Drawing Graphs Nicely Using
Simulated Annealing, ACM Transactions on Graphics,
15(4): 301-331, 1996.

[10] J. Nagumo and J. Tanaka. Introducing Fisheye-view into
Graph Drawing Algorithm. Transactions of IEICE, 82-D-
II(6): 1042-1048, 1999 (in Japanese).

[11] T.H. Corman., C.E. Leiserson. and R.L. Rivest, Introduction
to Algorithm, MIT Press, 558-562, 1990.

Figure 8. An example of undirected graph

	ABSTRACT
	INTRODUCTION
	SPRING MODEL AND ITS PROBLEMS
	DYNAMIC PARAMETER SPRING MODEL
	The above describe the DPSM, and then we will discuss how to realize the rapid DPSMA in the next section.

	DYNAMIC PARAMETER SPRING MODELING ALGORITHM
	EVALUATION AND EXAMPLE
	CONCLUDING REMARKS
	REFERENCES

