
Spatial Arrangement of Data and Commands at Bezels
of Mobile Touchscreen Devices

Toshifumi Kurosawa, Buntarou Shizuki, and Jiro Tanaka

University of Tsukuba, Japan.
{kurosawa,shizuki,jiro}@iplab.cs.tsukuba.ac.jp

Abstract. We show a data and commands arrangement design on mobile touch-
screen devices. In this design, a user can arrange any data, such as text and Web
pages, at the bezel of the touchscreen by using a simple crossing gesture across
the bezel. Our design has three main merits: data can be arranged while the small
display area on mobile environment is kept open; the user can continuously exe-
cute multiple commands with the user’s minimal visual attention; and memoriz-
ing the locations of the data is made easier by utilizing the user’s spatial memory.

Keywords: Data placing, data management, touch gestures, bezel gestures, shortcuts,
menu, crossing, spatial memory.

Fig. 1: In the case of the proposed design, the user uses a double-crossing gesture,
named a “bezel check,” which is performed across the bezel of a touchscreen device,
just like drawing a check mark. The yellow arrow indicates a swipe movement on the
touchscreen and its bezels. (Left) When the user copies the selected text by a bezel
check, (Center) the copied datum is stored in a virtual clipboard placed at the bezel
where the gesture was given. The virtual clipboard then appears as a semi-translucent
green rectangle. (Right) The user can use (e.g., paste or Web search) a copied datum by
using a marking menu displayed by swiping from the bezel to the corresponding virtual
clipboard.

1 Introduction

Many designs of user interfaces enabling a user to arrange thumbnails of documents
spatially in a manner that allows many documents held on computers to be managed,
called data arrangement designs, have been explored. Prominent examples of such de-
signs are DataMountain [1] and BumpTop [2]. A great advantage of such data-arrangement



2 T. Kurosawa, B. Shizuki, and J. Tanaka

designs is that they allow the user to organize the documents by utilizing his or her spa-
tial memory, thereby enabling the user to group related documents. While the efficacy
of such designs in environments in which a large amount of screen real estate is avail-
able, such as desktop environments [1–3] and multiple displays environment [4,5], was
demonstrated, data-arrangement designs in mobile environments in which the amount
of screen real estate is limited are still open.

In this paper, we show a data arrangement design on mobile touchscreen devices.
In the case of this design, a user can arrange any data, such as texts and Web pages, at
the bezels of a touchscreen by using a simple double-crossing gesture across the bezels,
named bezel check. After the user performs the bezel check, the system generates a
virtual clipboard to store the datum, which is determined by the context. If the user
wants to use a datum in a virtual clipboard, he or she selects an intended command
from a marking menu, whose items depend on the context, displayed by swiping from
the bezel to the corresponding virtual clipboard.

Moreover, the user can also arrange commands such as text search at a bezel in
the same way as the above-described data arrangement. To do this arrangement, a user
firstly selects a command by using an ordinary method (e.g., select a “search” command
from a menu bar of a text editor) and then performs a bezel check. After that, a virtual
clipboard is generated, which serves as a shortcut to the command. Thereafter, the user
can execute the command arranged at the bezel by swiping from the bezel. If the com-
mand needs an argument such as a text, the user firstly selects the text to be an argument
of an intended command. The user then drags it to the bezel where the command was
arranged and performs a double-crossing across the bezel.

In the proposed design, data and commands are arranged in physical space on a
touchscreen; the design is thus helpful for memorizing the places storing the data and
commands because it utilizes a user’s spatial memory while keeping the small display
area of a mobile touchscreen open. Moreover, the user can execute command(s) re-
peatedly and continuously with the user’s minimal visual attention because a command
arranged at the bezel is executed by a simple crossing gesture, which promotes the fluid
composition of commands [6], and is easier than a pointing to select a target [7].

2 Related Work

Many data-arrangement designs have been proposed [1–3,5,8,9]. The “pile metaphor,”
a pioneering one of these designs, was proposed more than a few decades ago [3], and
since then it has been applied to various uses (e.g., organizing files on a 3D desktop [2],
organizing physical and digital documents on tabletops [9], and even organizing small
displays showing digital documents [5]). Data Mountain [1], which allows a user to
arrange digital documents at arbitrary positions on an inclined plane in a 3D desktop
environment by using a simple 2D interaction technique. They showed that the spatial
layout created by Data Mountain can utilize users’ spatial memory. While the proposed
design also adopts a spatial layout, it is different from the above-mentioned designs;
namely, data and even commands are arranged only at bezels on a touchscreen. Thus,
placing data and commands does not consume real estate of touchscreens, and it keeps
the small display area of mobile touchscreen devices open.



Spatial Arrangement of Data and Commands at Bezels of Mobile Touchscreen Devices 3

Many bezel gestures have been proposed [10–13] and used [14–16]. Bragdon et
al. found that bezel-initiated gestures were the fastest and the most preferred gestures
in a mobile environment [17]. Serrano et al. proposed Bezel-Tap Gestures [12], which
allows a user to immediately execute a command on a handheld tablet device regard-
less of whether the device is alive or in sleep mode. Roth et al. showed that a bezel-
initiated swipe supports multiple selections, cut, copy, paste, and other operations with-
out conflicting with pre-defined multi-touch gestures such as zooming, panning, and
tapping [13]. Wagner et al. proposed a design space called BiTouch [18], which in-
troduces support commands in a kinematic chain model for interacting with handheld
tablet devices (including their bezels). In contrast, the design proposed in the current
work uses bezel gestures to arrange data and apply commands to data. This design
makes it possible to design bezel gestures that allow a user to arrange data spatially and
to execute commands with the user’s minimal visual attention.

Many researchers have explored crossing gestures on the touchscreen environment
and revealed its efficacy [7, 13, 19–21]. Moreover, many crossing-based interaction
techniques, such as Control Menu [22], FlowMenu [23], and CrossY [24], and Bezel
Swipe [13], have been proposed. These crossing-based gestures and techniques allow
the user to execute multiple commands continuously. In the case of the proposed design,
the user also uses crossing gestures to execute multiple commands continuously.

3 A Design for Arranging Data and Commands

3.1 Arranging Data and Commands

In the proposed design, a user performs a double crossing gesture [25] across a bezel
of a touchscreen, which is our own bezel-initiated gesture we named a bezel check.
This gesture is designed to allow the user to arrange data and commands spatially with
the destination being indicated by the simple gesture. First, the user selects a datum or
a command by using an ordinary method (e.g., a long tap to select a text and select a
“search” command in a menu bar). Next, the user performs a bezel check: swiping from
the bezel across part of the display edge into the interior of the screen and returning the
finger to the outside of the screen, just like drawing a check mark (Fig. 1 left). Then, the
system generates a virtual clipboard (a semi-translucent green rectangle in the center of
Fig. 1) at the bezel where the bezel check is completed, and it stores the selected datum
or command in the virtual clipboard.

3.2 Using the Arranged Data and Commands

To use the datum in the virtual clipboard, the user begins with activating an application
that uses the datum. The user then selects a command in the marking menu, whose
items depend on the activated application, displayed by swiping from the bezel to the
corresponding virtual clipboard (Fig. 1 right).

A command in the virtual clipboard can be executed in two ways. The first way is
for the user to swipe from the bezel to the corresponding virtual clipboard to execute a
command with no argument. In this case, the user selects the command in the marking



4 T. Kurosawa, B. Shizuki, and J. Tanaka

menu displayed near the virtual clipboard. The second way is used when the user wants
to give an argument to a command. For example, if the user wants to search a text in an
Web page, the user firstly selects the text in the page (Fig. 2 left) or in another virtual
clipboard by a gesture called “holding,” which will be described later (Fig. 3). Next,
the user drags the selected text to the virtual clipboard storing the searching command
and performs a double crossing across the clipboard as shown in the center of Fig. 2.
The search command is then executed with the selected text. The user also executes the
command repeatedly by repeating bezel crossings in a manner just like drawing circles
(Fig. 2 right).

Fig. 2: Executing a search command with an argument. (Left) Selecting a text. (Center)
Dragging the selected text to the virtual clipboard that stores a searching command
and performing a double crossing across the clipboard from the interior of the screen.
(Right) Executing the command repeatedly by repeating bezel crossings in a manner
just like drawing circles.

3.3 Organizing Virtual Clipboards

Users can organize virtual clipboards by moving, integrating, and deleting them.
Moving. A user can move a virtual clipboard to any part of a bezel of the screen. To

do this, the user first “holds” the clipboard by swiping from the bezel to the clipboard
and then tapping the clipboard with another finger (Fig. 3). Next, the user moves the
clipboard by dragging it to the free parts of the bezels (i.e., parts of the bezels where
no virtual clipboard is placed) using a finger. This procedure allows the user to easily
edit positional relations among virtual clipboards. For example, the user can arrange the
data in chronological order.

Integrating. The user can integrate a virtual clipboard into another one. When the
user moves the clipboard to another one, the stored data in the two clipboards are stored
in the destination clipboard of dragging (Fig. 5). In addition, if the user touches a clip-
board that holds multiple data, the hierarchy of the data is expanded (left of Fig. 6). To
use an object in the hierarchy, the user selects the object by swiping from the bezel to
the object. This procedure allows the user to easily group many data, such as login data
and mail addresses, into categories.

Deleting. The user can delete a virtual clipboard by moving it to a trash can dis-
played at the center of the screen. The trash can appears there when the user holds a
virtual clipboard.



Spatial Arrangement of Data and Commands at Bezels of Mobile Touchscreen Devices 5

Fig. 3: Holding a virtual clipboard by swiping from the bezel to the clipboard and then
tapping the clipboard with another finger.

Fig. 4: If the user drags a virtual clipboard to a free space of a bezel, the clipboard moves
there.

Fig. 5: If the user drags the clipboard containing A to the clipboard containing B, the
two clipboards are integrated to have two contents, A and B.



6 T. Kurosawa, B. Shizuki, and J. Tanaka

3.4 Merits

The proposed design allows the user to use the bezel of a touchscreen to arrange data
and commands. It thereby leads to the following three merits.

Keeping the display area open. The user can store data and commands while keep-
ing the (small) display area of a mobile touchscreen device open, because the proposed
design only uses the bezel of a touchscreen. In addition, the marking menus displayed
by a single swipe from the bezel are a kind of bezel menus, which enable interaction
with a mobile touchscreen with the user’s minimal visual attention and thus solve the
occlusion problem [26].

Executing multiple commands continuously. The user can continuously execute mul-
tiple commands because the execution requires only simple crossing gestures, which
promote fluid composition of commands [6] in the same manner as reported in [23, 24,
27]. Moreover, the user can execute a command repeatedly by performing a bezel check
continuously across the virtual clipboard that stores the command, just like drawing cir-
cles on the bezel (Fig. 2 right).

Mapping data to place. The user can arrange data and commands spatially. For
example, the user can arrange placed data in the order of priority or chronologically.
This spatial layout of data might be helpful in memorizing the data’s places by utilizing
the user’s spatial memory [1, 3, 4].

Fig. 6: (Left) Expanding the multi-objects-clipboard by swiping. (Right) Selecting the
content.

4 Prototype Applications and their Use Cases

A prototype of the proposed design was developed as a system daemon running on a
Dell 10.1-inch Windows 8 mobile touchscreen device. The daemon continuously mon-
itors the active application, since the marking menu (displayed by swiping from the
bezel) and the command executed when a user performs a bezel check depend on the
active application, as shown in Table 1. These applications and their use cases are de-
scribed in the following sections.



Spatial Arrangement of Data and Commands at Bezels of Mobile Touchscreen Devices 7

4.1 Data Arrangement

As for the prototype design, texts and Web pages can be the data to be stored at bezels.
As a result, the user can use the bezel as a multiple clipboard or bookmark bar. A use
case of such a data arrangement is described as follows. If the user wants to place a text
at a bezel, he or she firstly selects the text and performs a bezel check. Then, the daemon
generates a virtual clipboard where the bezel check is performed and copies the text to it.
After that, if the user performs a swipe from the bezel across the virtual clipboard when
the text editor is active, the daemon displays the “paste” and “text search” command
in the marking menu, as shown in Fig. 7. Another use case is that if the user performs
a bezel check when an Web browser is active, the opened URL is bookmarked at the
virtual clipboard.

Table 1: Commands displayed in the marking menu at the time each application is
active.

Application On a bezel check Commands
Text editor Copy Paste / Text Search
Web browser Copy / Bookmark Paste / URL open

Web search / Text search

PDF viewer Copy Text search

Fig. 7: Using a virtual clipboard with a text editor. (Left) Copying a text. (Right) Display
a marking menu at the virtual clipboard.

4.2 Commands Arrangement

We implemented some arrangeable commands, namely, searching, changing volume,
and page transition. Use cases of arranging commands by using a search command
are described as follows. When an Web browser or a text editor is activated and the
user executes a bezel check, the virtual clipboard that contains the search command is
generated at the bezel where the bezel check is completed. If the user performs a swipe
from the bezel and a crossing across the virtual clipboard when an application such as a



8 T. Kurosawa, B. Shizuki, and J. Tanaka

text editor or an Web browser is activated, the daemon displays the “search” command
in the marking menu. After the user selects the command, the daemon activates the
search command, just like executing a keyboard shortcut Ctrl + F. Then, the user can
execute the search by typing a search word or pasting a copied word.

The user can also execute such commands with an argument. For example, if a user
selects a text in a text editor and drags it to a virtual clipboard storing a search com-
mand, and then performs a double-crossing across the clipboard, the user can execute
the search command with the selected text as the argument, as shown in the center of
Fig. 2. Moreover, in this case, the user can find occurrences of the text one by one (i.e.,
incrementally search the text) by executing the search command repeatedly by double
crossing the bezel repeatedly, as shown in Fig. 2 right.

In addition, we have also developed a drawing tool similar to CrossY [24] which
provides the user with our design. This tool revealed that the continuous execution of
commands is especially useful. For example, after selecting a drawing object, the user
can continuously execute the commands “changing line width,” “changing line color,”
and “swap to the top layer” with only one stroke gesture. Moreover, the commands
can be combined into one virtual clipboard by integrating multiple clipboards, each
of which stores a command as described in the section “Organizing the Virtual Clip-
boards.” The user can thus define a complicated command with two or more processes
such as “Increase the line width while changing the line color of an argument object to
red.”

Fig. 8: A drawing tool which provides the user with our design.



Spatial Arrangement of Data and Commands at Bezels of Mobile Touchscreen Devices 9

5 Implementation

The prototype system daemon was implemented as a separate program from the appli-
cations for providing application-independent services.

To detect double-crossing gestures across the bezel and swipes from the bezel,
touch-sensitive transparent windows were placed near the four edges of the bezels, as
shown in Fig. 9 left.

Fig. 9: (Left) Four touch-sensitive transparent windows (gray). (Right) Send data to an
active application.

The daemon monitors an active application to transmit the data from it. The trans-
mission process is illustrated on the right of Fig. 9. To transmit the data between an
active application and the virtual clipboard, the daemon sends key events and uses the
system-wide clipboard provided by the operating system as a relay point. For example,
when the user activates a text editor and performs a bezel check, the daemon sends
a Ctrl + C key event in order to copy the selected text to the system-wide clipboard.
The daemon then retrieves the copied data from the clipboard. When the user selects a
command in the marking menu displayed by swiping from the bezel, the daemon also
sends the data contained in the virtual clipboard to the system-wide clipboard, and then
it sends appropriate shortcut-key events on the active application (e.g., send Ctrl + V to
paste).

6 Conclusion and Future Work

We show a data and commands arrangement design of mobile touchscreen devices. The
design uses virtual clipboards, which are laid out along the bezel of the touchscreen
(so they help in memorizing the contents by utilizing the user’s spatial memory) and
are generated by a simple crossing gesture across the bezels, bezel check. The data and
commands are arranged at the bezel, so the display area of a mobile touchscreen is kept
open. Moreover, users can execute command(s) repeatedly and continuously because a
command displayed at the bezel is executed by a crossing gesture.



10 T. Kurosawa, B. Shizuki, and J. Tanaka

For future work, we will evaluate our design in terms of the effects of the spatial
layout of the proposed design on the user’s cognitive processing [1, 3, 4].

References

1. G. Robertson, M. Czerwinski, K. Larson, D. C. Robbins, D. Thiel, and M. van Dantzich.
Data Mountain: using spatial memory for document management. In Proc. UIST ’98, pp.
153–162.

2. A. Agarawala and R. Balakrishnan. Keepin’ it real: Pushing the desktop metaphor with
physics, piles and the pen. In Proc. CHI ’06, pp. 1283–1292.

3. R. Mander, G. Salomon, and Y. Y. Wong. A pile metaphor for supporting casual organization
of information. In Proc. CHI ’92, pp. 627–634.

4. E. D. Ragan, A. Endert, D. A. Bowman, and F. Quek. The effects of spatial layout and view
control on cognitive processing. In CHI EA ’11, pp. 2005–2010.

5. A. Girouard, A. Tarun, and R. Vertegaal. DisplayStacks: interaction techniques for stacks of
flexible thin-film displays. In Proc. CHI ’12, pp. 2431–2440.

6. P. Baudisch. Don’t click, paint! using toggle maps to manipulate sets of toggle switches. In
Proc. UIST ’98, pp. 65–66.

7. J. Accot and S. Zhai. More than dotting the i’s — foundations for crossing-based interfaces.
In Proc. CHI ’02, pp. 73–80.

8. N. Watanabe, M. Washida, and T. Igarashi. Bubble Clusters: An interface for manipulating
spatial aggregation of graphical objects. In Proc. UIST ’07, pp. 173–182, 2007.

9. J. Steimle, M. Khalilbeigi, and M. Mühlhäuser. Hybrid groups of printed and digital docu-
ments on tabletops: a study. In CHI EA ’10, pp. 3271–3276.

10. K. Hinckley, J. Pierce, M. Sinclair, and E. Horvitz. Sensing techniques for mobile interaction.
In Proc. UIST ’00, pp. 91–100.

11. S. Kim, J. Yu, and G. Lee. Interaction techniques for unreachable objects on the touchscreen.
In Proc. OzCHI ’12, pp. 295–298.

12. M. Serrano, E. Lecolinet, and Y. Guiard. Bezel-Tap gestures: quick activation of commands
from sleep mode on tablets. In Proc. CHI ’13, pp. 3027–3036.

13. V. Roth and T. Turner. Bezel Swipe: conflict-free scrolling and multiple selection on mobile
touch screen devices. In Proc. CHI ’09, pp. 1523–1526.

14. R. Zeleznik, A. Bragdon, F. Adeputra, and H. Ko. Hands-On Math: a page-based multi-touch
and pen desktop for technical work and problem solving. In Proc. UIST ’10, pp. 17–26.

15. K. Hinckley, K. Yatani, M. Pahud, N. Coddington, J. Rodenhouse, A. Wilson, H. Benko, and
B. Buxton. Pen + touch = new tools. In Proc. UIST ’10, pp. 27–36.

16. N. Yu, D. Huang, J. Hsu, and Y. Hung. Rapid selection of hard-to-access targets by thumb
on mobile touch-screens. In Proc. MobileHCI ’13, pp. 400–403.

17. A. Bragdon, E. Nelson, Y. Li, and K. Hinckley. Experimental analysis of touch-screen ges-
ture designs in mobile environments. In Proc. CHI ’11, pp. 403–412.

18. J. Wagner, S. Huot, and W. Mackay. BiTouch and BiPad: designing bimanual interaction for
hand-held tablets. In Proc. CHI ’12, pp. 2317–2326.

19. P. Dragicevic. Combining crossing-based and paper-based interaction paradigms for drag-
ging and dropping between overlapping windows. In Proc. UIST ’04, pp. 193–196.

20. Y. Luo and D. Vogel. Crossing-based selection with direct touch input. In Proc. CHI ’14,
pp. 2627–2636.

21. C. Chen, S. T. Perrault, S. Zhao, and W. T. Ooi. BezelCopy: An efficient cross-application
copy-paste technique for touchscreen smartphones. In Proc. AVI ’14, pp. 185–192, 2014.



Spatial Arrangement of Data and Commands at Bezels of Mobile Touchscreen Devices 11

22. S. Pook, E. Lecolinet, G. Vaysseix, and E. Barillot. Control Menus: Excecution and control
in a single interactor. In CHI EA ’00, pp. 263–264.

23. F. Guimbretiére and T. Winograd. FlowMenu: Combining command, text, and data entry. In
Proc. UIST ’00, pp. 213–216.

24. G. Apitz and F. Guimbretière. CrossY: A crossing-based drawing application. In Proc.
SIGGRAPH ’05, pp. 930–930.

25. T. Nakamura, S. Takahashi, and J. Tanaka. An object selection tecnique using hand gesture
in large display -proposing double-crossing and comparing with other techniques. IEICE
Trans., Vol. J96-D, No. 4, pp. 978–988. (In Japanese).

26. M. Jain and R. Balakrishnan. User learning and performance with bezel menus. In Proc.
CHI ’12, pp. 2221–2230.

27. B. Shizuki, T. Hisamatsu, S. Takahashi, and J. Tanaka. Laser pointer interaction techniques
using peripheral areas of screens. In Proc. AVI ’06, pp. 95–98.


