Long-Term Study of a Software Keyboard
That Places Keys at Positions of Fingers
and Their Surroundings

Yuki Kuno, Buntarou Shizuki, and Jiro Tanaka

University of Tsukuba, Japan
{kuno, shizuki, jiro}@iplab.cs.tsukuba.ac.jp

Abstract. In this paper, we present a software keyboard called Ley-
board that enables users to type faster. Leyboard makes typing easier by
placing keys at the positions of fingers and their surroundings. To this
end, Leyboard automatically adjusts its key positions and sizes to users’
hands. This design allows users to type faster and more accurately than
using ordinary software keyboards, the keys of which are unperceptive.
We have implemented a prototype and have performed a long-term user
study. The study has proved the usefulness of Leyboard and its pros and
cons.

Keywords: Touch screen, text entry, software keyboard, long-term study.

1 Introduction

QWERTY software keyboards are available for text entry on devices with touch
screens. Although their key layout is the same as those of physical QWERTY
keyboards, we find it difficult to place our fingers on target keys since we cannot
obtain any physical feedback.

On the other hand, software keyboard can easily change their key positions
and sizes so that they can fit each user. Utilizing this advantage may be able to
compensate for the lack of physical feedback and to improve input speed.

In this paper, we describe a software keyboard that can automatically adjust
its key positions and sizes to the user’s hands. Longitudinal experiments have
proven the usefulness of the proposed keyboard.

The novel features of our software keyboard are as follows:

— We place keys at the touch points of all fingers and their surroundings, so
that key layout suits the position of all fingers.

— We move all keys for the thumb to prevent the hand from breaking its
posture, while users press a key with pressing another key (thumb based
sliding).

— We place some keys around the position of thumbs and enable them to input
by swiping them with thumbs (thumb swipe input).

— We combine thumb based sliding and thumb swipe input, so that multiple
keys can be input without breaking the posture of the users’ hand.

M. Kurosu (Ed.): Human-Computer Interaction, Part V, HCII 2013, LNCS 8008, pp. 72-81] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Long-Term Study of a Software Keyboard 73

2 Related Work

LiquidKeyboard [1], CATKey [2], Personalized Input [3], and the study of Gu-
nawardana et al. [4] adopt a similar approach to our research, which adjusts
shapes and places of keys to users’ hands. These keyboards can input letters but
not some keys available on ordinary keyboards, including numbers and some
symbols. In contrast, we use the combination of thumb based sliding and thumb
swipe input to input such keys.

The study of McAdam et al. [5l6] and SLAP widgets [7] take an approach
to provide users tactile feedback, which is different from ours. In contrast, we
reduce the difficulty of input arising from the lack of feedback by fitting the
place of keys to each user.

Gestyboard [8] and Bimanual Gesture Keyboard [9] use gesture input in text
entry. In our method, gesture input is used only as a modifier, not for text entry
itself.

3 Leyboard

We designed a prototype of the software keyboard that places keys at positions
of fingers and their surroundings [I0]. In this section, we describe the essential
features, way to input, and design of this prototype. We named this prototype
“Leyboard”. We named it Leyboard by replacing ‘K’ with ‘L’, since we expect
this will be a more advanced than an ordinary Igeyboard.

3.1 Key Placing on Positions of Fingers and Their Surroundings

The keys of Leyboard are placed to be based on the touch points of users’ fingers.
Each layout of keys is determined from Voronoi diagrams. Leyboard places keys
on the basis of each finger’s position and QWERTY layout. A, S, D, F, Space,
Enter, J, K, L, and semi-colon keys are placed at each finger’s position. Hereafter,
we call these keys home position keys and the rest non-home position keys.

Calibration. In this study, calibration is the name of the procedure for deter-
mining the layout of Leyboard. Leyboard checks the correspondence of touch
points and users’ fingers, when users place all their fingers (i.e., ten fingers) on
the touch screen. Then, Leyboard calculates gradients of hands from position of
the index and little finger of each hand.

Leyboard places home position keys at each finger’s position, and places non-
home position keys around them. Positions of non-home position keys are con-
cyclic, where they are rotated in accordance with the gradients of hands, with
the home position key at the center. We considered that keys can be input easily
as making their distance from home position key the same as that of other keys.
On the other hand, those distances are different on ordinary software keyboards.

The calibration is completed when users release their fingers from the touch
screen. Now the keys of Leyboard are placed at the positions of users’ fingers

74 Y. Kuno, B. Shizuki, and J. Tanaka

and their surroundings. Thus the key layout suits the position of users’ fingers,
which enables users to input the keys they intend to input easily.

Determining Key Area. We make Leyboard to input the key the coordinates
of which are the closest to the users’ touch point. This involves making the area
of the keys as large as possible to enable users to press keys easily. We have made
Leyboard determine the area of keys by Voronoi diagrams. We used Fortune’s
algorithm [I1] to draw lines of Voronoi diagrams.

Placing Keys Around Thumbs. On physical keyboards, thumbs are used
to press the Space key. On Leyboard, not only Space but also many keys are
placed around the position of thumbs. Keys that change the key set, which we
describe below, are also included in those keys. Therefore, the key layout of
Leyboard is strictly different from the QWERTY layout. The point is that all
keys are placed at the positions of users’ fingers or their surroundings in this
design. Therefore, users’ do not need to move their hands as widely as they
do with ordinary QWERTY layout keyboards. We consider this enable users to
keep their fingers at the position of home position keys while they input, thus
reducing error inputs.

We made Leyboard able to provide three key sets (Fig. [to Fig. B). With
Leyboard, users change the key sets as necessary, while they type. We placed
keys to change the key set around thumbs as described earlier. Key sets were
provided because we cannot put all necessary keys for text entry in one state (i.e.
one key set) in the design of Leyboard, where all keys are at the position of users’
fingers or their surroundings. While users press keys to change key sets, which
is shown by circle in Fig. 2l and Fig. Bl the key set changes into the one shown
in these figures. When users released their finger from the key for changing key
sets, the key set returns to the alphabet set (Fig. [l). As a result, Leyboard is
able to input 102 keys for total in these three key sets.

Fig. 1. Layout of alphabet set Fig. 2. Layout of numbers and symbols set

Long-Term Study of a Software Keyboard 75

Fig. 3. Layout of functions and numerical Fig. 4. Example of thumb based sliding
keypad set

3.2 Thumb Based Sliding

We developed a technique called “thumb based sliding”. Two keys must be
pressed to input some characters (e.g., ‘> and Shift to input capital ‘F’). The
thumb based sliding technique makes such simultaneous input easy with our key
layout. Fig. M shows an example of thumb based sliding. Assume that the left
thumb presses Shift. Then Leyboard moves all keys for the left hand like Fig.
M This design allows users to press keys while pressing another key without
breaking the posture of the hand, which enables users to input smoothly and
therefore, quickly.

3.3 Thumb Swipe Input

Keys at thumbs and their surroundings are able to be input with “thumb swipe
input”. Users can input these keys by swiping their fingers from one key to the
next. Note that keys to change the key set are only functional while users press
these keys. Thumb swipe input is used when users need to input modifier keys
such as Shift while the key set is changed.

3.4 Combination of Thumb Based Sliding and Thumb Swipe Input

Leyboard enables users to input many types of keys without breaking the pos-
tures of their hands by combining thumb based sliding and thumb swipe input.
Fig. [l shows an example of the combination of thumb based sliding and thumb
swipe input. Note the rectangle at the upper right of the left index finger. The
key displayed in the rectangle changes while the user swipes his or her left thumb.
Here, the keys are constantly at the user’s fingers or their surroundings.

3.5 Sound Feedback

We give users sound feedback when they input a key or change the key set.
Leyboard makes clicking sound to notify users that events described above has
occurred.

76 Y. Kuno, B. Shizuki, and J. Tanaka

Numbers and Symbols Set
+ Shift Pressed
\
|)

Fig. 5. Example of combination of thumb based sliding and thumb swipe input

4 Developing Environment

We chose C# as a programming language for developing Leyboard. We imple-
mented Leyboard as a WPF application, which supports multi touch by using
API of .NET Framework 4/ WPF4.

5 Long-Term User Study

We conducted a long-term user study to compare an ordinary software keyboard
and Leyboard. We chose the software keyboard regularly installed in Windows
7. Hereafter, we call this software keyboard the Windows 7 keyboard. The study
lasted about one year, which is a considerable term.

5.1 Environment

We used Acer’s ICONTA-F54E to operate Leyboard in the study. Fig. [shows
our experiment environment where we used ICONTA-F54E. ICONIA-F54E has
a 14-inch touch screen, 1366 x 768 pixels resolution (WXGA), and can detect up
to 10 touch points.

5.2 Participant and Tasks

The participant was one of the authors. We chose tasks of inputting English pan-
grams. The pangrams contained capital letters and some also included symbols.
Characters in one pangram range from 31 to 63. Hereafter, we call inputting
10 different pangrams a set. The participant had three sets of tasks for each
software keyboard on each day. We conducted this evaluation from February 15,
2012 to February 14, 2013, for 364 days (cutting 2 days on which no task oc-
curred). This is equivalent of 1092 sets. For the first seven days, the participant
performed tasks first with the Windows 7 keyboard and then Leyboard. These
orders were reversed in a seven-day cycle.

Long-Term Study of a Software Keyboard 7

Fig. 6. Experiment environment

5.3 Results

We calculated an input rate in words per minute (wpm), since completion time
itself is not a metric of performance of software keyboards. This is because
pangrams inputted by the participant differed in every sets. Wpm is a unit of
presenting words inputted in a minute that is defined by Gentuner [12]. Tt is
calculated as follows:

1 Incoming keystrokes except mistakes (times/set)

5 Input time (minutes/set)

Fig.[fshows the input rate in wpm on each software keyboard, with fitted curves,
which are approximated to logarithmic curves.

Although the difference is not yet large, Leyboard still outperforms ordinary
software keyboards according to the fitted curve. The maximum input rate of
each keyboard was 54.8 wpm for the Windows 7 keyboard and 56.4 wpm for
Leyboard. The average input rate of each keyboard was 39.7 for the Windows
7 keyboard and 41.6 for Leyboard. Leyboard has a higher input rate than the
Windows 7 keyboard in both values.

Fig. [shows the error rate on each software keyboard. The average error
rate of each keyboard was 6.07 % for the Windows 7 keyboard and 6.40 % for
Leyboard. The value of Leyboard is slightly higher than that of the Windows 7
keyboard.

When a long-term study is conducted, values of evaluation follow the power
law. The power approximation curves of values become almost straight lines in
a double logarithmic chart. Fig. @ shows the double logarithmic chart of time for
inputting 100 characters on average. As the power approximation curves of Fig.
are nearly straight lines, values in the evaluation are considered reasonable
and proper.

78

Y. Kuno, B. Shizuki, and J. Tanaka

rs
=}

Input Rate [wpm)
w
=]

Power (Windows 7)

Windows 7
20 Leyboard [
10 Fitted Curve (Windows7)[
fffff Fitted Curve (Leyboard)
0 T
1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051
Set Number
Fig. 7. Input rate (wpm) on each software keyboard
20
18 | ——windows7
16
g1 Leyboard } : : ;
<12 [[|) M|
£ [11 4 L Ll I |
< Il ud il 1
g 81—
&6 i
4 I 1] |
i PR 1 I i '
0 T T T T T T T T T T T T T T T T T T T
1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051
Set Number
Fig. 8. Error rate on each software keyboard
1000
w
£
5
(=3
]
o
g
i —Windows 7
E 10 1| Leyboard
5
a
=

,,,,, Power (Leyboard)

T
100
Set Number

T
1000

1
10000

Fig. 9. Input rate (seconds per 100 characters) on each software keyboard

Long-Term Study of a Software Keyboard 79

6 Discussion

We have conducted paired t-test to verify that wpm and error rate averages of
both keyboards significantly differ. As a result, the input rate of Leyboard is sig-
nificantly higher than that of the Windows 7 keyboard (t = —14.6591,p = 2.2e —
16<0.01); but its error rate is also significantly high (¢ = —3.708, p = 0.0002<0.01).

Furthermore, we have analyzed the content of the errors. We collected logs of
all key inputs during the study. Therefore, we referred to the log and determined
every mistaken or omitted input using the following algorithm:

1. Errors are determined in prefix search.

2. The algorithm compares the text and input by characters. The correct input
will be skipped.

3. If the character and the input were different, focus on the next character. If
it matches the input, the input is considered an omission. Otherwise, it is
considered a mistake.

4. If there are any errors, ignore every input from the next onwards until the
input come to the correct. This is to avoid the slippage of input that arises
from the omission.

For example, if the text was “puppy” and the input was “pupy”, the algorithm
would find the omission of ‘p’. For another example, if the text was “lazy”
and the input was “kazy”, the algorithm would find the mistake of ‘I’. Note
that the participant cannot go farther on the tasks as long as he or she inputs
wrong characters and eventually has to input the correct character. As a result,
the actual inputs with an error would have inserted certain character strings
compared with the text. Thus, the actual input of the first example becomes
“pupypy” (pup(y)py), and the second becomes “klazy” ((k)lazy).

There were 17,215 errors on the Windows 7 keyboard and 17,490 on Leyboard.
The Windows 7 keyboard had 12,878 mistakes and 4,337 omissions. Leyboard
had 11,148 mistakes and 6,342 omissions. Even though Leyboard had more errors
than the Windows 7 keyboard, Leyboard seems to have had fewer mistakes and
more omissions. To describe the tendency of errors on both keyboards, we draw
graphs of error frequencies. Fig. [[0] shows the mistakes, and Fig. [T shows the
omissions. Here we cut the characters that have errors below a certain number
(100 for mistakes and 50 for omissions) to make these graphs conspicuous.

=
S
=]
3

c
1=
Y

| Windows7
Leyboard

T T T T
m o U T @+ me - - —¥— ¢ccoeaoaog=>=Y*E - 3> 35 x >N

@
=]
=]

Frequency of Mistakes
B
&
2

Y

1=
o &
/=
—
—
—
—
—
—

Character

Fig. 10. Breakdown of mistakes

80 Y. Kuno, B. Shizuki, and J. Tanaka

800
2 700
'§ 600
g 500 ‘ mWindows7 [——
*G 400 Leyboard |—

?300 I

%200 I 1 i

- . I I, "

1 I I T O O NI O N 0 O O N T T
\‘;ﬁ)mvuba\%v\'\w\@@oqxakl\o4$+-\m

Fig. 11. Breakdown of omissions

In mistakes, the Windows 7 keyboard mistook period, space, ‘o’ and ‘y’ more
frequently than Leyboard. Period was mostly mistaken as comma (316 times),
Space as ‘n’ (605), ‘0’ as ‘p’ (368) and ‘y’ as ‘u’ (276). They are all keys placed
horizontally except Space and ‘n’. On the other hand, Leyboard mistook ‘s’ and
‘z" more frequently than the Windows 7 keyboard. ‘s’ was mostly mistaken as
‘x’ (246) and ‘z’ as ‘a’ (221). They are both keys placed vertically.

In omissions, the Windows 7 keyboard did not exceed Leyboard for any spe-
cific key. On the other hand, Leyboard omitted ‘a’, ‘i’, ‘0’ and ‘p’ more frequently
than the Windows 7 keyboard. Especially omitted were ‘a’ in “and” (37), ‘i’ in
“quiz” (151), ‘0’ in “of” (40), and ‘p’ in “nymph” (66). It seems that Leyboard is
poor at inputting keys with little fingers, such as ‘a’ and ‘p’. Actually, little fin-
gers were hardly used on the Windows 7 keyboard in the study; annular fingers
were used instead. This is because keys for little fingers on the QWERTY layout
are hard to reach for little fingers on a software keyboard. This is not a specific
case because at the time we conducted the user study on the early version of
Leyboard, there were users who did not use little fingers while inputting on the
Windows 7 keyboard for the same reason. It is also difficulty to input adjacent
keys in the top row continuously. This seems to be because we placed non-home
position keys con-cyclically, which strains the key layout, especially of the top
row.

7 Conclusion and Future Work

In this paper, we have presented Leyboard, a software keyboard that enables
faster typing than ordinary software keyboards. Leyboard places home position
keys of the QWERTY layout at the touch point of each finger and non-home
position keys at their surroundings. Leyboard enables many keys to be pressed
with a small amount of hand movement by combining thumb based sliding and
thumb swipe input.

A long-term user study found that Leyboard exceeds input rate of the reg-
ularly installed Windows 7 software keyboard. However, its error rate is also
high. This is because the current version of Leyboard tends to make users input
wrong keys placed vertically, is poor at inputting with little fingers, and has dif-
ficulty inputting adjacent keys in the top row continuously. Therefore, our future

Long-Term Study of a Software Keyboard 81

work is to make Leyboard input these for sure. Also, we are considering hav-
ing user studies with more participants and comparing Leyboard with physical
keyboards, including ergonomic products.

References

10.

11.

12.

Sax, C., Lau, H., Lawrence, E.: LiquidKeyboard: An ergonomic, adaptive QW-
ERTY keyboard for touchscreens and surfaces. In: Proceedings of the Fifth Inter-
national Conference on Digital Society, ICDS 2011, XPS, pp. 117-122 (2011)

Go, K., Endo, Y.: CATKey: Customizable and adaptable touchscreen keyboard
with bubble cursor-like visual feedback. In: Baranauskas, C., Abascal, J., Barbosa,
S.D.J. (eds.) INTERACT 2007. LNCS, vol. 4662, pp. 493-496. Springer, Heidelberg
(2007)

Findlater, L., Wobbrock, J.: Personalized input: improving ten-finger touchscreen
typing through automatic adaptation. In: Proceedings of the 2012 ACM Annual
Conference on Human Factors in Computing Systems, CHI 2012, pp. 815-824
(2012)

Gunawardana, A., Paek, T., Meek, C.: Usability guided key-target resizing for soft
keyboards. In: Proceedings of the 15th International Conference on Intelligent User
Interfaces, TUI 2010, pp. 111-118. ACM, New York (2010)

McAdam, C., Brewster, S.: Distal tactile feedback for text entry on tabletop com-
puters. In: Proceedings of the 23rd British HCI Group Annual Conference on People
and Computers, BCS-HCI 2009, pp. 504-511 (2009)

McAdam, C., Brewster, S.: Mobile phones as a tactile display for tabletop typing.
In: Proceedings of the ACM International Conference on Interactive Tabletops and
Surfaces, ITS 2011, pp. 276-277 (2011)

Weiss, M., Wagner, J., Jansen, Y., Jennings, R., Khoshabeh, R., Hollan, J.D.,
Borchers, J.: Slap widgets: bridging the gap between virtual and physical con-
trols on tabletops. In: Proceedings of the 27th International Conference on Human
Factors in Computing Systems, CHI 2009, pp. 481-490 (2009)

Coskun, T., Artinger, E., Pirrilli, L., Korhammer, D., Benzina, A., Grill, C., Dip-
pon, A., Klinker, G.: Gestyboard: A 10-finger-system and gesture based text input
system for multi-touchscreens with no need for tactile feedback. In: Proceedings of
the 10th Asia-Pacific Conference on Computer-Human Interaction, APCHI 2012,
pp. 701-702 (2012)

Bi, X., Chelba, C., Ouyang, T., Partridge, K., Zhai, S.: Bimanual gesture keyboard.
In: Proceedings of the 25th Annual ACM Symposium on User Interface Software
and Technology, UIST 2012, pp. 137146 (2012)

Kuno, Y., Shizuki, B., Tanaka, J.: Leyboard: A software keyboard that places keys
at positions of fingers and their surroundings. In: Proceedings of the 10th Asia-
Pacific Conference on Computer-Human Interaction, APCHI 2012, pp. 723-724
(2012)

Fortune, S.: A sweepline algorithm for voronoi diagrams. In: Proceedings of the
Second Annual Symposium on Computational Geometry, SCG 1986, pp. 313-322.
ACM, New York (1986)

Gentner, D.R.: Keystroke timing in transcription typing. In: Cooper, W.E. (ed.)
Cognitive Aspects of Skilled Typewriting, pp. 95-120. Springer (1983)

	Long-Term Study of a Software Keyboard That Places Keys at Positions of Fingers and Their Surroundings
	Introduction
	Related Work
	Leyboard
	Key Placing on Positions of Fingers and Their Surroundings
	Thumb Based Sliding
	Thumb Swipe Input
	Combination of Thumb Based Sliding and Thumb Swipe Input
	Sound Feedback

	Developing Environment
	Long-Term User Study
	Environment
	Participant and Tasks
	Results

	Discussion
	Conclusion and Future Work

