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Abstract. Most recent smartphones are controlled by touch screens,
creating a need for hands-free input techniques. Voice is a simple means of
input. However, this can be stressful in public spaces, and the recognition
rate is low in noisy backgrounds. We propose a touch-free input technique
using lip shapes. Vowels are detected by lip shape and used as commands.
This creates a touch-free operation (like voice input) without actually
requiring voice. We explored the recognition accuracies of each vowel of
the Japanese moras. Vowels were identified with high accuracy by means
of the characteristic lip shape.
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1 INTRODUCTION

Recent mobile devices depend greatly on touch operations. On the other hand,
as touch screen sizes increase, it becomes difficult to operate the screen with only
one hand. Therefore, in situations where the other hand is busy (for example,
holding a briefcase), touch operations are difficult.

The use of hands-free inputs is a possible solution. Voice input is promising
in this context. However, many people are uncomfortable when utterances in
public spaces [1]. To solve this problem, ‘voice’ inputs without utterance (e.g.,
lip shape recognition) are being explored. For example, Lyons et al. [2] proposed
a method of Japanese language input via lip shape recognition. This method
does not require pronunciation, which is useful for situations where speech is to
be avoided. It is, however, insufficient because vowels can be input via lip shape
recognition but consonants must be entered by touch.

We propose a touch-free command input method for mobile devices using
lip shape recognition. In our method, the lip shapes of vowels are recognized
by the front camera of the device, and the sequence of recognized vowels are
translated into commands. This allows for a touch-free input that is as intuitive
as voice input but does not require the user to use his/her voice, avoiding the
uncomfortableness from using it in public spaces.



2 RELATED WORK

We used lip reading to create touch-free input to a smartphone; words are guessed
from lip shape. In this section, we review prior work on hands-free inputs and
lip reading.

2.1 Hands-free Input Method

Several hands-free methods of operating electronic devices such as computers
and smartphones have been studied. Orbits [3] allows operation of a smartwatch
by moving the eyes in circles. The device identifies the direction and radius of
eye rotation. For example, volume icons have been created whereby the volume
can be changed (up or down) by moving the gaze clockwise or counterclockwise
around the icon. CanalSense [4] of Ando et al. uses an earphone in which a
barometer is embedded to measure the atmospheric pressure in the ear canal.
This changes when the ear canal is deformed by movement of the jaw, face, or
head. The changes are used to operate devices such as smartphones. The LUI [5]
system uses lip shapes as commands to operate mobile devices. For example,
when using a map, opening the mouth commands enlargement, and closing the
mouth commands reduction. Compared to these methods, our method does not
require additional devices, and users do not need to learn gestures or familiarize
themselves with the application.

2.2 Lip Reading

Recent improvements in computer performance and advances in machine
learning have rendered visual speech recognition increasingly accurate. Chung
et al. [6] generated highly accurate subtitles from the mouth movements of
a newsreader. Moreover, lip reading has been used to input commands to
mobile devices. Lyons et al. [2] input Japanese-language commands via lip
shape recognition. The consonants were entered manually and the vowels via
lip shape. Compared to the usual Japanese input methods, this reduces the
burden on fingers. Our method is based on real-time lip shape recognition of
vowels, allowing for touch-free smartphone input with the lips only.

3 THE METHOD

3.1 Overview

We propose a method for control of a mobile device using lip shape. A user can
perform shortcut operations by silently mouthing code words to the smartphone.
Our method is shown in Fig. 1. The lip shape is extracted from the facial image of
the front camera, and the vowel is recognized and input into the smartphone as
a character. Finally, a shortcut command is estimated from the vowel sequence,
and the action is performed. In the experimental section, we confirm the accuracy
of our method.
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Fig. 1: Overview of our method.

3.2 Estimation of vowel sequence

In our method, lip shapes are recognized as vowels using the front camera. Then
we use the mouth-shape code of Miyazaki et al. [7] to represent the vowels
recognized from the lip shapes. The mouth shapes for word pronunciation are
divided into six classes, composed of the five vowels (a, e, i, o, and u) and the
closed mouth (x). In mouth-shape code, the initial lip shape (i, u, x) and the final
lip shape (A, E, I, O, U, and X) for Japanese moras are combined to produce a
code. More specifically, one mouth-shape code produced from a Japanese mora
is a pair of one of the initial lip shapes (i, u, x) and one of the final lip shapes
(A, E, I, O, U, X). For example, for the mora ‘ma,” the initial lip shape is ‘x’
and the final lip shape is ‘A,” producing the code ‘xA.’

In this manner, changes in lip shape are recognized, and the mouth-shape
code is stored as a ‘vowel sequence.” For example, as shown in Fig. 2, the
command ‘Bu-ra-u-za,” which means ‘Browser,” becomes the vowel sequence ‘xU,
iA, U, iA’ after recognition and processing. Using such vowel sequences as inputs,
commands can be executed.



xU iA U iA

Fig. 2: Vowel sequence when ‘Bu-ra-u-za’ is spoken.

4 PROTOTYPE IMPLEMENTATION

We developed a prototype consisting of a smartphone and a server recognizing
lip shape. Fig. 3 shows the system configuration. First, the user captures his/her
face on the smartphone. Then, the smartphone sends the image to the server,
which is implemented as an HTTP server. The server extracts a lip region from
the received image, and returns a recognized vowel to the smartphone. If no face
is found, the server returns ‘none.’

We recognize vowels from lip shapes on facial images using a convolutional
neural network (CNN). For the implementation of CNN, TensorFlow, an open-
source machine-learning framework, was used. Fig. 4 shows the neural network
configuration with nine convolutional layers. A pooling layer and a dropout layer
are placed after the second, fourth, sixth, and eighth convolutional layers.

Six volunteers (aged 21-24 years; college or graduate students) were enrolled
to provide their face images. We took facial images of all volunteers mouthing
all vowels (and not mouthing at all) 100 times (3,600 images). We used the
FaceLandmark Detector of Dlib (a machine-learning library) to extract the lips
from each image. We augmented these data by adding 10 images generated by
applying the following six random processes 10 times to each image:
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Fig. 3: System configuration.

Rotate the image randomly from 0 degrees to 10 degrees.

— Shift in the horizontal direction within the range of 0% to 10% of image
width

Shift in the vertical direction within the range of 0% to 10% of image height
— Transform in oblique direction in the range of 0 to 7/8

Randomly shift the value of RGB in the range

— Randomly invert in the vertical direction

Therefore, we got 39600 images (3600 + 3600x10) as the learning data.

We created a learning model with a batch size of 50, 10 epochs, a multiclass
logloss function, and an ADAM gradient. When 20% of the training data were
used as test data, the accuracy was about 82%.
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Fig.4: The CNN model.

5 PRELIMINARY EXPERIMENT

We performed an experiment to explore the accuracy of our prototype system.
We enrolled two volunteers (aged 22-23 years; college or graduate students) who
had previously provided learning data and two volunteers (23-25 years; college
or graduate students) who had not provided learning data. As the hardware of
our prototype system, we used HUAWEI Mate 10 Pro for the smartphone and
MacBook Air for the server.

5.1 Experiment Design

Each participant held a smartphone with the right hand at a distance of about
30 cm from the face.

First, the target mora was displayed on the screen (Fig. 5). Then the
participant mouthed the target mora and simultaneously photographed his/her
face with the front camera. Next, the target mora was refreshed and the process
was repeated. This continued as long as the target mora was refreshed. We
shuffled Japanese 7541 moras (Fig. 6). They consist of 75 moras, which are the
combinations of five vowels and 15 consonants, and the mora ‘A (X)’. Because



Fig. 5: Screenshot displaying the target mora ‘¥ (PA)’.

we can obtain 15 images of each vowel from the 75 different moras, we made
the mora ‘A (X)’ appear 15 times as a target to collect the same number of
images for the mora ‘A (X)’. Thus, in total, each participant provided 90 facial
images as test data. We measured lip shape recognition accuracy as the match
rate between the target and recognized vowels in each task.

Prior to the experiment, we taught the participants how to use the prototype
and allowed them to practice several times.
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Fig. 6: The 75 + 1 target moras.



5.2 Resultl: users who provided learning data

Table 1 shows the confusion matrix of our preliminary experiment for partici-
pants who had earlier provided learning data. Each rate is the proportion of the
class in which the users’ vowels were classified. The average recognition accuracy
was 80.0%. In particular, ‘® (A),” ‘W (I), and ‘A (X)’ were recognized with
>90.0% accuracy. However, the recognition accuracy of ‘A (E)’ was only 53.3%,
being often misrecognized as ‘\» (I).” Also, ‘9 (U)’ and ‘& (O)’ were mutually
misrecognized.

Table 1: Results for participants who provided learning data (%).

H(A) () 2 (V) Z(E) B(0) Au(X)
H(A) 96.7 3.3 0.0 0.0 0.0 0.0
V() 0.0 100.0 0.0 0.0 0.0 0.0
2(U) 0.0 0.0 63.3 0.0 36.7 0.0
Z(E) 13.3 33.3 0.0 53.3 0.0 0.0
$(0) 0.0 0.0 20.0 33 76.7 0.0
A(X) 0.0 0.0 10.0 0.0 0.0 90.0

5.3 Result2: users who did not provide learning data

Table 2 shows the confusion matrix of our preliminary experiment for partici-
pants who did not provide learning data. Each rate is the proportion of the class
in which the users’ vowels were classified. Characteristic mouth shapes such as
‘® (A), D (U), and ‘A (X)’ were recognized with accuracies >80.0%. However,
‘Z (E)’ was often miscategorized as other vowels, while ‘& (O)’ was misclassified
as ‘9 (U).” Lastly, ‘\™ (I)’ was always misrecognized as ‘A (X).’

Table 2: Results for participants who did not provide learning data (%).

H(A) W) pIC)) Z(E) #(0) A(X)
H(A) 80.0 0.0 0.0 16.7 0.0 3.3
() 0.0 0.0 0.0 0.0 0.0 100.0
5 (U) 0.0 0.0 96.7 0.0 0.0 3.3
Z(E) 36.7 200 0.0 333 0.0 10.0
$(0) 0.0 0.0 36.7 0.0 46.7 16.7
A(X) 0.0 0.0 0.0 3.3 0.0 96.7




5.4 Discussion

With new participants, ‘> (I)’ was often mistakenly recognized as ‘A (X)’. Since
the shape of these lips changes little, it can be considered that it was recognized
as a closed state of the lips (‘A (X)) when mouthed the vowel ‘\» (T)” moras. Also
it can be considered that generalization performance of the CNN model was not
high enough to accommodate individual differences in lip size and shape. As the
volunteers who provided the learning data achieved high accuracy identification,
we expect that the accuracy for regular users will improve as their own data are
used to train the model.

In addition, when determining a command to be executed, there is a
possibility of compensating unreliable vowel sequences by using string similarity
metrics (e.g., the Levenstein distance). It is our future work to develop robust and
reliable method of estimating commands from the recognized vowel sequences.

6 CONCLUSION AND FUTURE WORK

We proposed a method of operating a mobile device via lip shape, and conducted
a preliminary experiment exploring the recognition rate. We used Dlib to extract
the lip region and a CNN to recognize vowels. In a preliminary experiment, vowel
recognition by characteristic lip shape was relatively accurate. We will improve
the recognition rate by expanding the CNN model. We will also explore if users
feel more comfortable with mouthing in public when comparing with voice input
techniques.
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