
GIGA: Graphical Definition of Production Rules
in a Spatial Parser Generator

Hiroaki Kameyama,a Kazuhisa Iizukaa

Buntarou Shizuki,b Jiro Tanakab
aDoctoral Program in Engineering, University of Tsukuba

b Institute of Information Science and Electronics, University of Tsukuba
1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8573, Japan
{kame, iizuka, shizuki, jiro}@iplab.is.tsukuba.ac.jp

ABSTRACT
We previously developed the spatial parser generator
Eviss, which automatically generates a spatial parser by
defining the grammar of the visual language. In Eviss, we
introduced “action” into CMGs in order to express the
behavior of visual programming systems. However, in
Eviss, the input of the grammar is performed using the
text. If we can use a figure for inputting the grammar and
edit it directly, the grammar will become easier to
understand. Therefore, we have developed the GIGA
system to supplant Eviss, the graphical interface for the
CMG Input Window has two additional screens, i.e. a
pre-action screen and a post-action screen. GIGA
outputs the production rule by comparing the two screens.
Using GIGA the user can define the grammar easily and
can understand the grammar visually.

KEYWORDS

visual language, visual parser, Constraint Multiset Grammars

1. INTRODUCTION
Visual language means a language that uses figures in
addition to text. Visual languages are used in various
fields, such as ER diagrams and OMT object diagrams.
Visual languages have structures like textual languages.
Special purpose diagrams such as ER diagrams and OMT
object diagrams are often drawn using special-purpose
graphic editors. Because general-purpose editors do not
know the meaning of the diagrams, semantic
relationships between figure elements are not preserved
during editing. Creating an analyzer for every application
is a difficult and time-consuming task.

Spatial parser generators automatically generate parser of
visual languages by providing their grammars. For visual
systems, analyzing visual languages is not enough.
Actual visual systems must execute statements according
to the result of the analysis and redraw the visual
sentence preserving the semantic relationships between
figure elements.

We previously developed the spatial parser generator
Eviss[1][4][5], which automatically generates a spatial
parser by defining the grammar of the visual language. In
Eviss, we introduced “action” into Constraint Multiset
Grammars (CMGs) [2][6] in order to express the
behavior of visual programming system. By providing
just the grammar and the action of a visual programming
system, we can easily describe a visual system. The
defined grammar is analyzed by Eviss, which
automatically generates the parser.

However, in Eviss, the input of the grammar is performed
using text. If all composition elements and action
performed are given in textual form, it is difficult to
understand what kinds of figures compose the grammar
and what happens when the grammar is analyzed. If we
can use a figure for inputting the grammar and edit it
directly, the grammar will become easier to understand.

2. SPATIAL PARSER GENERATOR

2.1 Extended Constraint Multiset Grammars
We use Extended CMGs [1] in order to define the
grammars of visual systems. A CMGs consists of a set of
terminal symbols, a set of non-terminal symbols, a
distinctive start symbol, and a set of production rules.
The terminal and non-terminal symbols have various
attributes. The production rules are used to rewrite a
multiset of tokens (the instances of the terminal or
non-terminal symbols) for a new symbol. The constraints
maintain the relationships between the attributes of the
tokens.

The production rule of Extended CMGs is defined as
follows:

AandFxandCwhere

xTxTexistnot

xTxTexist
wherexTxTxT

ll

mm

nn

=

=

r

rr

rr

rrr

)"("),...,"("_

)'(',...,)'('
)(,...,)(::)(

11

11

11 　

When the attributes of the “normal” tokens T1,…,Tn
satisfy the constraint C, the tokens T1,….,Tn are rewritten
to the non-terminal symbol T. The “exist” tokens
T1’,…,Tm’ are needed to recognize T and are not rewritten
to T. If the “not_exist” tokens T1”,…,Tl” satisfy the
constraint C, the tokens T1,….,Tn are not rewritten to T .
Function F has the attributes x1,…,xn and x1’,…,xm’ of the
components as arguments, and the return values of the
function are given to the non-terminal symbol T as its
attribute.

We have extended the original CMGs to include action A
defined as “script program executed when the production
rule is applied.” In the Extended CMGs, we can specify
arbitrary actions, such as computing values and rewriting
figures.

In this paper, we describe the computation tree (Fig. 1),
as an example.

Fig. 1 Computation tree.

The computation tree is defined recursively by the
following two production rules.

1. A non-terminal symbol “Node” consists of a circle
and a text in the center of it.

2. A non-terminal symbol “Node” consists of a circle,
a text string, two nodes and two lines. The two
nodes are connected to the circle by the lines.

The production Rule 1 defines a node that represents a
number; production Rule 2 defines a node that represents
an operator.

These production rules can be written by the Extended
CMGs as Fig. 2.

Fig. 2 Production rule of Extended CMGs.

Lines 1 to 10 define production Rule 1. Line 1 presents
the attributes of the non-terminal symbol “Node.” Line 2
states the node consists of a circle and a text string. Lines
3 to 4 describe the constraints. Line 3 indicates that the
center of the text string is on the center of the circle. Line
4 shows that the inner color of the circle is “green.”
Lines 6 to 8 define the values of Attributes. Line 6 states
“mid” of the “node” is equal to “mid” of “C.” Lines 7 to
8 comprise a script for substituting the attribute “text” of
“T” for the attribute value of a “node.”

Lines 12 to 30 define production Rule 2. Line 12 presents
the attributes of the “node.” Lines 13 to 15 indicate that
the node consists of a circle, a text string, two nodes and
two lines. Lines 16 to 22 describe the constraints. Line 16
states that the “start” of “L1” is on the “mid” of “N1.”
Line 17 states that the “end” of “L1” is on the “mid” of
“C.” Line 18 states that the “start” of “L2” is on the
“mid” of “N2”. Line 19 shows that the “end” of “L2” is
on the “mid” of “C.” Line 20 shows that the “mid” of
“C” is on the “mid” of “C.” Line 21 shows that the
“mid_x” of “N1” is greater than “mid_x” of “C”, where
“mid_x” represents the x coordinates of point “mid.”
Line 22 shows that the “mid_x” of “N2” is less than the
“mid_x” of “C.” Lines 24 to 26 define the values of the

1: Node(point mid, integer value) ::=
2: C:Circle, T:Text where (
3: C.mid == T.mid
4: C.innercolor == “green”
5:) {
6: mid = C.mid
7: value = T.text
8: } and {
9: }

10:
11: Node(point mid, string value) ::=
12: C:Circle, T:Text,
13: N1:Node, N2:Node,
14: L1:Line, L2:Line where (
15: L1.start == N1.mid
16: L1.end == C.mid
17: L2.start == N2.mid
18: L2.end == C.mid
19: C.mid == T.mid
20: N1.mid_x < N2.mid_x
21:) {
22: mid = C.mid;
23: value = { expr
24: N1.value T.text N2.value }}
25: } and {
26: delete { N1,N2,L1,L2 }
27: alter T.text value
28: }

attributes. Line 24 shows that attribute “mid” of “node” is
equal to the “mid” of “C.” Lines 25 and 26 show that the
attribute “value” of the “node” is calculated from the
“value” of “N1” and “N2.” Lines 28 to 29 define the
action. Line 28 shows that “N1,” “N2,” “L1,” and
“L2” are deleted when this production rule is applied.
Line 29 shows that the “value” of “T” is replaced by the
“value” of “node.”

In Eviss, we provide the following procedures to redraw
figures as an action.

l Create: Create a new figure

l Delete: Delete a existing figure

l Alter: Change the attributes (such as colors and
fonts) of figure

2.2 Eviss
Fig. 3 depicts an execution snapshot of the Eviss.

Fig. 3 Execution snapshot of Eviss

The upper half of the screen is called the “definition
window.” The user who implements a visual system
defines grammar of visual language from the definition
window. The bottom half is called the “execution
window”. The user draws figure elements to be analyzed
in the execution window.

To define the production rules, we use the CMG Input
Window (Fig. 4). The CMG Input Window is divided
into five parts: Name, Attributes, Action, Constraints and
Components. “Components” is divided into “normal,”
“exist” and “not_exist.” Name, Attributes, Action and
Constraint are written in their respective part. The
“normal,” “exist” and “not_exist” components of the new
symbol are written in “normal,” “exist,” “not_exist”
component part.

In Eviss, rough grammars are first defined using figures.
The user draws figures that he wants to define as a new

non-terminal symbol from the definition window. We call
these “example figures.” Eviss automatically extracts
simple constraints and components from each “example
figure” and outputs them to the CMG Input Window in
textual form. The user then edits the constraints and
components in the CMG Input Window. The user can
also specify actions and attributes.

Fig. 4 CMG Input Window

After defining the production rule from the CMG Input
Window, the user inputs the figure that he wants to
analyze from “execution window.” GIGA then finds the
production rules to be applied and rewrites them to the
non-teminal symbol. When the input figure is rewritten to
the non-terminal symbol, GIGA performs the action
defined in the production rule.

3. GRAPHICAL DEFINITION OF RULES
We have newly developed a successor to Eviss called
GIGA system. GIGA’s graphical interface for the CMG
Input Window has two screens in addition to the CMG
input Window of Eviss (as shown in Fig.5). i.e., a
pre-action screen and a post-action screen. The user
inputs the figures into the Pre-action screen before the
action is performed. The user edits the figures in the
Post-action screen after the action is performed.
Operations in each screen can be performed similarly to a
general drawing editor.

Fig. 5 Graphical interface for CMG input window

The user defines the grammar using the graphical
interface for the CMG input window as follows.

1. The user inputs the figures to be analyzed on the
Pre-action screen.

2. GIGA duplicates the figure input to the pre-action
screen to the post-action screen.

3. On the post-action screen, the user modifies the
duplicated figure to show the result after the action
is performed.

4. GIGA infers the production rule from two screens
and outputs it to the respective definition part in
textual form.

5. If required, the textual form can be edited.

3.1 Inference of the component
GIGA infers “normal,” “exist” and “not_exist”
components by extracting components from the
pre-action screen, then outputs them to the Component
definition part.

3.2 Inference of the constraint
GIGA infers constraints by extracting them from the
pre-action screen, and then outputs them to the Constraint
definition part.

3.3 Inference of the attribute
The attribute is calculated using the attribute of the
figures that constitute it on the pre-action screen. If the
figures have the same attribute, GIGA infers the attribute
by synthesizing the same attribute values. If the figures
have a different attribute, GIGA infers the attribute by
copying the attribute of the figures. GIGA outputs the
attributes to the Attribute definition part.

3.4 Inference of the action
When production Rule 2 of the computation tree is
applied, the action that should be performed can be
defined as follows:

l Two nodes and two lines of a figure that were
analyzed by the Rule 2 are deleted, and the operator
text in the circle is replaced by the computation
result.

In this Example, after the action performed, two nodes
and two lines are deleted. Thus, it is possible to infer the
action that is executed from the difference of the two
pictures.

The kinds of actions, we can use in GIGA, are “create,”
“delete” and “alter” the attributes. GIGA infers each
action by comparing two screens.

Ø When the figure in the pre-action screen does
not exist in the post-action screen (Fig. 6),
GIGA generates the “delete” action.

Fig. 6 Action of the computation tree.
(a) before (b) after

Ø When the attribute of the figure in the
pre-action screen is changed on the post-action
screen (Fig. 7), GIGA generates the “alter”
action.

Fig. 7 “Alter” action

Ø When a figure does not exist in the pre-action
screen but exists in the post-action screen (Fig.
8), GIGA generates the “create” action and

infers the position in the new figure, making
use of the positions of the other figures.

Fig. 8 “Create” action

3.5 Computation tree example
First, we define Rule 1. Since a node consists of a circle
and text (number), we draw a circle and text in the
pre-action screen. GIGA then infers the grammar of
components and outputs it to the Component definition
part (shown in Fig. 9).

Since the inner color of the circle is green, GIGA
generates the constraint for which the attribute
“innercolor” of the circle is equal to “green” and outputs
it to the Constraint definition part. Since the center
positions of the circle and the text are the same, GIGA
generates the constraint in which the attribute “mid” of
the circle is equal to the attribute “mid” of the text. GIGA
then outputs it to the Constraint definition part.

We then fill the Attribute definition part in textual form.

Fig. 9 Definition of production rule 1

Next, we define Rule 2. We draw a circle, a text, two
lines and two nodes in the pre-action screen. GIGA then
infers the components and outputs them to the

Component definition part (shown in Fig. 10). We next
delete two nodes and two lines in the post-action screen
to define the action of the production rule. GIGA infers
the action from the difference of the pre-action screen
and the post-action screen, and then outputs it to the
Action definition part.

Fig. 10 The definition of production rule 2

4. RELATED WORKS
KidSim[3] is a visual environment that allows children to
create their own simulations. They create their own
characters and rules that specify how the characters are to
behave. KidSim is programmed by demonstration, so that
users do not need to learn a conventional programming
language or scripting language. The visual representation
for a rule consists of two pictures, i.e. "before" state of
the rule and “after” state of the rule.

Visulan[7][8] is a pattern-replacement-rule-based visual
language, in which both programs and data are expressed
by bitmaps. In Visulan, data processed by programs are
pictures called “targets,” and programs are the ordered set
of pattern-replacing rules called “pairs.” Each pair
consists of two pictures called a “before-picture” and an
“after-picture.”

5. CONCLUSION AND FUTURE WORKS
In this paper, we described the GIGA system in which a
user can define the grammar using figures. GIGA has two
screens for defining the grammar for inferring the
production rule from the difference of the two screens.
GIGA outputs the resulting production rule by comparing
the two screens. With GIGA, the user can define the
grammar easily and can understand the grammar visually.

One of our future tasks is to perform the user test and
evaluate the validity. We would also like to improve the
interface, allowing the user to generate the grammar
without using text at all.

REFERENCE
1. Akihiro Baba, Jiro Tanaka, “Eviss: A Visual

System Having a Spatial Parser Generator,” In
proceedings of 1998 Asia Pacific Computer
Human Interaction, IEEE Computer Society Press,
pp. 158-164, Jul 1998.

2. Sitt Sen Chok, Kim Marriott, “Automatic
Construction of User Interface from Constraint
Multiset Grammars,” In Proceedings of 1995 IEEE
Symposium on Visual Languages,IEEE Computer
Society Press, pp. 242-249, Sep 1995

3. Allen Cypher, David Canfield Smith, “KidSim:
End User Programming of Simulations,” In
Conference proceedings on Human factors in
computing systems, Denver, Colorado, United
States, ACM Press/Addison-Wesley Publishing Co,
pp. 27-34, May 1995.

4. Kenichiro Fujiyama, Kazuhisa Iizuka and Jiro
Tanaka, “VIC:CMG Input System Using Example
Figures,” In Proceedings of the international
Symposium on Future soft-ware Technology,
Najing, China, pp. 67-72, Oct 1999.

5. Kazuhisa Iizuka, Jiro Tanaka, and Buntarou
Shizuki, “Describing a Drawing Editor by Using
Constraint Multiset Grammars,” In proceedings of
the international Symposium on Future soft-ware
Technology, Zhen Zhou China, pp. 119-124, Nov
2001.

6. Kim Marriot, “Constraint Multset Grammars,” In
Proceedings of the 1994 Symposium on Visual
Languages, IEEE Computer Society Press, pp.
118-125, Oct 1994.

7. Kakuya Yamamoto, “3D-visulan: A 3D
Programming Language for 3D Applications,” In
Proceedings of Pacific Workshop on Distributed
Multimedia Systems, the Hong Kong University of
Science and Technology, pp. 199-206, Jun 1996.

8. Kakuya Yamamoto, “Visulan: A Visual
Programming Language for Self-Changing
Bitmap,” In Proceedings of International
Conference on Visual Information Systems,
Victoria University of Technology (in cooperation
with IEEE), pp. 88-96, Feb 1996.

