
Visual Parsers based on Extended Constraint Multiset Grammars

Jiro Tanaka
Institute of Information Sciences and Electronics

The University of Tsukuba
Tsukuba, Ibaraki 305-8573, Japan

jiro@is.tsukuba.ac.jp

Abstract— We are working for visual paring in
these years. We have developed the series of visual
parser generators, such as Eviss, VIC and Rain-
bow. They generate a spatial parser by defining
the grammars of visual language. Using generated
spatial parser, they can analyze the figures and can
execute the specified actions. The GUI generator
and the subset of VISPATCH are shown as exam-
ples.

Keywords— Graphical user interface, Visual
parser, Visual system, Constraint solving

I. Introduction

THOUGH the textual paring has already been well-
established in computer science field, the visual

paring is still in the preliminary stage.
Visual languages are used in various fields, such

as ER diagrams, object diagrams of OMT, formula,
music, and diagrams that show relationships between
characters appearing in TV dramas. Visual languages
have structures like textual languages.

We can assume the diagrams which represent graph
structures as a visual language. A special purpose
graphic editor can be considered as a system to process
a visual language. We call a system which processes a
visual language a visual system. Visual systems pro-
posed so far have been fixed on certain specifications.
It was a difficult and time consuming job to modify
those systems.

Therefore, we are working for general purpose visual
systems in these years. We have developed the series
of visual parser generators, such as Eviss [1], [2], VIC
[3] and Rainbow [4], [5].

II. The extended Constraint Multiset

Grammars

We use the extended Constraint Multiset Grammars
(CMG) [6], [7] in defining the grammars of visual sys-
tem in visual parser generators. CMG consist of a set
of terminal symbols, a set of non-terminal symbols, a
distinctive start symbol, and a set of production rules.
The terminal and non-terminal symbols have various
attributes. The production rules are used to rewrite

1This paper has been extracted from: Jiro Tanaka, “Visual
Parsing and 3D Visual Interface,” Proceedings of 2000 Interna-
tional Conference on Information Society in the 21st Century
(IS2000), 2000.

Fig. 1. A snapshot of Eviss

a multiset of tokens (the instances of the terminal or
non-terminal symbols) for a new symbol.

The constraints maintain the relationships between
the attributes of the tokens. A production rule is de-
fined as follows:

T (�x) ::= T1(�x1), · · · , Tn(�xn) where

exists T ′1(
�x′1), · · · , T

′
m(�x′m)

where C and �x = F and A

When the attributes of the tokens T1, · · · , Tn (“nor-
mal” components) and T ′1, · · · , T

′
m (“exist” compo-

nents) satisfy the constraints C, the tokens T1, · · · , Tn
are rewritten to the non-terminal symbol T . Exist
components are needed to recognize T and are not
rewritten to T 2. F is the function that has the at-
tributes �x1, · · · , �xn and �x′1, · · · , �x

′
m of the components

as arguments, and the return value of the function is
given to the non-terminal symbol T as its attribute.

Note that we have extended the original CMG to
include action A. A is defined as “script program ex-
ecuted when the production rule is applied.” In the
extended CMG, we can specify arbitrary actions, such
as computing values and rewriting figures.

2CMG also has “not exist” and “all” components. For details,
refer to [2], [6], [7].

III. List Tree example

List Tree is defined recursively by the following two
production rules.
Rule 1: A non-terminal symbol “list” consists of a
“circle” and a “text” in the center of it.
Rule 2: A non-terminal symbol “list” consists of a
“circle,” two “lines” and two “lists.” The two “lists”
are connected to the “circle” by the “lines.”

These production rules can be written by the ex-
tended CMG as follows.

1: list(point mid, integer mid_x,

2: string value) ::=

3: C:circle, T:text

4: where (

5: C.mid == T.mid

7:) and {

8: mid = C.mid

9: mid_x = C.mid_x

10: value = {script.string {

11: list @T.text@}}

12: } and {

13: display(value = @value@)

14: }

15:

16: list(point mid, integer mid_x,

17: string value) ::=

18: C:circle

19: exists S1:list, S2:list,

20: L1:line, L2:line

21: where (

22: S1.mid == L1.end

23: S2.mid == L2.end

24: C.mid == L1.start

25: C.mid == L2.start

26: C.mid == T.mid

27: S1.mid_x < S2.mid_x

28:) and {

29: mid = C.mid

30: mid_x = C.mid_x

31: value = {script.string {

32: concat [list @S1.value@]

33: [list @S2.value@]}}

34: lef = C.lu_x

35: right = C.rl_x

36: } and {

37: display(value = @value@)

38: }

Lines 1 to 14 show the definition of the production
rule 1. Line 1 shows the attributes of the non-terminal
symbol “list.” Attributes are “mid,” ”mid x,”and
“value.” Line 3 shows that this non-terminal consists
of a “circle” and a “text” string and these components
are “Normal.” At line 5, constraints are defined. This
line shows that the attribute “mid” of “circle” C is
equal to the attribute “mid” of “text” T. “mid” is an
attribute that indicates the center’s coordinates. In
lines 8 to 11, the values of Attributes are defined. Line
8 shows that an attribute “mid” of “list” is equal to
“mid” of “circle” C. Line 9 shows that an attribute
“mid x” of “list” is equal to “mid x” of “circle” C.
“mid x” is an attribute indicating an abscissa. Lines
10 and 11 show the definition of an attribute “value.”

Fig. 2. Defining grammars in Eviss

This definition represents that “text” string of “text”
T is treated as a list. At the line 13, action is defined.
This line shows output (value) when this production
rule is applied.

Lines 16 to 38 show the definition for the production
rule 2. Lines 19 and 20 show that two “lists” and two
“lines” must exist somewhere in the visual sentence.
Line 27 shows that “list” S1 is on the left side of “list”
S2. This constraint distinguishes the left “list” from
the right “list.” Lines 31 to 35 show the definition of
the attribute “value.” Here, two “lists” S1 and S2 are
connected.

IV. Eviss

We made the visual system Eviss [1], [2] which has a
spatial parser generator. Figure 1 shows the snapshot
of a visual system that represents “List Tree.” The up-
per half of the screen is called the definition window. A
person who implements a visual system defines gram-
mars of visual languages in the definition window. The
bottom half is called the execution window.

In Eviss, figures are used to define rough grammars.
At first, the user draws figures which he wants to define
as a new non-terminal symbol from the definition win-
dow. We call these figures as “example figures.” Eviss
automatically extracts simple constraints and compo-
nents from “example figure” and outputs to the CMG
Input Window with text. Then the user edits the con-
straints and components in the CMG Input Window
(Figure 2). The user can also specify actions in this
phase.

At the execution phase, a user draws figure elements
which should be analyzed to the execution window.

V. Examples of making visual systems in

Eviss

A. The GUI Creator

We define expressions for widgets and binding in
the visual language. A frame widget (Frame) is repre-

Fig. 3. An example of GUI.

Fig. 4. Visual program that represents Figure 3.

sented by a rectangle which is not painted. A scroll bar
widget (Scroll) is represented by a rectangle painted
with orange. A text widget (TextW) is represented by a
rectangle painted with red. A button widget (Button)
is represented by a rectangle painted with yellow and
a text string in it.

We show an example of describing a GUI in the
visual language. Figure 3 is an example of a GUI
and Figure 4 is the visual program which represents
it. Suppose that the procedure clear_text is called
when left button of the mouse is clicked on the text
widget in Figure 3. The binding appears in the visual
program though it does not actually appear on the
screen. This is because GUIs do not consist of only
visual informations.

We have defined production rules for creating a
GUI by combining widgets. The production rule for
Binding has a text string and a line as its components.
In figure 4, the text string is “Button-1 clear_text”
and the GUI is the text widget. The text string is a
list which consists of the name of the event and the
name of the procedure which is called when the event
occurs. In Figure 4, the event is Button-1 and the
name of the procedure is clear_text.

B. The subset of VISPATCH

VISPATCH [8] is a visual system which redraws fig-
ures according to rules represented by figures. Redraw-
ing is started by events caused by users or the system
such as mouse clicks and drags.

We have implemented the subset of VISPATCH in

Fig. 5. Snapshot of VISPATCH implemented in Eviss.

Fig. 6. A snapshot of VIC

Eviss (Figure 5). VISPATCH starts redrawing by
events, in other words, VISPATCH is event driven.
Eviss starts spatial parsing (and redrawing) by draw-
ing, deleting and altering figure elements, in other
words, Eviss is data driven. To start spatial parsing,
if an event occurs in the event sensor, a figure element
that is the same as in the rule head is drawn in the
event sensor. After spatial parsing is finished, a pro-
cedure which creates production rules for VISPATCH
rules is called in action.

VI. VIC

VIC [3] is the successor of Eviss. There are two
main differences between Eviss and VIC. The first dif-
ference is that Eviss has two windows, i.e., Definition
Window and Execution Window, and only Execution
Window has a spatial parser. Whereas, VIC has only
one window. Because of having one window only, VIC
has no border between Definition Window and Execu-
tion Window. VIC can understand the non-terminal
symbols when the user defines the grammars.

The second difference is that VIC can define con-
straints by the direct manipulation of “example fig-
ures” without using CMG Input Window. In Eviss,
user had to input CMG textually from CMG Input

Fig. 7. Example of the E-R diagrams

Window. This made difficult to define the visual sys-
tem intuitively. In the case of VIC, the user can define
various visual systems intuitively, even if the user does
not know the grammar of CMG.

The snapshot of VIC is shown in Figure 6.

VII. Rainbow

The visual system must have layout capability, since
it performs actions such as creating, deleting, and
moving the figures. Even if a user lays out a portion
of the figure, the entire figure can be hard to under-
stand. It is important to make the entire figure more
balanced and understandable.

We therefore developed Rainbow[4], [5], a visual sys-
tem generator that can handle layout constraints. The
system can interactively layout whole figures while
parsing them, and make the parsed figures more bal-
anced and understandable. Rainbow was implemented
by adding the layout constraints to Eviss.

Using Rainbow makes it possible to more interac-
tively handle figures, such as the various diagrams
that are used in the software engineering field. Figures
can be interactively laid out while they are parsed by
adding layout capability to their spatial parser, and
the parsed figures are more understandable. Rainbow
is therefore a useful tool for making CASE tools.

The snapshot of Rainbow in the E-R diagrams ex-
ample is shown in Figure 7.

VIII. Acknowledgments

The author would like to express thanks to Aki-
hiko Baba, SackTae Joung, Kenichirou Fujiyama and
Kazuhisa Iizuka for their cooperation in the project.
The work reported in this paper has been based on
their research efforts.

References

[1] Akihiro Baba and Jiro Tanaka: “A Visual System Having
a Spatial Parser Generator,” Transactions of IPSJ, Vol. 39,
No. 5, pp. 1385–1394, 1998, in Japanese.

[2] Akihiro Baba and Jiro Tanaka: “Eviss: a Visual System
Having a Spatial Parser Generator,” Proceedings of Asia
Pacific Computer Human Interaction, pp. 158–164, 1998.

[3] Kenichirou Fujiyama, Kazuhisa Iizuka and Jiro Tanaka,
“VIC: CMG Input System Using Example Figures,” Pro-
ceedings of the International Symposium on Future Software
Technology, pp. 67–72, 1999.

[4] SackTae Joung and Jiro Tanaka: Rainbow: “Implementing
Layout Constraints in Visual System Generator,” Trans-
actions of IPSJ, Vol.41, No.5, pp. 1246-1256, 2000, in
Japanese.

[5] SackTae Joung and Jiro Tanaka: “Generating a Visual Sys-
tem with Soft Layout Constraints,” Proceedings of the In-
ternational Conference on Information – Information’2000
–, Fukuoka, Japan, Oct. 16-19, pp. 138-145, 2000.

[6] Kim Marriott: “Constraint Multiset Grammars,” Proceed-
ings of the IEEE Symposium on Visual Languages, pp. 118–
125, 1994.

[7] Sitt Sen Chok and Kim Marriott: “Automatic Construction
of User Interfaces from Constraint Multiset Grammars,”
Proceedings of the IEEE Workshop on Visual Languages,
pp. 242–249, 1995.

[8] Yasunori Harada, Kenji Miyamoto and Rikio Onai: “VIS-
PATCH: Graphical rule-based language controlled by user
event,” Proceedings of the 1997 IEEE Symposium on Vi-
sual Languages, pp. 162–163, 1997.

