
Register Allocation for Predicated Pipelining

using Spiral Graph

Hiroya Itoga
Doctoral Program in Engineering∗

University of Tsukuba
Tsukuba, Ibaraki, Japan.

Yoshiyuki Yamashita
Department of Information Science

Saga University
Saga, Japan.

Jiro Tanaka
Institute of Information Sciences and Electronics

University of Tsukuba
Tsukuba, Ibaraki, Japan.

Abstract The framework of the Spiral Graph is
proposed to allocate registers for software pipelin-
ing in register-renaming architectures. This will a
result in an allocation with the least number of re-
quired registers in polynomial time on a rotating
register, with the names of the registers renamed
one by one and simultaneously. However, the origi-
nal Spiral Graph cannot inherently manage the con-
ditional branches by predicated execution.

In this paper the authors propose Predicated Spi-
ral Graph framework for architecture with a rotat-
ing register and predicated execution, such as the
Intel IA-64 architecture. The proposed method in-
troduces fictitious unit-time intervals to accomplish
register allocation with the optimal number of re-
quired registers, which is equal to or one more than
the maximum number of variables which live simul-
taneously. The proposed method yields the result in
polynomial time.

Keywords: software pipelining, register alloca-
tion, register renaming, predicated execution, Spi-
ral Graph.

1 Introduction

The efficiency of register allocation is an im-
portant issue in modern processors, where the
latency gap increases between the operations

∗H. Itoga is now with Ibaraki Industrial Technology
Center, Ibaraki, Japan.

and memory references. Register allocation is
also more complex since some modern proces-
sors have special hardware facilities, such as
register renaming[1].

Software pipelining[2] is an optimization
method for loop intensive programs using In-
struction Level Parallelism (ILP). It schedules
the instructions in the iterations in order to
overlap partially on the compilation time. Two
software pipelining problems have been solved
by hardware support: one was that the life-
times of the variables span more than the Ini-
tiation Interval (II), which was solved by regis-
ter renaming architectures. The other was that
the various execution paths by the conditional
branches, which was solved by predicated ex-
ecution architectures. For example, the Intel
IA-64 architecture has both hardware facilities
to support software pipelining: Rotating regis-
ter and Predication.

The framework of the Spiral Graph[3] is pro-
posed for a rotating register architecture. The
graph is an expansion of the Cyclic Interval
Graph[4] so it expresses the register renaming
as slanted lines on the graph. Figure 1 shows
an example of the Spiral Graph. The verti-
cal axis expresses the physical register numbers
(names), and the horizontal axis expresses the
instruction steps of the program.

The live range v6 is defined on a rotating

Figure 1: Spiral Graph

register 0 (RR0) and is used on the RR1 since
the right and left of the graph are continu-
ous. The Short Bridge Algorithm arranges the
live ranges on the graph, narrowing the gaps
between the live ranges, similar to v2. This
framework enables us to obtain the allocation
result with the least number of required regis-
ters in polynomial time.

However the Spiral Graph framework can
not naturally express the predicated execution.

Predicated execution uses a hardware facil-
ity on which the instructions are executed ac-
cording to the predicates. Predicates are added
to each instruction by the compilers. If the
predicate is set as true, and instruction is ex-
ecuted. If it is not, the instruction does not
effect the result of the calculation. The origi-
nal instruction of a conditional branch is trans-
lated into the instruction of the predicate def-
inition: if the condition is true, the specified
predicate is set as true.

The translated program for predicated exe-
cution has only a single execution path: the
processor selects the instructions, which are
executed in true condition or false condition
of the original conditional branch. Therefore,
there are variables that are defined and used
only in the true condition or only in the false
condition. These live ranges in the true con-
dition and the false condition overlap in the
same time. The overlapped live ranges must

not be allocated in the same physical register.
The live ranges in predicated execution do not
practically live in the same time, since the con-
ditions do not become true and false simulta-
neously. Therefore, live ranges that have dif-
ferent predicates may be allocated in the same
physical register even if they overlap. We call
this sharing of the physical register by the live
ranges with the predicates.

The authors explain the algorithm using the
sample program shown in Figure 2. Figure 3
shows the scheduled code in software pipelin-
ing, with instructions and architecture we as-
sume are similar to the Intel IA-64 architec-
ture. Comments such as F(5*II+0) repre-
sent the instruction that the ‘F’loating point
number is issued in the 5th stage of software
pipelining at 0 step of the instruction steps in
the iteration.

There are various methods of the ordering
between instruction scheduling and register al-
location on compilation. The authors assume
that the instruction scheduling is already fin-
ished when allocating registers , which is re-
ferred to as pre-pass scheduling. If register al-
location fails because of unsuitable instruction
scheduling, the register allocator should return
the information to the scheduler and the sched-
uler should schedule the instructions again un-
der the information.

DO I=1, 1000
IF (((A(I) + PI)*2.0) > 0.0)
THEN
Y(I)=((X(I)+1.0)**2.0 + X(I) + 1.0) * 3.0

ELSE
W(I)=U(I)**2 + 4.0

END IF
END DO

Figure 2: A sample program.

L: (p17) ldfd f(d)=X[I+3] : M(3*II+0)
(p19) fma f(f)=f(e)*f(e)+f(e) ;; : F(5*II+0)

ldfd f(a)=A[I] : M(0*II+1)
fmp f(c)=f(b)*2 ;; : F(2*II+1)

(p33) ldfd f(h)=U[I+3] : M(3*II+2)
(p18) fadd f(e)=f(d)+1 ;; : F(4*II+2)

(p20) stfd Y[I+6]=fg : M(6*II+3)
fadd f(b)=f(a)+PI ;; : F(1*II+3)

(p35) stfd W[I+5]=fi : M(5*II+4)
(p34) fma f(i)=f(h)*f(h)+4 ;; : F(4*II+4)

(p19) fmpy f(g)=f(f)*3 ;; : F(5*II+5)

fcmp.gt p16,p32=f(a),0 : F(2*II+6)
br.ctop L ;; : B

Figure 3: A result of instruction scheduling.

2 Predicated Spiral Graph

The authors proposed the framework of the
Predicated Spiral Graph to express the pred-
icated execution on the Spiral Graph[5]. The
tracks in the original Spiral Graph, which rep-
resent the physical registers of the processor,
are expanded to a set of “sub-tracks”1.

Figure 4 shows a portion of the Predicated
Spiral Graph. Physical rotating register RR0
is considered to be a set of sub-tracks, “true”
and “false.” A specific sub-track represents the
physical register when the predicate is set as
the related value. The live ranges on the sub-
tracks are considered in some ways to be the

1The concept of sub-tracks on the Predicated Spiral
Graph is different from the “sub-tracks” on the original
Spiral Graph that express the execution paths in the
Enhanced Modulo Scheduling[6].

live range on the main-track. For example, s
and t create the live range from RR1 to RR2. We
refer to that as the live range s and t sharing
the physical register.

3 Lower Boundary

The width of the Spiral Graph is defined as
the number of variables that lives on each step
of the instructions. The maximal number of
widths is called Wmax. Wmax is obviously the
greatest lower boundary of the number of re-
quired registers on the graph or the program.

The authors define the greatest lower bound-
ary on the Predicated Spiral Graph as having
the same meaning as that of the original Spiral
Graph. The number of variables that live in
the same time differs from the greatest lower

Figure 4: Predicated Spiral Graph.

boundary of the number of required registers
since the variables that have different predi-
cates share a physical register on the predi-
cated execution. The Wmax of the the Pred-
icated Spiral Graph should be defined as the
maximum number of widths possible where the
physical registers are shared by any variables
on each instruction step. Two variables that
share a physical register must live on the same
stage in software pipelining and have different
predicates.

The width of step 0 in the sample program
is 6 since a1, b2, d3, d4, f5, g6, h4, and i5 live on
the step (digits express the number of stages)
but d4 and h4, as well as f5 and i5, live in
the same stage and have different predicates,
therefore d4 and, h4, f5 and i5 share the same
physical register and occupy only one register.
The width of step 1 is 7 in the same manner,
and the Wmax of the graph is 7.

4 Optimal Register Allocation
Algorithm

The proposed optimal register allocation algo-
rithm yields an allocation result with the num-
ber of required registers equals to Wmax + 1
in polynomial time. We can obtain the result

with Wmax when certain conditions are satis-
fied.

A summary of the optimal register alloca-
tion algorithm can be expressed as:

1. introduction of fictitious intervals

2. raising the predicated live ranges to nor-
mal live ranges

3. creation of Slide Covers from live ranges

4. rearrangement of live ranges in Slide Cov-
ers

4.1 Fictitious Intervals

The authors first introduce two types of ficti-
tious intervals to the Predicated Spiral Graph
in the algorithm: normal fictitious intervals
and predicated fictitious intervals. Fictitious
intervals are the length of one instruction step.
They are dealt with as real live ranges in reg-
ister allocation but are removed after register
allocation. These fictitious intervals simplify
the problem of connecting the live ranges, rais-
ing the predicated live ranges, and creating the
Slide Covers. The graph that is introduced in
the fictitious intervals is referred to as closure
of the original one.

The predicated fictitious intervals are the
length of one instruction step with a partic-
ular predicate. They are introduced on the
sub-tracks of the graph if any predicated live
ranges remain by sharing when the physical
registers are shared as much as possible by the
live ranges. Sharing indicates that the pred-
icated live ranges that have exclusive predi-
cates are allocated on the same physical reg-
ister. Note that the predicated fictitious inter-
vals do not increase the Wmax of the graph.

Figure 5 contains a sample of the predicated
fictitious intervals on the sample program. The
graph is expanded to the number of pipelined
stages for simplification. The numbers on the
horizontal axis are the number of stages and
the divisions are the instruction steps. In the
figure, a, b, and c are defined or used on the
main-track, and d, e, f and g are defined or
used on the sub-tracks of the true condition.

Figure 5: Expansion of Predicated Spiral Graph.

In contrast, h and i are on the sub-track of
the false condition. We introduce predicated
fictitious intervals (colored gray), that have a
predicate of false since the live ranges d, f , and
g are on the sub-tracks of the true condition.

Normal fictitious intervals are the length of
one instruction step and do not have a predi-
cate. They are the same as those called unit-
time intervals[7] or fictitious intervals on the
original Spiral Graph. The intervals are intro-
duced to fix the widths of the graph in Wmax.

4.2 Raising Predicated Live Ranges

We next translate the predicated live ranges
into normal live ranges by sharing the regis-
ters, while considering the predicates so that
all the live ranges are dealt with as normal live
ranges. The authors refer to the translation
as raising the predicated live ranges to normal
live ranges.

The predicated live ranges are combined un-
til the end points become the same. The same
end point is always found on the specific predi-
cates, since predicated fictitious intervals have
been introduced.

We find the normal live ranges m and n
on Figure 5, which contain the predicated live
ranges. The raised live range m contains the
live ranges ({d, e, f}, { , , h, i, }) where ex-
presses the fictitious interval. The raised live
range n also contains ({g}, { , , , , }).

4.3 Slide Covers

We can then apply the optimal register allo-
cation algorithm of the original Spiral Graph
since no live ranges on the graph have a pred-
icate after the raising translation. The live
ranges on the closure, the graph that intro-
duced the fictitious intervals, can only be con-
nected and translated onto some Slide Covers.

The connection of live ranges indicates that
two live ranges are arranged on the graph with-
out gaps between them: the end step of one
and the start step of the other are the same.
Note that the start or end step is the modulo
II of the start or end point of the connection,
and therefore, live ranges a and c have the same
start step in the sample program, as in Figure
5.

The Slide Cover is the live range that con-
tains connected live ranges with no gaps and
that have the same start step and end step on
the graph. The Slide Cover is thus the length
of only a multiple of II .

A Spiral Graph that contains only Slide Cov-
ers is Wmax+1-allocatable since we can arrange
the Slide Covers on the graph on the order of a
monotone increasing as in Figure 6. Eight reg-
isters are required, which is equal to Wmax +1.

4.4 Wmax-Allocation

Finally, we verify whether the number of the
required registers becomes equal to Wmax,

Figure 6: Result of Allocation with Wmax + 1.

since the result is obviously optimal when the
required registers equals to Wmax. The condi-
tion is that all live ranges are connected into
only one Slide Cover, and the live ranges at the
tail of the Slide Cover before register rotation
are fictitious ones.

Rearrangement is effected when any Slide
Cover is translated into the Slide Cover that
started in the same instruction step with any
live ranges the Slide Cover contained. The def-
inition of closure guarantees that there must be
live ranges that have the same start step as any
live ranges on the graph.

Insertion is effected when a Slide Cover is
inserted to another Slide Cover if they have
live ranges with the same start step. The Slide
Cover is rearranged into a Slide Cover with a
particular start step, and it can be inserted into
another because the start step and end step of
the Slide Cover are the same.

Rearrangement and insertion of the Slide
Covers can verify the Wmax-allocatable condi-
tion. In the end, if the condition is satisfied, we
can obtain a result with the number of Wmax, if
it is not satisfied, the result yields the number

Figure 7: Result of Allocation with Wmax.

of Wmax + 1.
Figure 7 illustrates the result with Wmax af-

ter rearrangement and insertion of the graph
of the sample program.

All of these operations on register alloca-
tion end in polynomial time when the program
has a single conditional branch. The computa-
tional complexity of the raising operation in-
creases the power of two of the number of con-
ditional branches. However, the number of
conditional branches are usually a one finger
digit, which strongly suggests that the regis-
ter allocation algorithm results with the least
number of the required registers in polynomial
time.

5 Related Work

A register allocation method using an interfer-
ence graph for predicated execution has been
proposed[8]. In this method, the nodes of the
graphs that which have different predicates are
bundled into one node. It is difficult to handle
software pipelining or register renaming archi-
tecture with this method. Furthermore, the

method can not guarantee the optimal number
of required registers ion the result since some
heuristics yield bundles.

The Meeting Graph[7] has been proposed to
allocate registers with the near optimal num-
ber of required registers in polynomial time:
this method yields a the result below Wmax +
1. The Meeting Graph considers the conti-
nuity of live ranges. The proposed method
in this paper deals with predicated execution,
which makes the register allocation problem
more difficult. Moreover the proposed method
describes the conditions necessary to achieve
Wmax-allocation.

6 Conclusion

In this paper, the authors propose a register al-
location algorithm for architectures that have
the rotating register and predicated execu-
tion. The authors explain the Predicated Spi-
ral Graph to represent register sharing by vari-
ables with different predicates. The proposed
algorithm of the Predicated Spiral Graph pro-
vides a result with the optimal number of
required registers in polynomial time, if the
Wmax-allocatable condition is satisfied. If it
is not satisfied, the algorithm gives a result of
Wmax + 1. The algorithm contributes to the
optimizing compilers of architectures such as
IA-64, and it provides the benefit of rotating
register architecture.

The authors will implement the algorithm
on the compiler in future work to measure the
performance with the standard benchmarks.

References

[1] Gary R. Beck, David W. L. Yen, and
Thomas L. Anderson. The cydra 5 minisu-
percomputer: Architecture and implemen-
tation. In The Journal of Supercomputing,
volume 7 (1–2), pages 143–180, May 1993.

[2] Vicki H. Allan, Reese B. Jones, Ran-
dall M. Lee, and Stephen J. Allan. Soft-

ware pipelining. ACM Computing Surveys,
27(3):367–432, Sep 1995.

[3] Tomohiro Haraikawa, Motohide Soeno,
Yoshiyuki Yamashita, and Ikuo Nakata.
Register allocation frameworks for slide-
window architecture. Transactions of In-
formation Processing Society of Japan,
39(9):2684 – 2694, 1998. (in Japanese).

[4] Laurie J. Hendren, Guang R. Gao, Erik R.
Altman, and Chandrika Mukerji. A reg-
ister allocation framework based on hier-
archical cyclic interval graphs. In Lecture
Notes in Computer Science (LNCS), vol-
ume 641, pages 176–191. Springer-Verlag,
1992.

[5] Hiroya Itoga, Tomohiro Haraikawa, Yoshi
yuki Yamashita, and Jiro Tanaka. Regis-
ter allocation for software pipelining with
predication using spiral graph. In Pro-
ceedings of the International Symposium on
Future Software Technology (ISFST2001),
pages 58–65, 2001.

[6] Tomohiro Haraikawa. Register Allocation
for Slide-Window Architecture. Doctoral
thesis, doctoral program in engineering,
University of Tsukuba, 2000.

[7] Christine Eisenbeis, Sylvain Lelait, and
Bruno Marmol. The meeting graph : a
new model for loop cyclic register allo-
cation. In Proceedings of the 5th Work-
shop on Compilers for Parallel Computers
(CPC95), pages 503–516, Jun 1995.

[8] Alexandre E. Eichenberger and Edward S.
Davidson. Register allocation for predi-
cated code. In Proceedings of the 28th
Annual International Symposium on Mi-
croarchitecture (MICRO-28), pages 180–
191, 1995.

