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ABSTRACT
We herein demonstrate Tesla Blocks, a magnetism-based tangible
3D modeling system using block-shaped objects. The system
recognizes the structure assembled by the user and draws the
3D model in real time. Each block of the system has a simple
structure; we embed only a permanent magnet in a block. Because
the electronic circuit used for recognizing the structure exists
outside the blocks, the system is simple. Furthermore, occlusion
by the user’s hand does not occur in recognizing the structure.

CCS CONCEPTS
• Human-centered computing → Graphics input devices;
Interface design prototyping; • Hardware → Emerging interfaces;
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1 INTRODUCTION
Many systems for tangible 3D modeling using block-shaped
objects have been researched (e.g., [2–4, 21]); they recognize the
assembled block structure (hereinafter block structure) and draw
the 3D model. One outstanding merit of such 3D modeling is its
tangible user interface (TUI). A TUI is designed to allow a user
to manipulate intangible computer information by manipulating
tangible objects in the real world directly(e.g., [9, 16, 22]). This
design causes the objects perceived by the user and the objects
manipulated by the user to be the same. By contrast, in graphical
user interfaces (GUIs), the objects perceived by the user and
those manipulated by the user are different. For example, the user
perceives the cursor while manipulating a mouse in a desktop
environment. Meanwhile, in tangible 3D modeling using block-
shaped objects, the construction of a block structure is assembling
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Figure 1: Tesla Blocks. When the user places the blocks on
the hardware, the 3D model is drawn in real time.

block-shaped objects, where the objects perceived by the user
and the objects manipulated by the user are the same. Therefore,
using this manipulation as the input to the computer, 3D modeling
using block-shaped objects could realize an easy-to-understand 3D
modeling even for a user who is not familiar with computers.

To realize such a block-shaped TUI, it is necessary to recognize
the block structure consisting of blocks. Such existing methods
can be categorized into two groups. The first group recognizes
the structure using electronic circuits including a microcontroller
embedded in a block. The second group uses cameras installed,
where the entire structure can be observed. However, the first
group is disadvantageous because a complicated circuit must
be incorporated in each block. The second group exhibits the
following problems: the system tends to be bulky owing to the use
of cameras; occlusion occurs by the user’s hand.

To solve these problems, we explore a magnetism-based ap-
proach as another simple approach to recognize a block structure,
and develop a magnetism-based tangible 3D modeling system
named Tesla Blocks (Figure 1). The system recognizes the structure
assembled by the user and draws the 3D model in real time.
Each block of the system has a simple structure; we embed only
a permanent magnet in a block. Because the electronic circuit
used for recognizing the structure exists outside the blocks (i.e.,
in the base plate on which the user assembles the blocks in our
current implementation), the system can be compact. Furthermore,
occlusion by the user’s hand does not occur as magnetism is used
to recognize the structure.

2 RELATEDWORK
Many techniques for recognizing block structures, methods for 3D
modeling, and interaction techniques using magnetism have been
studied.

2.1 Block Structure Recognition Techniques
Many techniques use built-in electronic circuit blocks or camera
images. In addition, some uses capacitance measurement.
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2.1.1 Techniques using Built-in Electronic Circuit Blocks. Many
techniques recognize structures using an electronic circuit incor-
porated into a block; the circuit transmits and receives electric
signals via a metal connector. In the studies by Anderson et al. [2],
Watanabe et al. [24], and Leen et al. [17], the microcontrollers
embedded in the blocks communicate with each other to recognize
the structure. Ando et al. [3] proposed StackBlock, a block in
which infrared (IR) LEDs and phototransistors are laid in a grid
pattern on all its six faces. Their system estimates the contact area
between blocks by emitting and receiving IR light. Hosoi et al. [12]
designed a building block with a magnetic sensor, accelerometer,
and Bluetoothmodule. In addition to the number of blocks stacked,
the system recognizes how each block is placed (blocks’ direction
and how blocks are aligned) in real time. In contrast to the studies
above, our system realizes a block-shaped TUI with a simple
structure by embedding a permanent magnet in each block.

Glauser et al. [10] and Wang et al. [23] built an object with
joints that can bend and twist, with a microcontroller and sensor
in the joint. The user can manipulate a 3D model by manipulating
the joints of the structure assembled by these objects. Leen et
al. [17] proposed StrutModeling that enables users without a 3D
modeling background to prototype 3Dmodels by assembling struts
in a physical space. While it may become cheaper and easier to
manufacture tangible blocks with integrated electronics in the
future, our block would still be easier to be manufactured because
it has a fairly simpler structure.

2.1.2 Techniques using Camera Images. Another approach uses
cameras installed where the entire structure can be observed. The
system of Baudisch et al. [4] uses a block composed of glass fiber
and a marker. The system monitors the structure assembled by
blocks with the camera under the desk, and recognizes the height
of stacked blocks from the difference in the appearance of the
marker from the bottom. The systems of Miller et al. [21] and
Gupta et al. [11] recognize a structure using a depth camera. By
contrast, our system is based on magnetism rather than cameras;
therefore, it could realize a compact system compared to these
systems and solves the misrecognition owing to occlusion.

2.1.3 Techniques by Capacitance Measurement. In addition to the
two above approaches, another approach that uses capacitance
measurement has been explored. Yoshida et al. [25] designed
a block that is a capacitor formed by combining conductive
and nonconductive filaments using a fused deposition modeling
3D printer. When these blocks are stacked, the capacitors are
connected in parallel; therefore, the capacitance measured at the
base increases linearly. The system detects the number of stacked
blocks by mapping the measured capacitance with the number
of blocks. In addition, Ikegawa et al. [15] created a tangible
3D modeling system that can recognize more number of blocks
simultaneously using blocks with built-in capacitors. Chan et
al. [7] developed a system that can detect the number of blocks
stacked on a capacitive touch panel. When the user touches
the side of the block when placing it, several touch points are
generated that correspond to the number of blocks stacked on
the touch panel. The system estimates the number of blocks from
the combination of the generated touch points. Compared to the
techniques described above, these techniques recognize the block

structure without incorporating microcontrollers into blocks, and
also solve the occlusion problem by detecting the capacitance of
the blocks. Similarly, our method realizes the recognition of the
structure by another simple method of embedding a permanent
magnet in each block.

2.2 Magnetism-Based Interaction Techniques
Research on interaction techniques based on magnetism has also
been conducted actively. Bianchi et al. [5, 6] embedded permanent
magnets into a tangible tool that can be used in combination with a
smartphone. By measuring magnetism with the built-in magnetic
sensor, the smartphone detects where the tool was placed and
determines how the tool was manipulated. uTrack by Chen et
al. [8] uses two triaxial magnetic sensors to track the position
and angle of permanent magnets. uTrack realizes real time 3D
inputs using the thumb with one permanent magnet and the ring
finger with two magnetometers. Abe et al. [1] proposed input
techniques for smartphones using a stylus with a permanent
magnet. Using these techniques, the user can use the surface on
which the smartphone is placed as the surface for the stylus input.
Huang et al. [13, 14] proposed IM6D, which is a real-time magnetic
motion-tracking system. IM6D uses an array of pickup coils to
track the position and orientation of each wireless LC coil. By
contrast, we use permanent magnets and magnetic sensors to
recognize the structure of the assembled blocks.

Similar to our system, some TUI studies that use permanent
magnets and magnetic sensors also arrange the magnetic sensors
in a grid pattern. Liang et al.’s GaussStones [20] is a system that
uses markers with built-in permanent magnets inside a magnetic
shield. Markers are recognized by measuring the locally generated
magnetism using the magnetic sensor array (GaussSense [19]) on
the back of the liquid crystal panel. This system can recognize up
to two stacked markers. GaussBricks [18] uses the same hardware
as GaussSense and recognizes the combination of bone-shaped
parts, each of which contains two magnets attached to both ends.
Meanwhile, we realize a tangible 3Dmodeling systemusing a block
with a permanent magnet and a magnetic sensor array.

3 TESLA BLOCKS
Tesla Blocks is a system that recognizes the structure assembled
by the user and draws the recognized structure as a 3D model in
real time (Figure 1). The system consists of block-shaped objects
(LEGO bricks), hardware with magnetic sensors array placed in
a grid pattern (Magnetism Measurement Hardware), Structure
Recognition Software, and 3D model viewer. By assembling the
blocks, i.e., blocks containing a magnet (magnetic block, Figure 2,
left) and blocks without magnets (empty block, Figure 2, right), the
user can construct the block structures to exhibit pseudo hollows.

3.1 Magnetic Block
We created a magnetic block by embedding a permanent magnet
inside a 2×2 LEGO Duplo block. A magnetic block consists of a
LEGO Duplo block (Figure 3 left), fixture (Figure 3 middle), and
permanent magnet (Figure 3 right). In our current implementation,
we used a cylindrical neodymiummagnet with a diameter of 6mm,
a height of 2.5mm, and a magnetic flux density of 220mT on
the top/bottom base as the permanent magnet. Because the cavity
inside the 2×2 LEGO Duplo block is a cylinder with a diameter of
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Figure 2: Block-shaped objects: left) magnetic block, and
right) empty block.

Figure 3: Components of a magnetic block: left) 2×2 LEGO
Duplo, middle) fixture, right) neodymium magnet.

a b c

Figure 4: Components of Magnetism Measurement Hard-
ware: a) triaxial magnetic sensors arranged into a grid of
4×4, b) 16-channel analog multiplexer, c) microcontroller.

Figure 5: Moving a block structure in four places to acquire
pseudo 64 magnetic sensor values.

10.8mm, we used a cylinder-shaped fixture to fix the magnet in
the cavity (Figure 2 left). The fixture has a cylindrical cavity on
the top with a diameter 6.25mm and a height of 2.5mm to hold
the magnet. We designed this fixture and printed it with a fused
deposition modeling 3D printer.

3.2 Magnetism Measurement Hardware
Magnetism Measurement Hardware measures the magnetism of
the block structure assembled by the users (Figure 4). It consists of
16 triaxial magnetic sensors (Figure 4a, Honeywell International
Inc., HMC5883L), a 16-channel analog multiplexer (Figure 4b,
CD74HC4067 by Texas Instruments), and a microcontroller (Fig-
ure 4c, Arduino Nano). We arranged the magnetic sensors into a
4×4 grid with the distance between the sensors of 15.24mm on the
universal board. To allow the user to assemble blocks above the
magnetic sensors, we 3D-printed a case for the magnetic sensor
array to be fitted to the hardware. This case is a rectangular
parallelepiped of 135mm in length and width and 31.5mm in
height. On the top of this case, 8×8 studs are placed similarly
as the LEGO Duplo base plates, allowing the user to assemble
blocks above the magnetic sensor array. We set up each magnetic
sensor to measure the magnetism at 75Hz with a detection range
of ±0.56mT and to send the average value of eight samples to
the microcontroller. Because the slave address used for the I2C

communication of the magnetic sensor is fixed, we used a mul-
tiplexer for enabling communication between the microcontroller
and multiple magnetic sensors.

3.3 Structure Recognition Software
Structure Recognition Software, implemented in Python 3.6.5,
recognizes a block structure by using the fact that the magnetic
fields of multiple magnets are additive. Namely, if a block structure
is placed on a hardware, the magnetic field observed by each
magnetic sensor is the sum of the magnetic fields at the sensor
from the magnetic blocks constituting the structure.

Based on this fact, the software recognizes the structure by
using the magnetic fields recorded by all the sensors (training
data). Assume that the system accepts a block structure with a
size of up tow×d×h blocks; that is, the user can assemble 2w×d×h

patterns of block structures. Moreover, let ®bx ,y,z be the magnetic
fields observed by the n triaxial magnetic sensors when a magnetic
block is placed at (x,y, z):

®bx ,y,z = (bx ,y,z,1, · · · ,bx ,y,z,3n ),
where bx ,y,z,i (i = 1, · · · , 3n) are the magnetic field values sensed
by the sensors.

To obtain the training data, first, we recorded the values of
each sensor when no magnetic block was placed on the hardware.
This is considered as the offset to eliminate the influence of
geomagnetism and magnetism of surrounding electronic devices.
Second, we recorded ®b1,1,1, · · · , ®bw ,d ,h by placing one magnetic
block at one position from (1, 1, 1) to (w,d,h) one by one. Finally,
we created a matrix B from thew×d×h vectors as the training data:

B =
(
®bT1,1,1 ®bT2,1,1 · · · ®bTw ,d ,h

)
.

Let ®s = (s1,1,1, · · · , sw ,d ,h ) be the vector that represents a
block structure assembled by the user, where sx ,y,z ∈ {1, 0} (1:
a magnetic block is placed at (x,y, z); 0: otherwise). In this case,
the magnetic fields ®m = (b1, · · · ,b3n ) observed by the n sensors
will be:

®mT = B®sT.
Therefore, by measuring ®m, we can estimate the block structure ®s
as follows:

®sT = B−1 ®mT, (1)
where B−1 is the pseudo-inverse matrix of B. Note that the offsets
must be measured again before measuring ®m when the hardware
is moved while B remains reusable even when the hardware is
moved.

However, since there are individual differences in sensors,
permanent magnets, and attachment of permanent magnets and
the observed magnetic fields contain noise, the components of the
derived ®s with Equation 1 varie around 0 or around 1. Therefore,
we use a threshold for estimation: if the component is greater than
the threshold, the software estimates that there is a magnetic block
at the corresponding position (0.5 in our current implementation).

3.4 3D Model Viewer
We implemented a 3D model viewer that recognizes the structure
of the magnetic blocks assembled by the user and obtain the result
as a 3D model. This application receives the results sent from
Structure Recognition Software using OpenSound Control. We
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Figure 6: Block recognition accuracies of Exp. 1 and 2: a) a
block existed as expected, b) no block existed as expected, c)
a block existed unexpectedly, d) no block existed unexpect-
edly.

Figure 7: Structure recognition accuracies of Exp. 1 and 2: a)
all blocks were correctly recognized, b) one or more blocks
existed unexpectedly, c) fewer blocks existed unexpectedly,
d) structures including both b and c.

implemented this viewer using Processing. We used P3D, which
is the standard 3D drawing engine of Processing for drawing 3D
models. The user can move the viewpoint and zoom the model
using the mouse for an easier visualization of the 3D model.

4 EVALUATION
We conducted two experiments to examine the recognition accu-
racy of the Tesla Blocks.

4.1 Experiment
We conducted Experiment 1 (Exp. 1) with 16 magnetic sensors and
Experiment 2 (Exp. 2) with 64 pseudo-magnetic sensors. In both
experiments, we attempted to recognize the block structures with
the size of up to 2×2×h (h = 1. . .4).
4.1.1 Exp. 1. As a setup, we prepared four files containing the
magnetic values required to recognize a structure with the size
of up to 2×2×4. First, we selected one file and created a matrix
B from the file. Second, we selected another from the remaining
three files to calculate the magnetic values of all block structure
patterns (22×2×h patterns) from the file. Finally, we calculated the
recognition accuracy using the magnetic values of all structure
patterns. In this study, we calculated two types of recognition
accuracy. The first one is the recognition accuracy in which each
block of the block structure is recognized correctly (block recog-
nition accuracy). The second one is the recognition accuracy in
which the entire block structure is correctly recognized (structure
recognition accuracy).We repeated the process above to obtain the
average and standard deviation of the two recognition accuracies
for all combinations (i.e., 4×3 combinations) of the four files.
4.1.2 Exp. 2. In addition, we hypothesized that recognition accu-
racy would be improved by increasing the number of magnetic
sensors. To examine this, we increased the number of magnetic
sensors virtually to 64 bymoving the block structure in four places,
as shown in Figure 5. With this setting, we obtained the two
recognition accuracies with the same method as Exp. 1.

4.2 Results
We demonstrate the block recognition accuracy of Exp. 1 and 2 in
Figure 6. Figure 6a–b show the percentage of correct recognition,
and 6c–d show that of incorrect recognition. The block recognition

accuracy of block structures with the size of up to 2×2×4 was
71% (SD = 0.035, Figure 6 left). Moreover, this result shows that
increasing the number of magnetic sensors improves the accuracy
to 82% (SD = 0.031, Figure 6 right).

We demonstrate the structure recognition accuracy of
Exp. 1 and 2 in Figure 7. Figure 7a shows the percentage of correct
recognition and 7b–d show that of the incorrect recognition.
The recognition accuracies of the block structures with the
size of up to 2×2×3 and 2×2×4 were 18% (SD = 0.134) and
0.8% (SD = 0.008), respectively (Figure 7 left). By contrast, by
increasing the number of magnetic sensors, the accuracies were
improved to 77% (SD = 0.198) and 8.8% (SD = 0.040), respectively
(Figure 7 right). In addition, by increasing the block structure
height, the proportion in incorrect accuracy Figure 7d is improved.

5 SUMMARY AND FUTURE WORK
In the evaluation, we discovered that recognition accuracy was
improved by increasing the number of magnetic sensors. To apply
this finding, we plan to implement a hardware with increased
number of magnetic sensors, and attempt the real time recognition
of larger block structures. Conversely, we found that the number of
sensors could be increased bymoving the structure or themagnetic
sensor; thus, we will consider minimizing the number of sensors.

In this system, if a user placed a block at the coordinates not
recorded beforehand, the systemwouldmisrecognize (for example,
a structure in which the block is shifted by half). Although
the current system could not recognize the structure above, we
perceive that the system can be recognized by devising the data to
be recorded in advance.

In this study, we demonstrated a magnetism-based tangible 3D
modeling system that used block-shaped objects, which we call
Tesla Blocks. Our system used a block with a simple structure
that contained a permanent magnet. Our system recognized the
block structure based on magnetic measurements and presented
the recognition result as a 3D model in the display. The experi-
ments indicated that increasing the number of magnetic sensors
improved the recognition accuracy of Tesla Blocks.
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