
Describing a Drawing Editor
 by Using Constraint Multiset Grammars

Kazuhisa Iizuka, Jiro Tanaka and Buntarou Shizuki
Institute of Information Sciences and Electronics, University of Tsukuba

1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8573, Japan
{iizuka, jiro, shizuki}@iplab.is.tsukuba.ac.jp

ABSTRACT
Systems that can handle visual languages such as Penguins
and Eviss use a generalized editor for handling figures of
the visual language. However, these editors have limited
editing operations. We propose an approach to describe
operations on the figures as a part of the language's gram-
mar. It becomes easy to provide an editing operation based
on the analysis of a figure, and the implementation is inde-
pendent of the execution environment.

Keywords
Drawing Editor, Parser, Visual Language, Grammar.

INTRODUCTION
Visual language is a set of drawings that has a meaningful
combination of fundamental figures. The drawing figures
must be analyzed by the parser to recognize these figures.
The visual language's grammar gives the language's speci-
fication. There are many types of grammars such as Posi-
tional Grammars [4], Relational Grammars [6], and Con-
straint Multiset Grammars (CMG) [8].

A parser generator, which generates the parser automati-
cally by specifying its grammar, has been investigated. For
instance, see SPARGEN [7], VLCC [5], Penguins [3], Eviss
[1], and Rainbow [9].

CMG is used to provide an interactive system based on the
visual language. Penguins, Eviss, and Rainbow are envi-
ronments that can generate an interactive system. In these
systems, figures edited on the attached editor will be ana-
lyzed immediately. However, these systems can only per-
form basic operations on the fundamental figures; they
cannot perform the specialized operation depending on the
visual language. For example, they cannot change the op-
erations of dragging the figures based on the analysis re-
sults. In order to realize special editing operations depend-
ing on the language, an editor must be created for every
language. However, it is troublesome to make programs
that ask the parser for the analysis result every time. More-
over, special editing operations must be described for every
execution environment so it has the problem of lacking
portability.

To solve these problems, we propose an approach to de-
scribe the operations on the figures as a part of visual lan-

guage's grammar, not by using an editor. As an example, we
present a simple drawing editor described by the gra mmar
in its editing operations.

DESCRIBING DRAWING EDITOR BY USING CMG
We propose an approach to describe operations on the fig-
ures as a part of the grammar and extend CMG to realize it.
This extension introduces the Action notation to CMG so
the operation on the figures can be described. We also in-
troduce special tokens in order to notify the parser about the
mouse operation or to hold an internal state. The operations
on the figures are described as a grammar by using these
tokens. Each operation is described as a production of
CMG according to the state of the special tokens.

We des cribed a simple drawing editor as the grammar. The
user of this editor can write, move, or reform a rectangle
and a line. These functions are described as CMG. This
editor receives the user inputs, reflects the inputs in the
special tokens of the parser, and has a canvas that receives
processing of the parser; it also draws and changes the fig-
ures. This canvas does not have an edit ing function but has
functions only as a user interface. The parser that analyzes
figures based on the grammar with productions performs
the actual processing.

SIMPLE DRAWING EDITOR
We now present a simple drawing editor with which the
user can draw or edit a rectangle and a line. This editor has
a canvas and a menu. The canvas has the following func-
tions.

• Receives basic mouse events such as Move, Press, Re-

lease and Drag.
• Draws a specified drawing.

An identifier is assigned for each figure drawn. We call this
the "Object ID." The Object ID is a natural number. The ID
will increase as figures are created. The figure with the
highest number is drawn upwards. The editor has an editing
mode menu from which Rectangle, Line, Edit or Delete can
be selected. Only one mode is chosen at a time. The editor
provides the following functions by using CMG. These
functions operate in each mode.

(1) Draw Rectangle. By dragging a canvas, a rectangle is

generated by creating a diagonal line from a starting
point to a terminal point.

(2) Draw Line. By dragging a canvas, a line is generated
by connecting the starting point and a terminal point.

(3) Edit. Provides the following three sub-functions.
(3.1) Handle. A figure is selected by clicking it. Only

one figure is selected. The selected figure will have
two handles that correspond to the starting point and
terminal point of the figure. The handle indicates the
selected figure and is used for transforming the fig-
ure.

(3.2) Move. The figure can be moved by dragging.
(3.3) Transform. The form of a figure can be changed

by dragging a handle.
(4) Delete. A figure can be erased by clicking it.

SYSTEM
In this section, we describe the drawing editor system and
its grammar.

Parser
The CMG parser we use is based on the parser proposed by
Chok and Marriott [2, 10]. We use an extended CMG parser
that can invoke actions such as alternate attributes of the
RHS token or delete the specified token when a production
is applied.

CMG is composed of productions. If a production is ap-
plied, it will register a new token specified on the LHS. The
attributes of the new token are defined by attributes of RHS
tokens. The following production means that the token P
can be rewritten by tokens P1, ..., Pn provided that produced
tokens satisfy all Constraints. Actually, when tokens P1, ...,
Pn satisfy all Constraints, the parser creates a new token P,
and makes P1, ..., Pn disappear from the parser. Token P's
attributes are set up according to the Attributes Assignment.
At that time, the Action is executed. The Action may be
alternating attributes of the RHS tokens, deleting some to-
ken, adding a new token that differs from the LHS token,
and so on.

P ::= P1:p1, ...,Pn:pn where (
 Constraints
) {
 Attributes Assignment & Action
}

Eviss and Rainbow introduced the Action to CMG. These
researches use the Action to rewrite figures by parsing re-
sults.

Token
Special tokens, such as Pointer, Mode, and Control, are
used for transferring the event on the canvas to the parser,
maintaining the internal states, and so on. Using these spe-
cial tokens, the role of the parser is expanded from parsing
visual objects to analyzing interactive system states.

Generally, tokens that are used in CMG are visible objects
with some shapes. However, these special tokens are invis i-
ble. The special tokens that we introduced are thus not vis i-

ble objects but have attributes. The special tokens used in
this editor are the Pointer, Mode, and Control tokens. The
Object, Start_handle, and End_handle tokens are normal
tokens.

Special Token
The Pointer and Mode tokens are used to pass the event
information on the canvas to the parser. Each token has
some attributes.

The Pointer token has mouse information. The event on the
canvas, such as moving or pushing, is treated as an attribute
change of the Pointer token. For example, if a button is
pressed, the button attribute of the Pointer token will be
changed from "released" to "pressed." The Pointer token
has the following attributes.

• pos: Position of the mouse.
• button: Conditions of the button. (pressed, released)

The Mode token has a menu state. If the menu is selected
on the canvas, the attribute of the Mode token will be re-
written.

• mode: Current editing mode.

(rectangle, line, edit, delete)

We use the Control token to keep the internal state. The
Control token has the following attributes.

• start: Starting point of the figure. It is used while creat-

ing an object.
• end: Terminal point of the figure. It is used while cre-

ating an object.
• target: Object ID of a currently drawn figure.
• state: Current state.

(normal, draw-rectangle, draw-line, select-object,
move-object, move-start-handle, move-end-handle,
delete-object)

• pointer_pos: Previous mouse position. It is used for cal-
culating the movement of the mouse.

Normal Token
Object, Start_handle, and End_handle are normal tokens.
These tokens correspond to the visible objects.

The Object token corresponding to each figure drawn on
the canvas is used. The Object token has the following at-
tributes.

• id: Object ID of the figure.
• type: Type of the figure. (rectangle, line)
• pos: Position of the figure.
• start: Starting point of the figure.
• end: Terminal point of the figure.

The Start_handle and End_handle tokens correspond to the
handle objects. The handle is used for reforming a figure.
The tokens have the following attributes.

• id: Object ID of the handle.

• pos: Position of the handle.

System Structure
The system consists of three components: Control, Canvas,
and Parser. Control initializes the following.

• Initializes Parser, and creates the Pointer, Mode, and

Control tokens.
• Initializes the Canvas, and establishes the bindings of

mouse and menu events to each token.

Canvas has the following functions.

• Alters the Pointer and Mode tokens if mouse or menu

events occur.
• Draws, alters, or deletes the specified figure when Parser

directs it.

Parser has the following functions.

• Parses tokens depending on the productions when a to-

ken is added or altered.
• If a production is applied, creates new token as produc-

tion definition. If necessary, Parser directs to the canvas,
changes token attributes, deletes specified tokens, or adds
a new token.

PRODUCTION
The following 19 productions are defined for the Simple
Drawing Editor mentioned above.

Draw Rectangle
Production (1-1) draws a temporary rectangle when pressed
on the canvas. It records the Object ID and the position of
the rectangle, and changes the Control token to the
draw-rectangle state. Production (1-2) transforms the tem-
porary rectangle by dragging the canvas in the
draw-rectangle state. Production (1-3) registers the written
rectangle into the parser as an Object token; it then changes
the Control token to the normal state.

// Production (1-1)
RectangleDrawStart ::=
 M:mode, P:pointer, C:control where (
 M.mode == 'rectangle' &&
 P.button == 'pressed' &&
 C.state == 'normal'
) {
 C.start = P.pos;
 C.end = P.pos;
 C.target = createRectangle(C.start, C.end);
 C.state = 'draw-rectangle';
}

// Production (1-2)
RectangleDrawDrag ::=
 M:mode, P:pointer, C:control where (
 M.mode == 'rectangle' &&
 P.button == 'pressed' &&
 C.state == 'draw-rectangle'
 C.end != P.pos &&
) {
 C.end = P.pos;
 transformObject(C.target, (C.start, C.end));
}

// Production (1-3)
RectangleDrawFinish ::=
 M:mode, P:pointer, C:control where (
 M.mode == 'rectangle' &&
 P.button == 'released' &&
 C.state == 'draw-rectangle'
)
) {
 C.state = 'normal';
 R = newToken('object');
 R.type = 'rectangle';
 R.id = C.target;
 R.start = C.start;
 R.end = C.end;
 R.pos = (R.start, R.end);
}

The function createRectangle() draws a rectangle, which
makes a diagonal line from a starting point to a terminal
point. It then returns an Object ID. The function
transformObject() changes the starting point and the termi-
nal point of the object corresponding to the specified ID.
The function newToken() adds a new token that has the
specified type and attributes to the parser, then returns a
new token.

Draw Line
The Draw Line function is composed of three productions.
Those productions are similar to productions applied for
Draw Rectangle. Therefore, the details are omitted.

// Production (2-1)
LineDrawStart ::= ...

// Production (2-2)
LineDrawDrag ::= ...

// Production (2-3)
LineDrawFinish ::= ...

Edit - Handle
Production (3.1-1), in the normal state, changes the Control
token to the move-object state when a figure is pressed. It
creates handles corresponding to a starting point and a ter-
minal point on the canvas, and registers them into the parser
simultaneously. In order to react to the top object, the
not_exist sentence excludes an object that comes below the
target object at the mouse position. Using the Object ID
(O.id and N.id), the display orders of figures are checked.
After the figure is pressed, Production (3.2-1) or (3.2-2)
will be applied. Production (3.1-2), in the select-object state,
cancels selection when a figure is pressed. Production
(3.1-1) will shift it to the move-object state. If there is a
handle on the position, it is managed by a transform func-
tion (such as Production (3.3-1)). If there is no object, Pro-
duction (3.1-2) changes the Control token to the normal
state. Production (3.1-3), in the select-object state, changes
the Control token to the normal state when the editing mode
was changed.

// Production (3.1-1)
SelectObject ::=
 M:mode, P:pointer, C:control, O:object where (

 M.mode == 'edit' &&
 P.button == 'pressed' &&
 C.state == 'normal' &&
 isOverlapped(O.type, O.pos, P.pos) &&
 not_exist N:object where (
 isOverlapped(N.type, N.pos, P.pos) &&
 O.id < N.id
)
) {
 C.state = 'move-object';
 C.pointer_pos = P.pos;
 C.target = O.id;
 S = newToken('start_handle');
 S.id = createHandle(O.start);
 S.pos = O.start;
 E.newToken('end_handle')
 E.id = createHandle(O.end)
 E.pos = O.end;
}

// Production (3.1-2)
SelectObjectCancel ::=
 M:mode, P:pointer, C:control, S:start_handle,
E:end_handle where (
 M.mode == 'edit' &&
 P.button == 'pressed' &&
 C.state == 'select-object' &&
 !isOverlapped('handle', S.pos, P.pos) &&
 !isOverlapped('handle', E.pos, P.pos)
) {
 C.state = 'normal';
 deleteObject(S.id);
 deleteToken(S);
 deleteObject(E.id);
 deleteToken(E);
}

// Production (3.1-3)
SelectObjectCancelByMode ::=
 M:mode, , P:pointer, C:control, S:start_handle,
E:end_handle where (
 M.mode != 'edit' &&
 P.button == 'released' &&
 C.state == 'select-object'
) {
 C.state = 'normal';
 deleteObject(S.id);
 deleteToken(S);
 deleteObject(E.id);
 deleteToken(E);
}

The function isOverlapped() returns true when a mouse is
on the figure. The function drawHandle() draws a handle,
and returns an Object ID. The function deleteObject() de-
letes the specified figure on the canvas. The function
deleteToken() removes the specified token from the parser.

Edit - Move
Production (3.2-1) moves a figure by dragging the figure in
the move-object state. Furthermore, handles are also moved
with a figure. Production (3.2-2) changes the Control token
to the select-object state when it is released in the
move-object state.

// Production (3.2-1)
MoveObjectStart ::=
 M:mode, P:pointer, C:control, O:object,
S:start_handle, E:end_handle where (
 M.mode == 'edit' &&
 P.button == 'pressed' &&

 C.state == 'move-object' &&
 C.pointer_pos != P.pos &&
 C.target == O.id
) {
 O.start = calcPosition(C.pointer_pos, P.pos,
 O.start);
 O.end = calcPosition(C.pointer_pos, P.pos, O.end);
 O.pos = (O.start, O.end);
 S.pos = calcPosition(C.pointer_pos, P.pos, S.pos);
 E.pos = calcPosition(C.pointer_pos, P.pos, E.pos);
 C.pointer_pos = P.pos;
 transformObject(C.target, O.pos);
 transformObject(S.id, S.pos);
 transformObject(E.id, E.pos);
}

// Production (3.2-2)
MoveObjectFinish ::=
 M:mode, P:pointer, C:control, O:object where (
 M.mode == 'edit' &&
 P.button == 'released' &&
 C.state == 'move-object'
) {
 C.state = 'select-object';
}

The function calcPosition() returns the position, which adds
the difference of the position of the first two arguments to
the position of the third argument. For example,

calcPosition((x1, y1), (x2, y2), (x3, y3))
will return

(x3+x2-x1, y3+y2-y1).

Edit - Transform
Production (3.3-1) changes the Control token to the
move-start-handle state when it is pressed on a start-handle
in the select-object state. (Refer to Production (3.1-2).)
Since the end-handle is written above the start-handle, it
investigates whether the end-handle has overlapped or not.
Production (3.3-2) transforms the figure in the
move-start-handle state. Furthermore, the handle is also
moved by figure transformation. Production (3.3-3)
changes the Control token to the select-object state when it
is released in the move-start-handle state.

// Production (3.3-1)
MoveStartHandleStart ::=
 M:mode, P:pointer, C:control, S:start_handle,
E:end_handle where (
 M.mode == 'edit' &&
 P.button == 'pressed' &&
 C.state == 'select-object' &&
 isOverlapped('handle', S.pos, P.pos) &&
 !isOverlapped('handle', E.pos, P.pos)
) {
 C.state = 'move-start-handle';
 C.pointer_pos = P.pos;
}

// Production (3.3-2)
MoveStartHandleDrag ::=
 M:mode, P:pointer, C:control, O:object,
S:start_handle where (
 M.mode == 'edit' &&
 P.button == 'pressed' &&
 C.state == 'move-start-handle' &&
 C.pointer_pos != P.pos &&
 C.target == O.id
) {

 O.start = calcPosition(C.pointer_pos, P.pos,
 O.start);
 O.pos = (O.start, O.end);
 S.pos = calcPosition(C.pointer_pos, P.pos, S.pos);
 C.pointer_pos = P.pos;
 transformObject(C.target, O.pos);
 transformObject(S.id, S.pos);
}

// Production (3.3-3)
MoveStartHandleFinish ::=
 M:mode, P:pointer, C:control where (
 M.mode == 'edit' &&
 P.button == 'released' &&
 C.state == 'move-start-handle'
) {
 C.state = 'select-object';
}

// Production (3.3-4)
MoveEndHandle ::=
 M:mode, P:pointer, C:control, E:end_handle
where (
 M.mode == 'edit' &&
 P.button == 'pressed' &&
 C.state == 'select-object' &&
 isOverlapped('handle', E.pos, P.pos)
) {
 C.state = 'move-end-handle';
 C.pointer_pos = P.pos;
}

// Production (3.3-5)
MoveEndHandleStart ::= ...

// Production (3.3-6)
MoveEndHandleFinish ::= ...

Production (3.3-4) to Production (3.3-6) are mappings of
the end-handle. They are described in the same way as
Productions (3.3-1) to (3.3-3).

Delete
Production (4-1) deletes the figure it is pressed against and
changes the Control token to the delete-object state. The
not_exist sentence is used in order to react to the top object
when figures overlap. Production (4-2) changes the Control
token to the normal state when it is released.

// Production (4-1)
DeleteObjectStart ::=
 M:mode, P:pointer, C:control, O:object where (
 M.mode == 'delete' &&
 P.button == 'pressed' &&
 C.state == 'normal' &&
 isOverlapped(O.type, O.pos, P.pos) &&
 not_exist N:object where (
 isOverlapped(N.type, N.pos, P.pos) &&
 O.id < N.id
)
) {
 C.state = 'delete-object';
 deleteObject(O.id);
 deleteToken(O);
}

// Production (4-2)
DeleteObjectFinished ::=
 M:mode, P:pointer, C:control where (
 M.mode _== 'delete' &&
 P.button == 'released' &&

 C.state == 'delete-object'
) {
 C.state = 'normal';
}

IMPLEMENTATION
We have implemented the drawing editor described above.
Figure 1 and 2 show snapshots of this editor. This imple-
mentation consists of the CMG parser, grammar defin ition
of CMG and support programs. The supporting programs
contain initializing scripts (create canvas and editing mode
buttons) and user-define functions (createRectangle(),
isOverlapped(), and so on). The initializing scripts bind

Figure 1. Drawing a rectangle.

Figure 2. Moving an object.

events to special tokens. All descriptions of edit ing opera-
tions are defined by the grammar. These supporting pro-
grams are written in Tcl/Tk and consist of about 300 lines.

ADVANTAGES
There are various advantages in our approach. The impor-
tant thing is the integration of describing operations and
parsing figures. The operation and parsing figures can be
described on the same framework. Therefore, it becomes
easier to describe the operation depending on the figure's
meaning provided by parsing. For example, depending on
the conditions of the overlap of a handle and the pointer,
pushing the button forks to Production (3.1-2) or Produc-
tion (3.3-1).

It is possible to isolate implementations of operations from
the editor. This means that the editor can be ported with no
modifications to every target environment, implementation
language (e.g. C, Java, and Tcl) and GUI toolkit (e.g. GTK,
Java AWT, and Tk).

CONCLUSION
We proposed an approach to describe operations on the
figures as a grammar. As an example of this, we gave a
simple drawing editor employing a grammar. The editor is
implemented based on the extended CMG and the special
tokens. The detailed operations are described as productions.
The proposed technique makes it easy to offer the editing
operation based on the analysis result of a figure, and the
implementation is independent of the execution environ-
ment.

REFERENCES
1. A. Baba and J. Tanaka, "A Visual System Having a

Spatial Parser Generator", IPSJ Journal, Vol.39, No.5,
pp.1385-1394, 1998. (In Japanese)

2. S. S. Chok and K. Marriott, "Automatic Construction
of User Interfaces from Constraint Multiset Gra m-
mars", Proceedings of IEEE Symposium on Visual
Languages, pp. 242-249, 1995.

3. S. S. Chok and K. Marriott, "Automatic Construction
of Intelligent Diagram Editors", Proceedings of the
ACM Symposium on User Interface Software and
Technology, pp.185-194, 1998.

4. G. Costagliola, A. D. Lucia, S. Orefice, and G. Tortora,
"Positional Grammars: a Formalism for LR-like Pars-
ing of Visual Languages", Visual Languages Theory,
Springer, 1998.

5. G. Costagliola, G. Tortora, S. Orefice, and A. D. Lucia,
"Automatic Generation of Visual Programming Envi-
ronments", IEEE Computer, Vol.28, No.3, pp.56-66,
March 1995.

6. F. Ferrucci, G. Tortora, M. Tucci, and G. Vitiello, "A
Predictive Parser for Visual Languages Specified by
Relation Grammars", Proceedings of IEEE Symp o-
sium on Visual Languages, pp.245-252, 1994.

7. E. J. Golin and T. Maglierry, "A Compiler Generator
for Visual Languages", Proceedings of IEEE Symp o-
sium on Visual Languages, pp.314-321, 1993.

8. R. Helm, K. Marriott, and M. Odersky, "Building Vis-
ual Language Parsers", Conference proceedings on
Human Factors in Computing Systems (CHI'91),
pp.105-112, 1991.

9. S. Joung and J. Tanaka, "Generating a Visual System
with Soft Layout Constraints", Proceedings of the In-
ternational Conference on Information (Informa-
tion'2000), pp.138-145, 2000.

10. K. Marriott, "Constraint Multiset Grammars", Pro-
ceedings of IEEE Symposium on Visual Languages,
pp.118-125, 1994.

